# MANAGEMENT OF METASTATIC BREAST CANCER

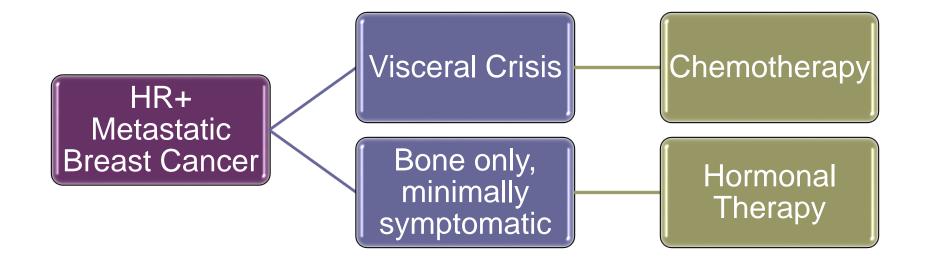
Noridza Rivera-Rodriguez, MD Hematologist-Oncologist Auxilio Cancer Center Assistant Professor UPR School of Medicine





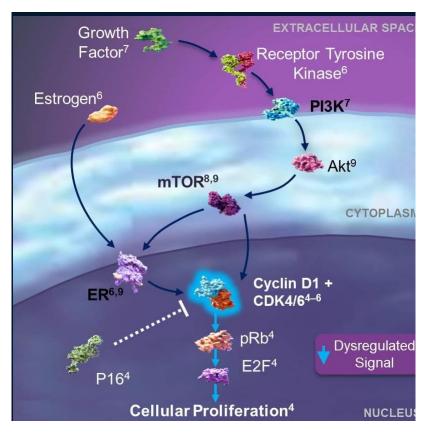
7<sup>TH</sup> ANNUAL PUERTO RICO WINTER CANCER SYMPOSIUM 2018 *"Beating Cancer by Applying Individualized Therapy"* 

#### NORIDZA RIVERA-RODRIGUEZ, MD MANAGEMENT OF METASTATIC BREAST CANCER


RELEVANT FINANCIAL RELATIONSHIPS IN THE PAST TWELVE MONTHS BY PRESENTER OR SPOUSE/PARTNER.

SPEAKERS BUREAU: BMS AND MERCK

THE SPEAKER WILL DIRECTLY DISCLOSURE THE USE OF PRODUCTS FOR WHICH ARE NOT LABELED (E.G., OFF LABEL USE) OR IF THE PRODUCT IS STILL INVESTIGATIONAL.




# HORMONE RECEPTOR + BREAST CANCER



# CDK 4/6 Inhibition

- Cyclin dependent kinases (CDK's) partner with cyclins to regulate cell cycle progression.
- Cyclin D1: CDK4/6:Rb pathway pathway mediates the progression of G1 to S phase in the cell cycle. This pathway is essential to allow the cancer cell division and growth
- Overexpression and overactivation of the ER pathway leads to an increase in Cyclin D1 and activation of CyclinD:CDk4/6 pathway and dyslegulation of the cell cycle.



# Available CDK4/6 Inhibitors in 2018

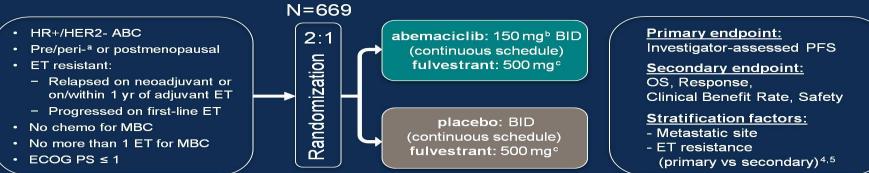
|                      | Palbociclib                                                                                                                                  | Ribociclib                                          | Abemaciclib                                                                                                                                                    |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Route                | PO                                                                                                                                           | PO                                                  | PO                                                                                                                                                             |
| Dose, mg             | 125 QD                                                                                                                                       | 600 QD                                              | 200 BID                                                                                                                                                        |
| Schedule             | 3 wks on/1 wk off                                                                                                                            | 3 wks on/1 wk off                                   | Continuous                                                                                                                                                     |
| Half-life, hr        | 27                                                                                                                                           | 32.6                                                | 17-38                                                                                                                                                          |
| ORR (single agent) % | 6                                                                                                                                            | 2.3                                                 | 19.7                                                                                                                                                           |
| CNS penetration      | Uncertain                                                                                                                                    | No                                                  | Yes                                                                                                                                                            |
| Approval             | <ul> <li>With an AI, First Line<br/>Metastatic HR+</li> <li>With with fulvestrant after<br/>failing another endocrine<br/>therapy</li> </ul> | In combination with AI first<br>line metastatic HR+ | <ul> <li>With an AI, First Line<br/>Metastatic HR+</li> <li>With with fulvestrant or as<br/>monotherapy after failing<br/>another endocrine therapy</li> </ul> |

### Comparative Toxicities of CDK4/6 Inhibitors: Early Phase Trials

| Adverse Event<br>(All Grades), % | Palbociclib <sup>[1]</sup><br>(N = 37) | Ribociclib <sup>[2]</sup><br>(N = 67) | Abemaciclib <sup>[3]</sup><br>(N = 173) |
|----------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|
| Neutropenia                      | 94                                     | 46                                    | 23                                      |
| Anemia                           | 70                                     | 28                                    | 20                                      |
| Thrombocytopenia                 | 76                                     | 34                                    | 23                                      |
| Nausea                           | 24                                     | 45                                    | 45                                      |
| Vomiting                         | 5                                      | 25                                    | 25                                      |
| Diarrhea                         | 16                                     | 27                                    | 63                                      |
| Fatigue                          | 68                                     | 33                                    | 41                                      |
| QTc prolongation                 | No                                     | 9                                     | No                                      |

DeMichele A, et al. Clin Cancer Res. 2015;21:995-1001.
 Infante JR, et al. Clin Cancer Res. 2016;22:5696-5705.
 Patnaik A, et al. Cancer Discov. 2016;6:740-753.




### PFS with CDK4/6 Inhibitors Comparison

|                                             | PALOMA-1                                     | PALOMA-2                                              | MONALEESA-2                                           | MONARCH3                                              | PALOMA-3                                                 | MONARCH-2                                                |
|---------------------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Design                                      | Phase II<br>open label, 1 <sup>st</sup> line | Phase III<br>placebo control,<br>1 <sup>st</sup> line | Phase III<br>placebo control,<br>1 <sup>st</sup> line | Phase III<br>placebo control,<br>1 <sup>st</sup> line | Phase III<br>placebo<br>control, 2 <sup>nd</sup><br>line | Phase III<br>placebo<br>control, 2 <sup>nd</sup><br>line |
| Endocrine partner                           | Letrozole                                    | Letrozole                                             | Letrozole                                             | Letrozole                                             | Fulvestrant                                              | Fulvestrant                                              |
| CDK4/6 Inhibitor                            | Palbociclib                                  | Palbociclib                                           | Ribociclib                                            | Abemaciclib                                           | Palbociclib                                              | Abemaciclib                                              |
| Patients on study, n                        | 165                                          | 666                                                   | 668                                                   | 493                                                   | 521                                                      | 669                                                      |
| Efficacy (CDK4/6 inhibitor vs. control arm) |                                              |                                                       |                                                       |                                                       |                                                          |                                                          |
| Primary end point: PFS                      |                                              |                                                       |                                                       |                                                       |                                                          |                                                          |
| HR                                          | 0.49                                         | 0.58                                                  | 0.56                                                  | 0.54                                                  | 0.46                                                     | 0.55                                                     |
| Median PFS,<br>months                       | 20.2 vs 10.2<br>(10 mo)                      | 24.8 vs 14.5<br>(10.3 mo)                             | 25.3 vs 16<br>(9.3 mo)                                | NR vs 14.7                                            | 9.5 vs 4.6<br>(4.9 mo)                                   | 16.4 vs 9.3<br>(7.1 mo)                                  |

Presented By Ingrid Mayer at 2017 ASCO Annual Meeting

### MONARCH-2 Study: Abemaciclib + Fulvestrant

#### **Study Design**

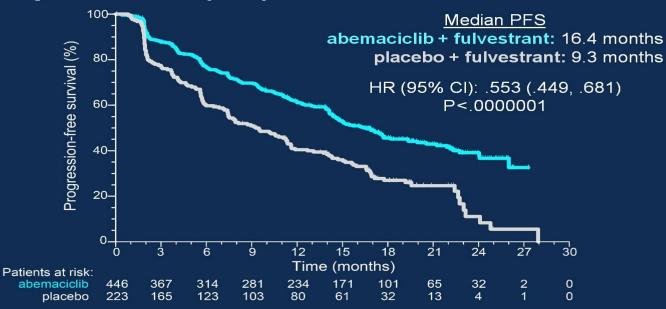


#### • Statistics: 378 events for 90% power at one-sided $\alpha$ of .025 assuming a true HR of .703

#### • Patients enrolled in 142 centers in 19 countries

<sup>a</sup>Required to receive GnRH agonist

<sup>b</sup>Dose reduced by protocol amendment in all new and ongoing patients from 200 mg to 150 mg BID after 178 patients enrolled <sup>c</sup>Fulvestrant administered per label


4. Cardoso F et al. The Breast 6:489-502, 2014; 5. Cardoso F et al. Ann Oncol 25:1871-88, 2014.

|                              | Visceral                         | 245 (54.9) | 128 (57.4) |  |
|------------------------------|----------------------------------|------------|------------|--|
| Metastatic site <sup>a</sup> | Bone only                        | 123 (27.6) | 57 (25.6)  |  |
|                              | Other (non-visceral soft tissue) | 75 (16.8)  | 38 (17.0)  |  |

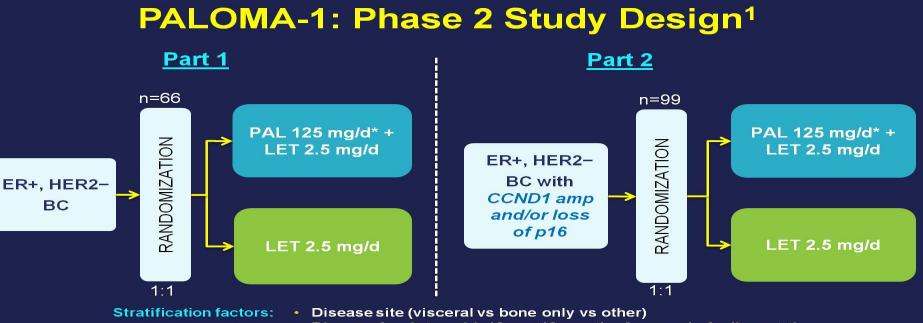
Presented By George Sledge at 2017 ASCO Annual Meeting

### **MONARCH-2** Results

#### **Primary Endpoint: PFS (ITT)**



PFS benefit confirmed by blinded independent central review (HR: .460; 95% CI: .363, .584; P<.000001)


Presented By George Sledge at 2017 ASCO Annual Meeting

### PALOMA-3 and MONARCH-2 Different Population

|                                  | PALOMA-3                                                                             | MONARCH-2                                                             |
|----------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Population                       | HR+/HER2-                                                                            | HR+/HER2-                                                             |
| Prior ET                         | PD on previous ET on/within 1 yr of<br>adjuvant or on therapy for MBC                | PD on previous ET on/within 1 yr of adjuvant<br>or on therapy for MBC |
| Dosing                           | Palbociclib: 125 mg daily,<br>3 wks on, 1 wk off;<br>Fulvestrant: 500 mg (per label) | Abemaciclib: 150mg BD, continuous;<br>Fulvestrant: 500 mg (per label) |
| Prior<br>chemotherapy for<br>MBC | ≤1                                                                                   | Not permitted                                                         |
| # lines of ET in<br>MBC          | Any                                                                                  | 1                                                                     |

Presented By Ingrid Mayer at 2017 ASCO Annual Meeting

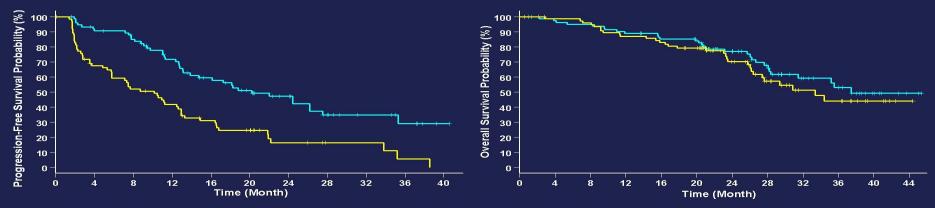
### ASCO 2017 Palbociclib OS Update



 Disease-free interval (>12 vs ≤12 months from end of adjuvant therapy to recurrence or de novo advanced disease)

\*Palbociclib schedule: 3 weeks on/1 week off (28-day cycle) Amp=amplification; BC=breast cancer; ER=estrogen receptor; HER2=human epidermal growth factor receptor 2; LET=letrozole; PAL=palbociclib.

1.clinicaltrials.gov NCT00721409


Presented By Richard Finn at 2017 ASCO Annual Meeting

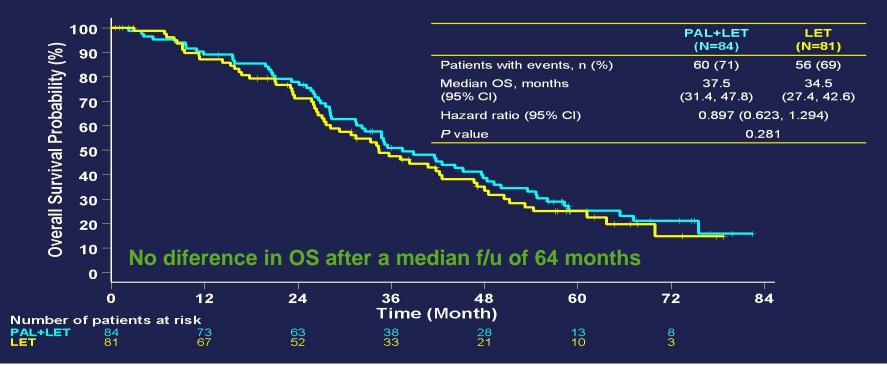
### ASCO 2017 Palbociclib OS Update

#### PFS and OS (ITT) (Data Cut-Off: Nov 29, 2013)

| PFS                         | PAL+LET<br>(N=84) | LET<br>(N=81)            |
|-----------------------------|-------------------|--------------------------|
| Patients with events, n (%) | 41 (49)           | 59 (73)                  |
| Median PFS, months (95% CI) | 20.2 (13.8, 27.5) | 10.2 <b>(</b> 5.7, 12.6) |
| Hazard Ratio (95% CI)       | 0.488 (0.3        | 19, 0.748)               |
| <i>P</i> value              | 0.00              | 004                      |

| os                          | PAL+LET<br>(N=84) | LET<br>(N=81)   |
|-----------------------------|-------------------|-----------------|
| Patients with events, n (%) | 30 (36)           | 31 (38)         |
| Median OS, months (95% CI)  | 37.5 (28.4, NR)   | 33.3 (26.4, NR) |
| Hazard Ratio (95% CI)       | 0.813 (0.49       | 2, 1.345)       |
| Pvalue                      | 0.4               | 2               |

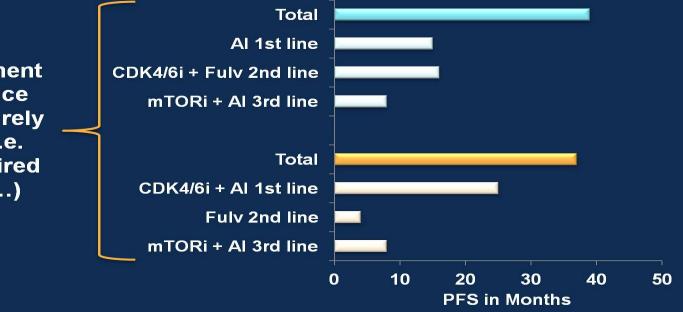



Median duration of follow-up: PAL+LET, 29.6 months (95% CI: 27.9, 36.0); LET, 27.9 months (95% CI: 25.5, 31.1)

Finn RS, et al. Lancet Oncol. 2015;16:25-35. NR=not reached.

Presented By Richard Finn at 2017 ASCO Annual Meeting

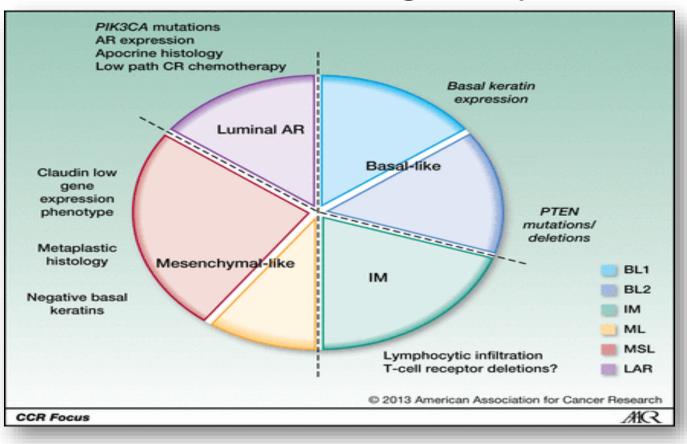
### ASCO 2017 Palbociclib OS Update


#### **OS: Phase 2 (ITT)**



Presented By Richard Finn at 2017 ASCO Annual Meeting

### What to do in our practice?


2 different treatment strategies; choice should probably rely on BIOLOGY (i.e. primary vs acquired ET resistance...)



Presented By Ingrid Mayer at 2017 ASCO Annual Meeting

# TRIPLE NEGATIVE BREAST CANCER

### **TNBC** Heterogeneity



### When to Test for BRCA1/2 Mutations in MBC

Pts diagnosed at young age, with specific subtypes, or with family history of breast or ovarian cancer should be referred for genetic testing and counseling

#### **Pt Factors**

< 50 yrs of age at diagnosis of BC</p>

60 yrs of age at diagnosis of TNBC

- Diagnosis of bilateral BC
- History of ovarian cancer at any age or in any first- or second-degree relative

Runowicz CD, et al. J Clin Oncol. 2016;34:611-635.

#### **Family History**

- First-degree relative diagnosed with BC at < 50 yrs of age</p>
- ⊇ 2 first- or second-degree relatives diagnosed with BC at any age
- Any male relative diagnosed with BC
- □ ≥ 1 grandparent of Ashkenazi Jewish heritage

### OlympiAD: BRCA TNBC or HR+

- HER2-negative metastatic BC
  - ER+ and/or PR+ or TNBC
- Deleterious or suspected deleterious gBRCAm
- Prior anthracycline and taxane
- ≤2 prior chemotherapy lines in metastatic setting
- HR+ disease progressed on ≥1 endocrine therapy, or not suitable
- If prior platinum use

O

- No evidence of progression during treatment in the advanced setting
- ≥12 months since (neo)adjuvant treatment



Vinorelbine

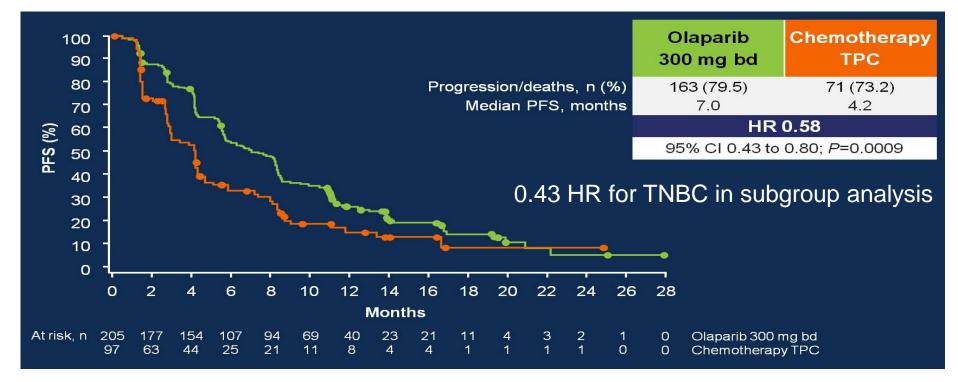
Primary endpoint:

 Progression-free survival (RECIST 1.1, BICR)

Secondary endpoints:

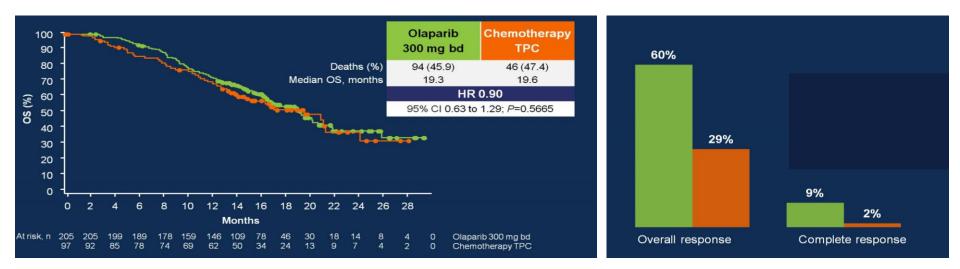
- Time to second progression or death
- Overall survival

Treat until progression


- Objective response rate
- Safety and tolerability
- Global HRQoL (EORTC-QLQ-C30)

BICR, blinded independent central review; ER, estrogen receptor; HRQoL, health-related quality of life; PR, progesterone receptor; RECIST, response evaluation criteria in solid tumors; TNBC, triple negative breast cancer

#### 49% of Patients were TNBC


Presented By Mark Robson at 2017 ASCO Annual Meeting

### OlympiAD: Primary Endpoint PFS

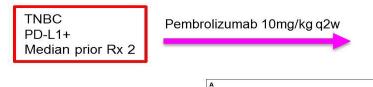


Presented By Mark Robson at 2017 ASCO Annual Meeting

### OlympiAD: OS and ORR

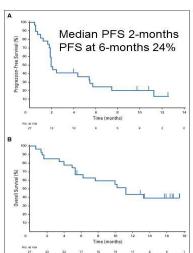


On January 12, 2018, FDA granted regular approval to olaparib for the treatment of patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm), HER2-neg MBC who have been treated with chemotherapy either in the neoadjuvant, adjuvant, or metastatic setting Presented By Mark Robson at 2017 ASCO Annual Meeting

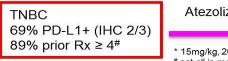

# Why is TNBC a good target for immunotherapy?

•High mutation rate, which can produce neoantigens that induce an immune response

•Increased number of tumor-infiltrating lymphocytes, which can facilitate an immune response


•Higher PD-L1 expression levels, which can inhibit T-cell antitumor responses, as compared with other breast cancer subtypes

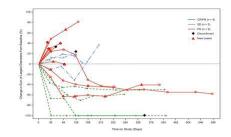
#### Efficacy of single agent PDL-1 antibodies in heavily pre-treated TNBC




**KEYNOTE-012** 

| n=27 |
|------|
| 19%  |
| 4%   |
| 15%  |
| 26%  |
| 48%  |
|      |




15 14 ...



#### Atezolizumab q3w\*

\* 15mg/kg, 20mg/kg or 1200 flat dose # not all in metastatic setting

| Best response     | n=21 |
|-------------------|------|
| Overall response  | 19%  |
| Complete response | 9%   |
| Partial response  | 9%   |
| PFS at 24-weeks   | 33%  |



Median DOR: NR (range: 18 to 56+ weeks)

Nanda et al J Clin Oncol 2016

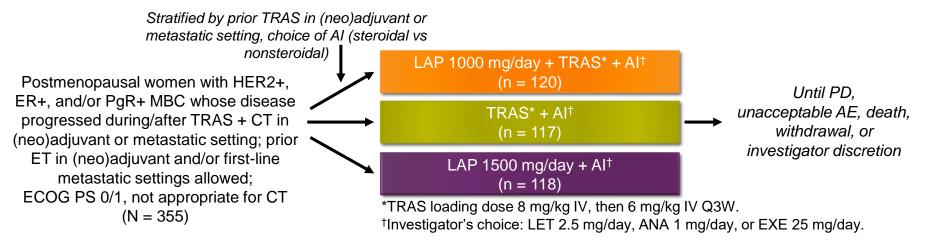
Emens et al Proc AACR 2015

### Ongoing Trials of PD-1/PD-L1 Inhibitors in mTNBC

| Phase III Trial | Population                                                                                                 | Investigational                                         | Comparator                                | Primary Endpoint                  |
|-----------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|-----------------------------------|
| KEYNOTE-119     | TNBC after 1-2 prior systemic tx for MBC                                                                   | Pembrolizumab                                           | Physician's choice Single-<br>agent chemo | OS                                |
| KEYNOTE-355     | TNBC with no previous chemo for MBC                                                                        | Pembrolizumab + chemo                                   | Placebo + chemo                           | Part 1: safety<br>Part 2: PFS, OS |
| IMpassion130    | TNBC not previously treated for MBC                                                                        | Atezolizumab +<br>nab-paclitaxel                        | Placebo +<br>nab-paclitaxel               | PFS and OS                        |
| IMpassion131    | TNBC not previously treated for MBC                                                                        | Atezolizumab + paclitaxel                               | Placebo + paclitaxel                      | PFS                               |
|                 | Selec                                                                                                      | ct Phase II Studies                                     |                                           |                                   |
| DORA            | DORA mTNBC following clinical benefit with platinum-<br>based tx Durvalumab + olaparib and durvalumab      |                                                         |                                           | PFS                               |
| Study 2151-169  | PD-L1+ mTNBC Durvalumab + paclitaxel                                                                       |                                                         | AEs                                       |                                   |
| NCI Trial       | HDR-deficient mTNBC (with known BRCA status) Veliparib, atezolizumab, or veliparib + atezolizumab          |                                                         | PFS                                       |                                   |
| SNDX-275-0602   | mTNBC with 1-2 previous lines of Tx                                                                        | Entinostat + atezolizumab, or<br>placebo + atezolizumab |                                           | MTD, PFS                          |
| MORPHEUS        | An open-label, multicenter, randomized umbrella study evaluating multiple immunotherapy-based combinations |                                                         |                                           |                                   |

ClinicalTrials.gov.




### Other Approaches Under Evaluation For TNBC

| Pathway/Drug type                    | Drugs in development                                                                                                                                 |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| DNA repair                           | PARP inhibitors (olaparib, rucaparib, veliparib), platinum agents (cisplatin, carboplatin)                                                           |
| PI3K/Akt/mTOR                        | PI3K inhibitors (buparlisib, taselisib, GDC0941,<br>AZD8186, many others); Akt inhibitors (GDC0068,<br>others), mTOR inhibitors (everolimus, others) |
| Androgen (testosterone)<br>signaling | Anti-androgens (bicalutamide, enzalutamide)                                                                                                          |
| Immune                               | CTLA4 blockade (ipilumumab), PD1/PD-L1 blockade (nivolumab, pembrolizumab, atezolizumab),                                                            |
| Antibody-drug conjugates             | IMMU-132, SGN-LIV1A, PF06647263, CDX-011                                                                                                             |
| Cell cycle                           | Dinaciclib, seleciclib                                                                                                                               |
| Chk1                                 | GDC0575                                                                                                                                              |
| Bromodomain                          | TEN-101, GSK525762                                                                                                                                   |
| Heat shock (stress)                  | Ganetespib, others                                                                                                                                   |
| Angiogenesis                         | Ramucirumab, cedirinib                                                                                                                               |

# METASTATIC HER-2+ BREAST CANCER

# ALTERNATIVE: Study Design

#### • International, randomized phase III trial (data cutoff: March 11, 2016)



Primary endpoint: PFS with LAP + TRAS + AI vs TRAS + AI (investigator assessed by radiographic imaging)

Secondary endpoints: other PFS comparisons, ORR, CBR, OS, safety, QoL

Gradishar WJ, et al. ASCO 2017. Abstract 1004.

## ALTERNATIVE: PFS and OS

Primary endpoint: 38% reduction in risk of progression with LAP + TRAS + AI vs TRAS + AI in ITT population

|          | Endpoint                     | LAP + TRAS + AI<br>(n = 120)  | TRAS + AI<br>(n = 117) | LAP + Al<br>(n = 118)         |
|----------|------------------------------|-------------------------------|------------------------|-------------------------------|
|          | PFS events, n (%)            | 62 (52)                       | 75 (64)                | 74 (63)                       |
| PFS      | mPFS, mos (95% CI)           | 11.0 (8.3-13.8)               | 5.7 (5.5-8.4)          | 8.3 (5.8-11.2)                |
|          | HR (95% CI) vs TRAS + AI     | 0.62 (0.45-0.88)<br>P = .0064 | -                      | 0.71 (0.51-0.98)<br>P = .0361 |
|          | OS events, n (%)             |                               | 30 (26)                | 31 (26)                       |
| OS       | mOS, mos (95% CI)            |                               | 40.0 (23.0-NR)         | 45.1 (22.3-NR)                |
| 00       | HR (95% CI) vs TRAS + AI     |                               | -                      | 0.82 (0.49-1.36)<br>P = .440  |
| Response | ORR: CR + PR,* % (95%<br>Cl) |                               | 13.7 (8.0-21.3)        | 18.6 (12.1-26.9)              |

Gradishar WJ, et al. ASCO 2017. Abstract 1004.

# Immunotherapy in HER2 Positive

#### HER2+ Metastatic Breast Cancer: Results From the PANACEA/KEYNOTE 014 Trial

Sherene Loi, MD, PhD, and Roberto Salgado, MD, PhD, both of the Peter MacCallum Cancer Centre, discuss study findings on pembrolizumab and trastuzumab in patients with trastuzumab-resistant disease.

#### Presented at SABCS 2017

# Panacea/KEYNOTE 014 Results

- Phase Ib/II included 58 patients with advanced breast cancer HER2 + that had progressed on prior trastuzumab-based therapies. Tumors were assessed for quantity of tumor-infiltrating lymphocytes (TILs) and PD-L1 status.
- Patients received 200mg of pembrolizumab every 3 weeks in combination with the standard dose of trastuzumab for 24 months or until disease progression.
- In the PD-L1–positive, ORR of 15% and disease control rate of 25%.
  - In a subgroup of PD-L1–positive patients with 5% or more TILs present, the ORR was 39% and the DCR was 47%, suggesting that quantification of TILs may help identify patients who will most benefit from this treatment.
  - No responses were observed in the PD-L1–negative cohort.

# Summary

- Breast cancer is a very heterogeous disease
- More options with single agent CDK4/6 or in combination with hormonal therapy for HR+BC provides longer time off chemotherapy
- Molecular signatures in TNBC provides multiple opportunities for a more personalized treatment
- Chemo free options for HER-2+ MBC can be considered
- Immunotherapy might benefit some subgroups fo patients, but not all of them