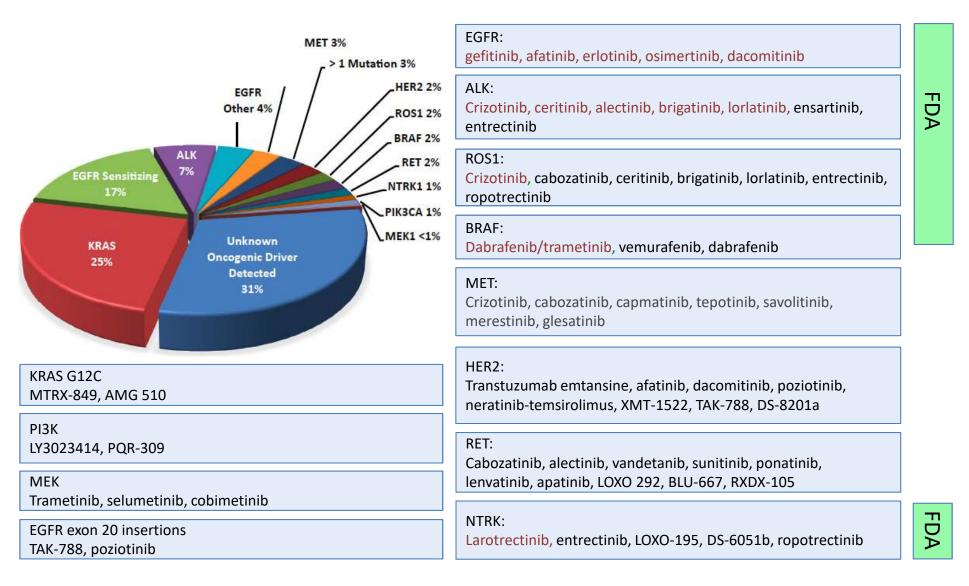
Updates in Targeted Therapies for NSCLC

Jonathan Riess, M.D. M.S.

Associate Professor of Medicine University of California Davis School of Medicine UC Davis Comprehensive Cancer Center



A Comprehensive Cancer Center Designated by the National Cancer Institute

Disclosures

- Grant/Research Support (To Institution): Merck, AstraZeneca, Novartis, Boehringer Ingelheim, Spectrum
- Consultant (Advisory Board): Spectrum, Loxo Oncology, Celgene, Heron Pharmaceuticals, Boehringer Ingelheim

Progress in Targeted Therapy for NSCLC-Adenocarcinoma

Adapted by L Bazhenova from Tsao AS, et al. J Thorac Oncol. 2016;11:613-638.

Approaches to Targeting KRAS in 2019

- KRAS is a GTP-binding protein that links receptor tyrosine kinase activation to intracellular signaling ^{1,2}
- Mutation of KRAS favors the GTP-bound active state and constitutive activation of downstream effects (differentiation, proliferation, survival)³
- Direct RAS inhibitors combinations
- Combinations with SHP2 inhibitors
- Blocking downstream effectors

^{1.} Prior IA, et al. Cancer Res. 2012;72:2457-2467.

^{2.} Ostrem JM, et al. Nat Rev Drug Discov. 2016;15:771-785.

^{3.} Ryan MB, et al. Nat Rev Clin Oncol. 2018;15:709-720.

AMG 510 is a First in Class KRAS^{G12C} Inhibitor

- *KRAS^{G12C}* mutation has been identified as an oncogenic driver of tumorigenesis
- KRAS^{G12C} mutation is found in approximately 13% of lung cancer¹ 3% of colorectal (CRC)² and appendix cancer, and 1-3% of other solid tumors³
- Currently there is no approved therapy targeting this mutation
- AMG 510 is a novel, first in class, small molecule that specifically and irreversibly inhibits KRAS^{G12C} by locking it in an inactive GDP-bound state

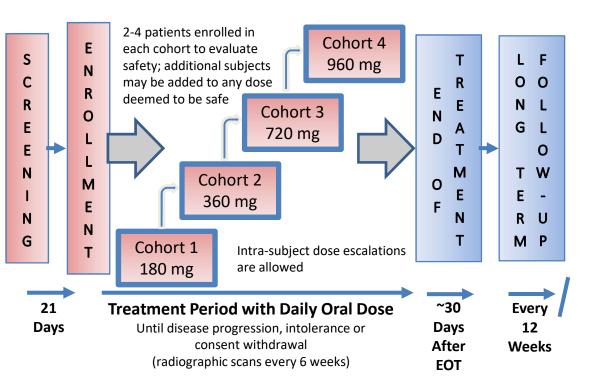
GDP, guanosine diphosphate; GTP, guanosine triphosphate; KRAS, Kirsten rat sarcoma viral oncogene homolog; KRAS^{G12C}, KRAS protein with a G12C mutation at the protein level.

- 1. Biernacka A, et al. Cancer Genet. 2016;209:195-198.
- 2. Neumann J, et al. Pathol Res Pract. 2009;205:858-862
- 3. Zhou L et al. Med Oncol. 2016;33:32.

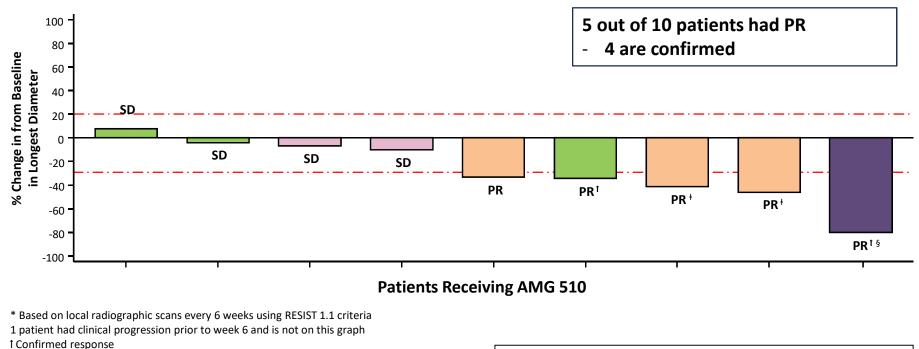
AMG 510 First in Human Study Design

This is a multicenter, open-label, phase 1, first in human study (NCT 03600883) in adult patients with locally advanced or metastatic *KRAS^{G12C}* mutant solid tumors

Key Eligibility Criteria


- Documented locally-advanced or metastatic KRAS^{G12C} measurable or evaluable solid tumors
- Received prior standard therapy appropriate for tumor type and stage of disease
- No active brain metastases

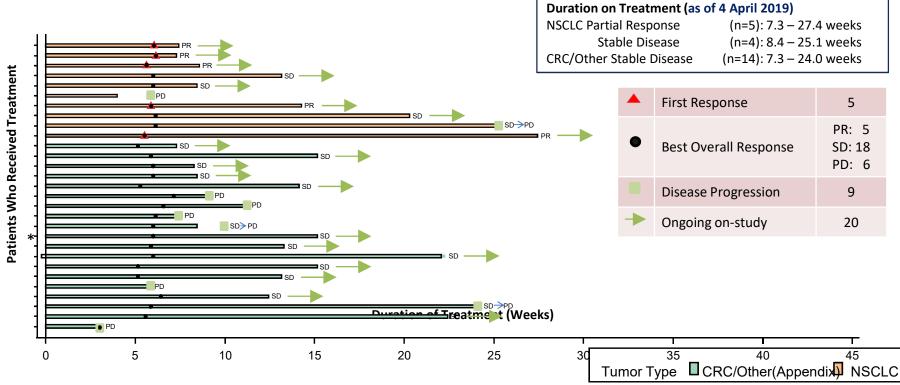
Primary Endpoints


• Safety and tolerability including the incidence of AEs and DLTs

Key Secondary Endpoints

- PK, best response
- Objective response rate , duration of response and duration of stable disease and PFS

NSCLC: Best Tumor Response* (n=10; 35 pts total)

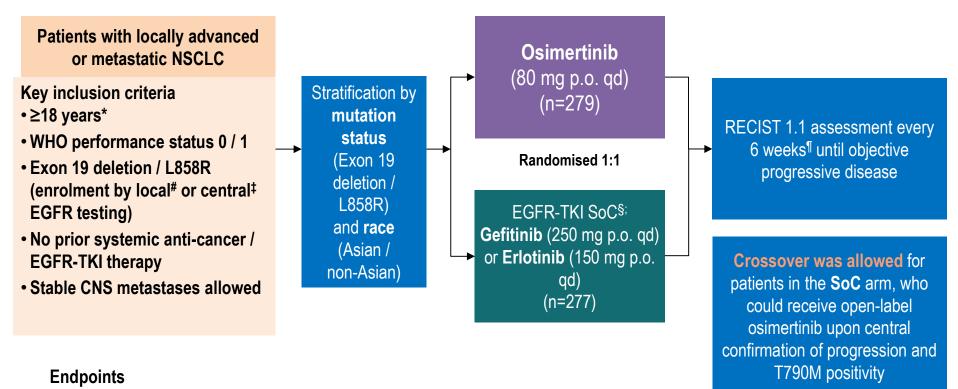


[†] 2 additional patients had confirmed PR post data cutoff

§Patient had a CR of the target lesions at week 18, post data cutoff

Planned Dose 🔲 180 mg 📕 360 mg 🔲 720 mg 📃 960 mg

Duration of Treatment by Tumor Types and Responses (n=29)



* Appendix adenocarcinoma patient

SD \rightarrow PD: Patient with best response of SD but who later progressed

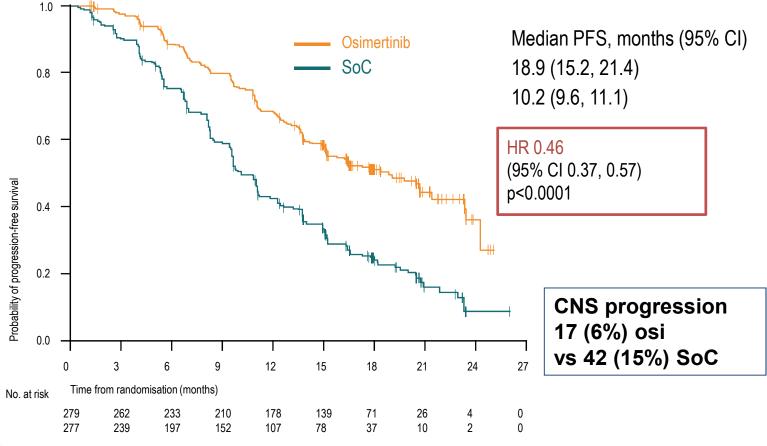
EGFR Updates

MADRID ESTO CONGRESS FLAURA: Osimertinib vs Gefitinib/Erlotinib in EGFR-mutated NSCLC

- Primary endpoint: PFS based on investigator assessment (according to RECIST 1.1)
 - The study had a 90% power to detect a hazard ratio of 0.71 (representing a 29% improvement in median PFS from 10 months to 14.1 months) at a two-sided alpha-level of 5%
- Secondary endpoints: objective response rate, duration of response, disease control rate, depth of response, overall survival, patient reported outcomes, safety

FLAURA data cut-off: 12 June 2017; NCT02296125

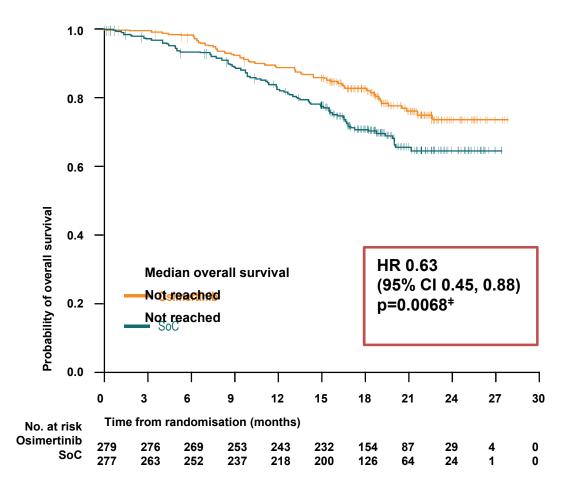
TKI, tyrosine kinase inhibitor; WHO, World Health Organization


^{*&}gt;20 years in Japan; #With central laboratory assessment performed for sensitivity; *cobas EGFR Mutation Test (Roche Molecular Systems); [§]Sites to select either gefitinib or erlotinib as the sole comparator prior to site initiation; [¶]Every 12 weeks after 18 months

CNS, central nervous system; EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; PFS, progression-free survival; p.o., orally; RECIST 1.1, Response Evaluation Criteria In Solid Tumors version 1.1; qd, once daily; SoC, standard-of-care;

FLAURA: Primary endpoint: PFS by investigator assessment

342 events in 556 patients at DCO: 62% maturity; osimertinib: 136 events (49%), SoC: 206 events (74%)


FLAURA data cut-off: 12 June 2017

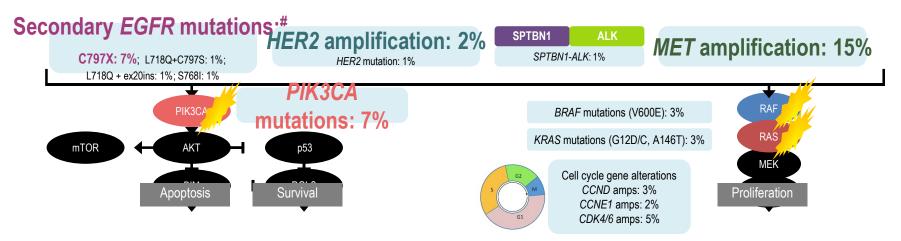
Tick marks indicate censored data;

CI, confidence interval; DCO, data cut-off; HR, hazard ratio; SoC, standard-of-care; PFS, progression-free survival

Ramalingam ESMO 2017

FLAURA: OVERALL SURVIVAL INTERIM ANALYSIS

*A p-value of <0.0015 was required for statistical significance at current maturity

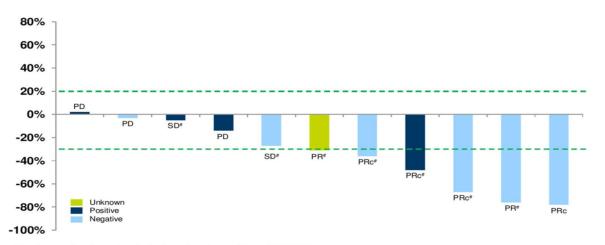

Recent press release – "achieved statistical significance for a clinically meaningful OS benefit."

141 deaths in 556 patients at DCO: 25% maturity; osimertinib: 58 deaths (21%), SoC: 83 deaths (30%) Ramalingam 2017

RESULTS of CURRENT STUDY: CANDIDATE ACQUIRED RESISTANCE MECHANISMS WITH OSIMERTINIB (n=91)*

- No evidence of acquired EGFR T790M
- The most common resistance mechanisms were MET amplification and EGFR C797S mutation
 - Other mechanisms included HER2 amplification, PIK3CA and RAS mutations

*Resistance mechanism reported may overlap with another; #Two patients had de novo T790M mutations at baseline of whom one acquired C797S at progression


CANDIDATE ACQUIRED ALTERATIONS WITH OSIMERTINIB

	14% patients had concurrent candidate resistance mutations	
41% 41% 59%		L858R Ex19del
7% 2%		C797X L7128Q Acquired EGFR mutations
1%		S768I
2% 15%		HER2 amp MET amp Acquired amplifications
1%		ALK Fusion Acquired oncogenic fusion
3% 1% 1% 1% 4% 4%		BRAF V600E KRAS A146T KRAS G12C KRAS G12D Acquired MAPK/PI3K PIK3CA E453K alterations PIK3CA E545K PIK3CA H1047R
2% 1% 1% 2% 2% 3%		CCND1 amp CCND2 amp CCND3 amp CCND3 amp CCNE1 amp CDK4 amp CDK6 amp

• No Osimertinib-treated patients showed evidence of T790M-mediated acquired resistance

- The most frequent resistance mechanisms were *MET* amplification (15%) & *EGFR* C797S mutation (7%)
- No new mechanisms of resistance identified
- Caveat: Plasma ctDNA (not tissue); Multiple aberrations in same patient

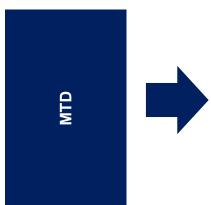
Osimertinib and Savolitinib in EGFR+ NSCLC

*Population: all patients dosed who had a baseline and 6-week RECIST assessment

*Patients ongoing treatment at data cut-off

PD, progressive disease; PR, partial response; PRc, confirmed partial response; RECIST, Response Evaluation Criteria In Solid Tumors; SD, stable disease

Pre-treatment

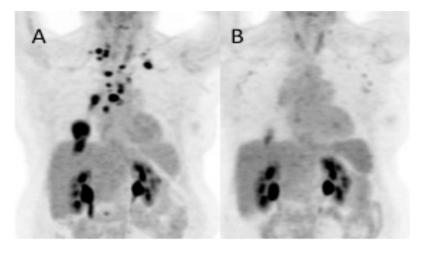

4 weeks

Oxnard et al J Clin Oncol 2015; abstract 2509

32-year-old female with a tumor harboring exon 19 deletion and high MET amplification responds to AZD9291/savolitinib 800 mg.

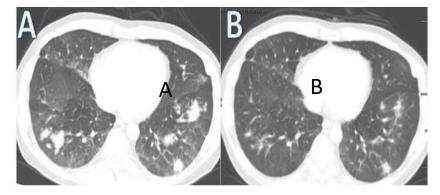
A Phase I Trial of Osimertinib and Necitumumab in EGFR Mutant NSCLC with Previous EGFR-TKI Resistance

3+3 dose escalation of Osimertinib and Necitumumab in Advanced EGFR Mutant NSCLC with Previous EGFR-TKI Resistance (1st-3rd gen)



Dose Expansion in 12 evaluable EGFR T790M negative patients with EGFR-TKI as last previous treatment (afatinib, gefitinib, erlotinib).

Primary Endpoint: Safety and Tolerability Main Secondary Endpoint: ORR is T790M negative population (3≥12 responses)


Molecular Studies Biopsy – Pre-treatment and post progression for EGFR T790M, EGFR FISH and NGS Plasma cfDNA for EGFR-TKI resistance mechanisms Creation of EGFR-TKI resistant PDX Single Cell NGS for Intratumoral Heterogeneity

Clinical and Radiographic Responses in Unmet EGFR-mutant Patient Populations: EGFR T790M negative after erlotinib and in C797S positive lung cancer after osimertinib

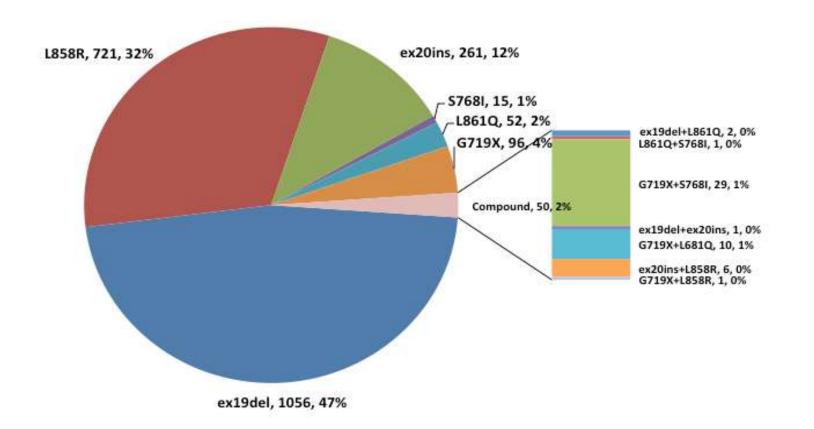
E19del/T790Mneg

PD on erlotinib

E19del/T790M^{pos}/C797S^{pos}

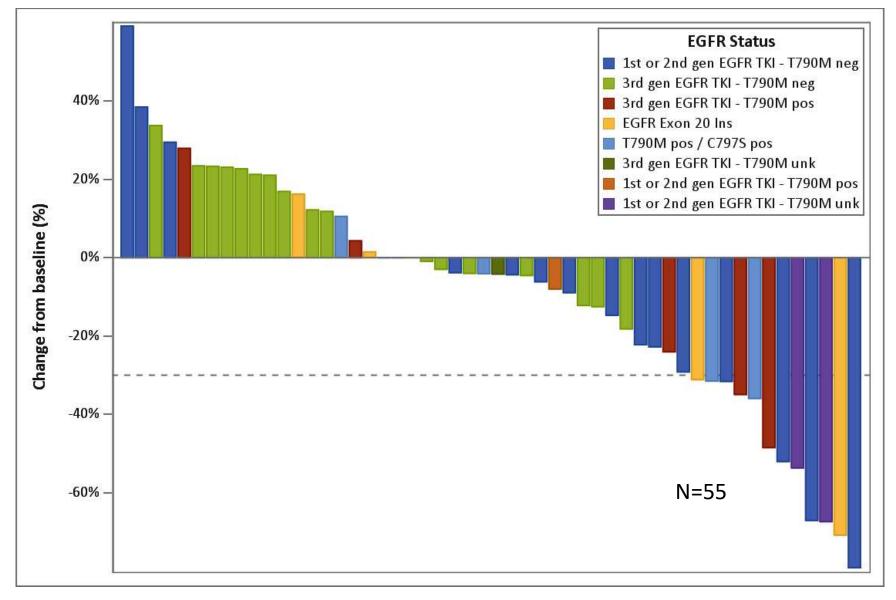
PD on osimertinib

Dose Escalation of Osimertinib and Necitumumab in Advanced EGFR Mutant NSCLC with Previous EGFR-TKI Resistance (1st-3rd gen) Cohort A: T790M negative, PD on afatinib, gefitinib, erlotinib as last treatment


Cohort B: EGFR T790M negative, PD on osimertinib or other 3rd gen EGFR-TKI

Cohort C: EGFR T790M positive, PD on osimertinib or other 3rd gen EGFR-TKI

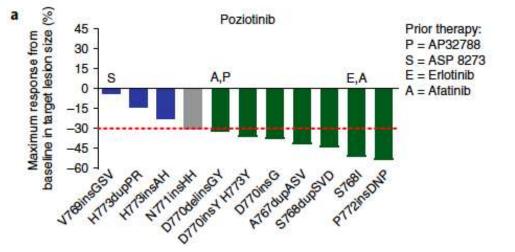
Cohort D: EGFR Exon 20 Insertion NSCLC with PD on platinum based chemotherapy


Cohort E: EGFR mut NSCLC with PD on first line osimertinib

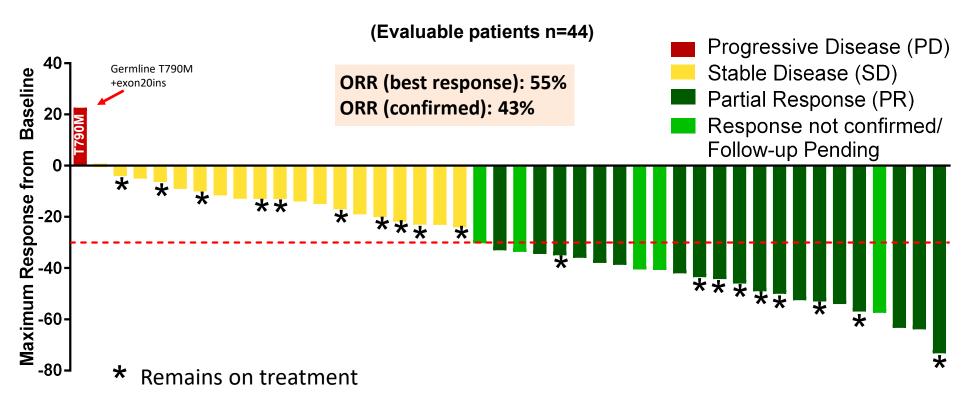
Frequency and Distribution of 2,251 *EGFR* mutations in NSCLC Detected by Broad Genomic Profiling.

JW Riess et al. Journal of Thoracic Oncology 2018.

Waterfall Plot of Best Response by Molecular Status



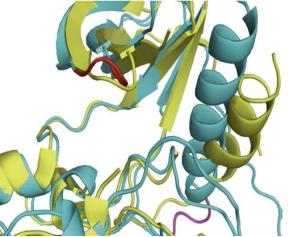
JW Riess et al. ASCO 2019


Poziotinib in EGFR Exon20 Ins NSCLC induces partial responses in EGFR Exon 20 mutations

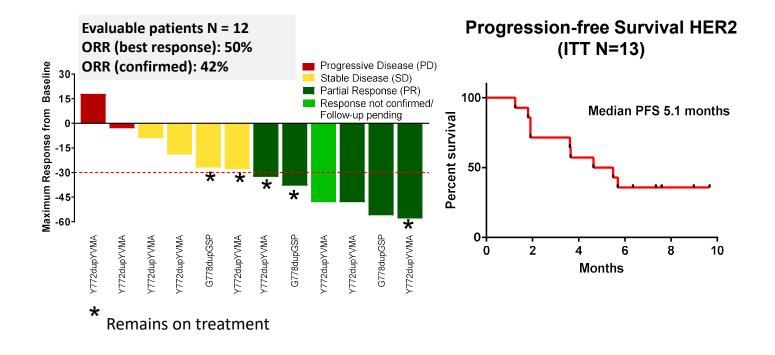
-11 EGFR exon 20 patients with baseline and follow up scans at 2 m (longest on treatment=6 months).
-<u>Activity</u>: 8/11 PR observed; 2 patients have had additional follow up scans confirming PR.
-duration of response not yet evaluable; only one patient with PD thus far.
-Evidence of CNS activity in patient with CNS metastasis and another with LMD
-additional patient treated on compassionate use IN (CIND) also had PR

-<u>Toxicities</u>: significant EGFR-related toxicities include rash, diarrhea, paronychia, mucositis consistent with those previously described.
 -55% underwent dose reduction to 12mg thus far

Poziotinib efficacy in EGFR Exon 20 mutant NSCLC

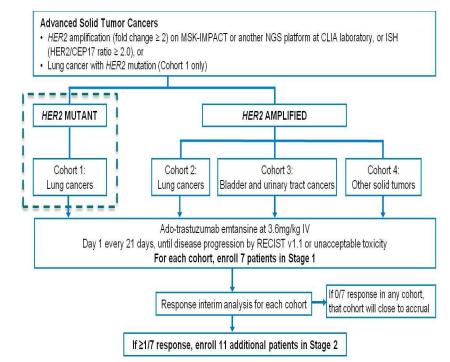


JV Heymach, University of Texas MD Anderson Cancer Center, USA. WCLC 2018


Median PFS 5.5 months

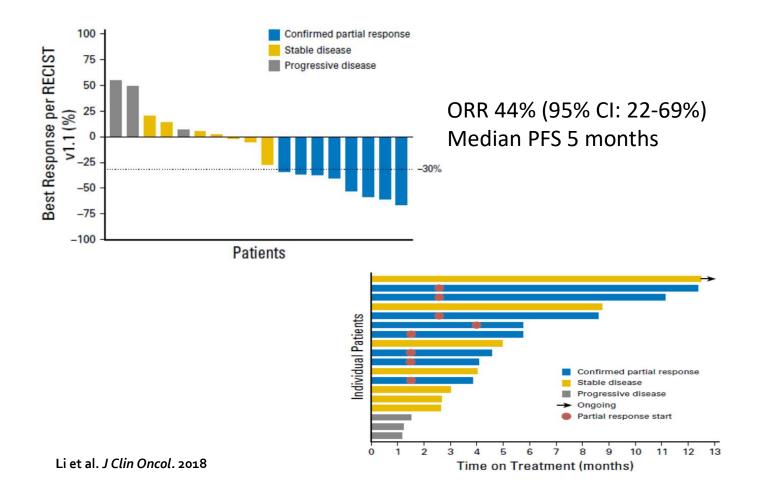
HER2 (ERBB2, neu) in NSCLC

- HER2 mutations are seen in 2-4% NSCLC patients, usually mutually exclusive with EGFR, KRAS, and ALK gene alterations
- HER2 mutation incidence up to 6% in EGFR/KRAS/ALK negative pts
- HER2 mutations usually seen with adenocarcinoma in never smokers and women
- HER2 mutations occur in exons 18 to 21 of the tyrosine kinase domain, altering the ATP-binding pocket of the HER2 receptor
- 90% HER2 mutations are exon 20 mutations

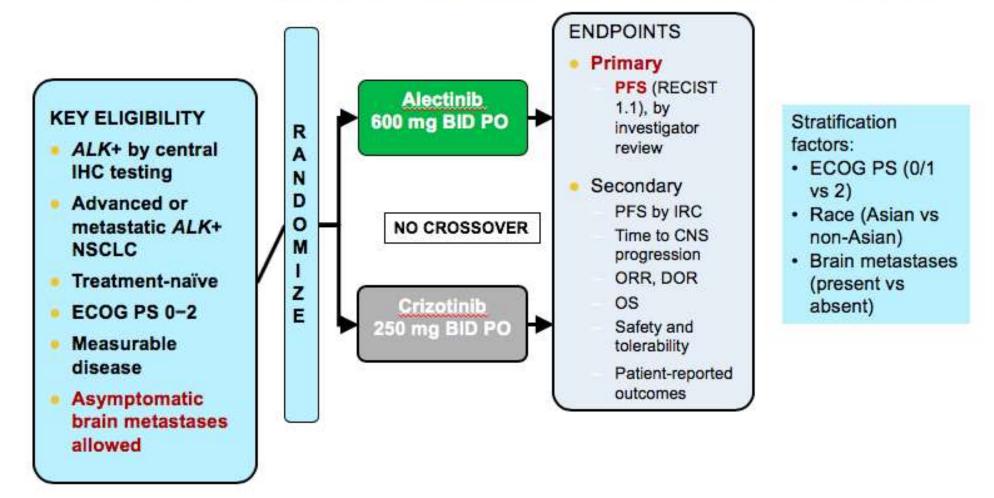

50% of HER2 exon 20 mutant NSCLC patients had a partial response with poziotinib treatment

Heymach WCLC 2018

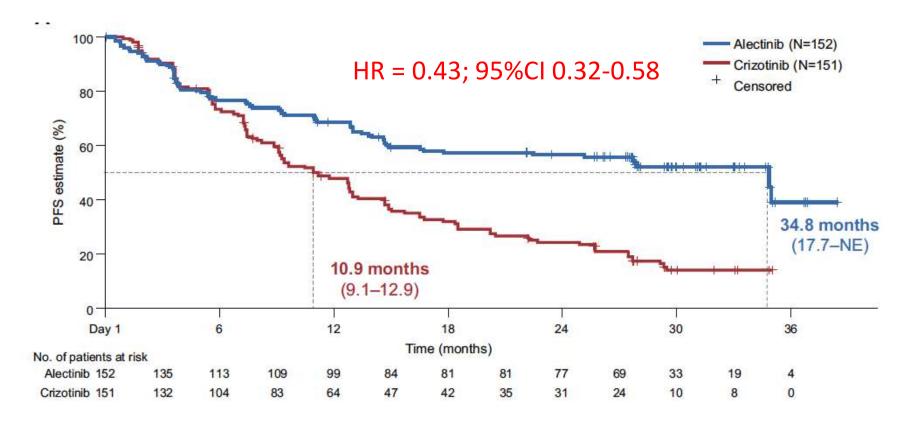
Ado-trastuzumab emtansine (T-DM1)


- Phase II basket trial in 18 HER2mutant NSCLC patients
- N=18, mostly women (72%) and nonsmokers
- RR 44%
- Median PFS 5 months
- Minor toxicities (grade 1-2) included infusion reactions, thrombocytopenia, transaminitis

Primary Endpoint: Overall Response Rate (CR + PR) as measured by RECIST v1.1 Secondary Endpoints: Progression Free Survival, Duration of Response, Adverse Events

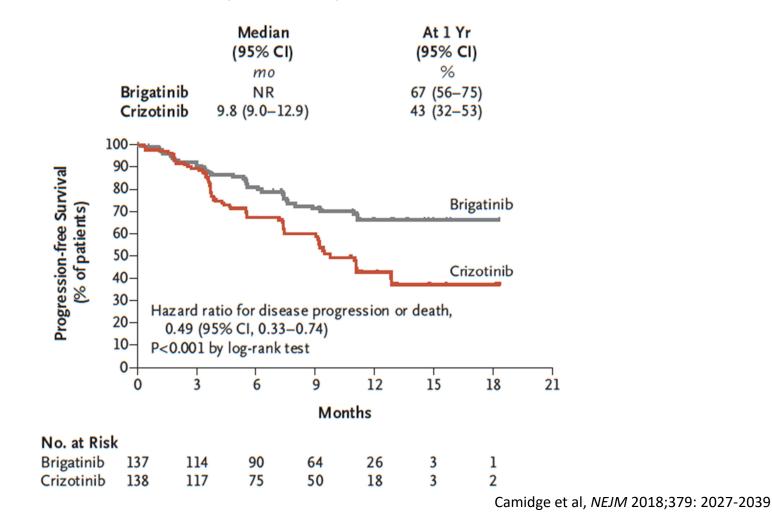

Li BT, et al. JCO. 2018;36:2532–7.

Activity of ado-trastuzumab emtansine (T-DM1) in HER2-mutant lung cancers

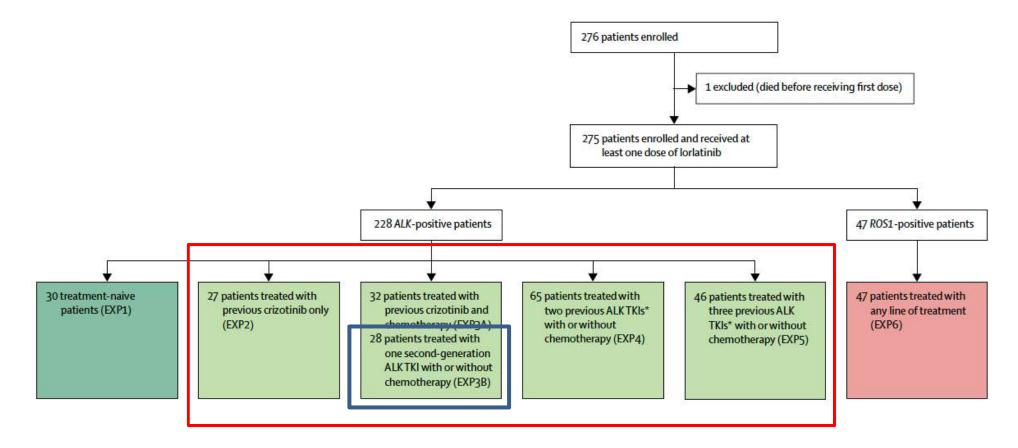


ALK Updates

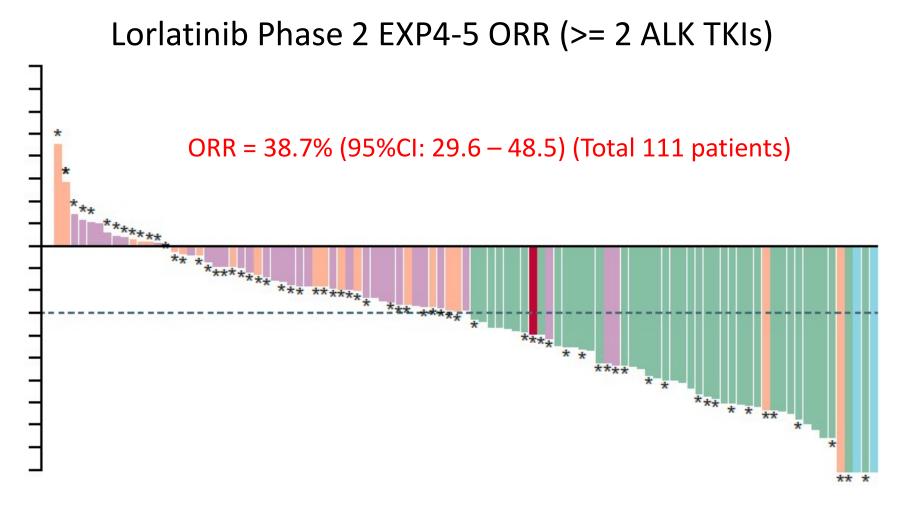
ALEX Study: Alectinib vs Crizotinib in ALK+ NSCLC



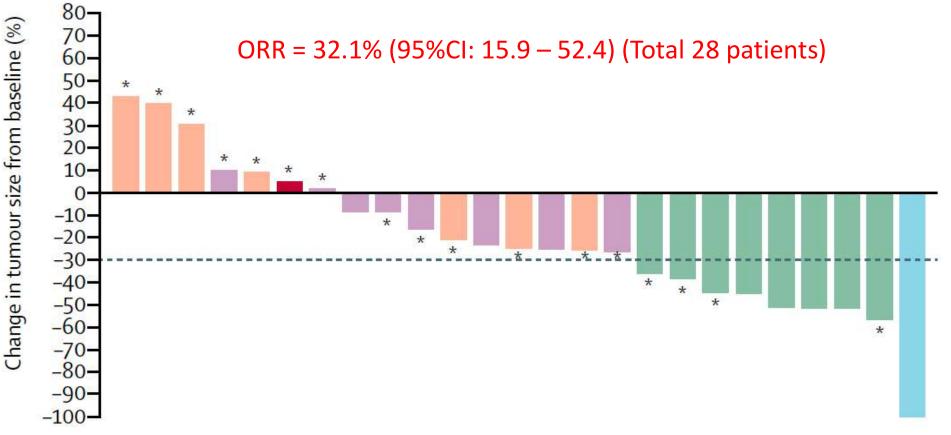
Updated ALEX PFS



Camidge JTO 2019


Brigatinib as 1L Treatment of Advanced ALK+ NSCLC (ALTA-1)

Lorlatinib (3rd gen ALK TKI) Phase 2 schema



Solomon et al, Lancet Oncology 2018

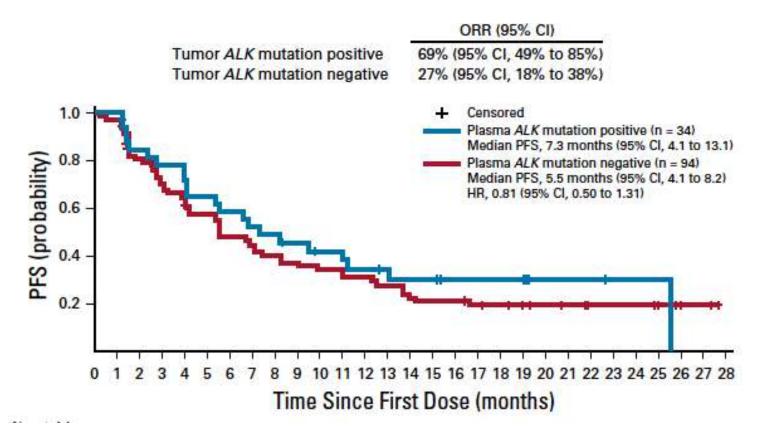
Solomon et al, Lancet Oncology 2018

Lorlatinib Phase 2 EXP3B (post-only one 2G ALK TKI (ceritinib. alectinib)

Solomon et al, Lancet Oncology 2018

Variant	Crizotinib	Ceritinib	Alectinib	Brigatinib	Ensartinib	Lorlatinib	
WT	205.62	124.27	49.72	23.02	27.75	5.31	
G1123S	57.62	759.16	4.60	20.91	1.79	4.29	
1151Tins	583.55	293.45	>10000	26.92	109.39	37.04	
L1152P	162.7	214.1	3.77	1.37	16.12	4.98	
L1152R	376.2	348.8	8.21	1.48	29.03	9.75	
С1156Т	281.9	118.9	45.67	13.73	30.75	9.02	
C1156Y	154.50	127.15	8.24	4.39	16.39	3.63	
1171N	287.2	182.7	341.7	21.63	21.5	34.8	
11171T	168.58	56.21	18.11	4.04	13.63	8.82	
F1174C	400.06	344.63	238.92	50.72	70.9	15.51	
F1174L	224.95	207.9	28.355	26.85	40.92	7.95	
F1174V	612.4	578.23	221.83	70.70	82.51	23.09	
V1180L	160.68	44.53	1375.85	10.49	15.434	5.34	
L1196M	803.5	142.42	297.24	20.80	75.58	53.53	
L1198F	41.95	1636.33	1122.25	108.28	3.072	68.66	
G1202del	281.23	645.13	697.1	118.88	424.62	21.78	
G1202R	420.36	441.6	>10000	85.07	453.43	33.59	
D1203N	617.75	681.95	277.4	257.06	59.88	90.22	
S1206C	299.3	236.25	215.6	59.2	41.81	6.67	
S1206Y	156.59	74.65	8.477	17.66	45.25	3.67	
E1210K	609.8	470.5	926.6	219.8	644	16.59	
F1245C	377.16	316.23	262.58	58.94	70.46	19.5	
G1269A	670.06	108.25	1549.78	13.65	170.50	58.85	
G1269S	4-ALK V3 919.7	_{лм)} 195.5	148.6	17.71	328	156.7	

Heatmap of all 6 ALK inhibitors against ALK mutations


IC50<50n	50nM <ic50<200n< th=""><th>IC50>200n</th></ic50<200n<>	IC50>200n
M	M	M

• The spectrum of ALK resistance mutations varies according to ALK inhibitor

Slide courtesy of : Huan Qiao, MD, PhD, Vincent Huang and Christine Lovly MD, PhD

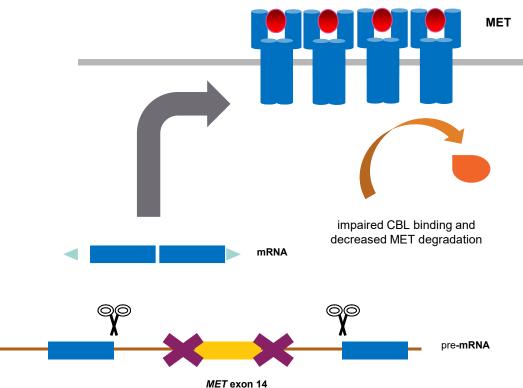
• Majority are resistant to crizotinib

Importance of understanding resistance mutations post 2G ALK TKIs Regarding Efficacy of Lorlatinib

Shaw et al, JCO 2019

Lung Cancer

Clinical Management of Adverse Events Associated with Lorlatinib

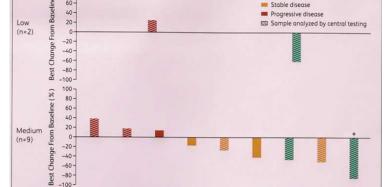

TODD M. BAUER,^a ENRIQUETA FELIP,^b BENJAMIN J. SOLOMON,^c HOLGER THURM,^d GERSON PELTZ,^e MARC D. CHIODA,^f ALICE T. SHAW^g ^aSarah Cannon Cancer Research Institute/Tennessee Oncology, PLLC, Nashville, Tennessee, USA; ^bVall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ^cPeter MacCallum Cancer Centre, Melbourne, Victoria, Australia; ^dPfizer Oncology, La Jolla, California, USA; ^ePfizer Oncology, Groton, Connecticut, USA; ^fPfizer Oncology, New York, New York, USA; ^gMassachusetts General Hospital, Boston, Massachusetts, USA *Disclosures of potential conflicts of interest may be found at the end of this article*.

- Hypertriglyceridemia
- Hyperlipidemia
- Mood Effects

Oncologist 2019

- MET mutations can lead to decreased MET degradation
 - deletions, insertions, or base substitutions
 - disrupt splice sites flanking *MET* exon $14 \rightarrow$ exon 14 skipping
 - absence of JM domain, Cbl ubiquitination process inhibited
 - increased MET receptor on the tumor cell surface

Adapted from Drilon et al J Thorac Oncol 2016

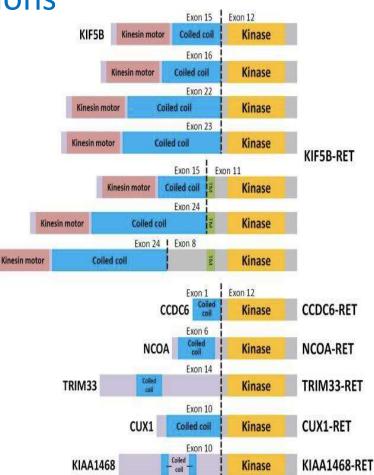

Drilon et al Clin Cancer Res 2016; Kong-Beltran M et al. Cancer Res 2006;66. Ma et al. Cancer Res 2003;63. Frampton GM et al. Cancer Discov 2015; Drilon et al J Thorac Oncol 2016.

MET TKI preliminary efficacy in *MET* ex14 NSCLC

Agent	<i>MET</i> testing	n	Brain metastases (n)	ORR % (95% CI)	DOR (months)	PFS (months)
Capmatinib (Wolf J et al ASCO 2019; abstract 9004)	Tissue RT-PCR	97 1L —28 2/3L —69	1L —3 2/3L —11	1L —67.9(47.6, 84.1) 2/3L —40.6 (28.9, 53.1)	1L —11.1 (5.55, NE) 2/3L —9.7 (5.55, 12.98)	1L —9.7 (5.5, 13.86) 2/3L —5.4 (4.2, 6.97)
Tepotinib (Paik et al ASCO 2019; abstract 9005)	Liquid (DNA based NGS) Tissue (RNA based NGS)	73 Liquid—48 Tissue—51	8	Liquid—50 (35.2, 64.8) 1L—58.8 (32.9, 81.6) 2L—53.3 (26.6, 78.7) ≥3L—37.5 (15.2, 64.6) Tissue—45 (31.1, 59.7) 1L—44.4 (21.5, 69.2) 2L—50 (26, 74) ≥3L—40 (16.3, 67.7)	Liquid—12.4 (5.8, NE) Tissue—15.7 (9.0, NE)	Liquid—9.5 (6.7, NE) Tissue—10.8 (6.9, NE)
Crizotinib (Drilon A et al WCLC 2018)	Tissue-local Prospective central tissue & liquid ctDNA	65	na	32 (21-45)	9.1 (6.4, 12.7)	7.3 (5.4, 9.1)
Savolitinib (Lu S et al AACR 2019)	Tissue	29	5	54.8	na	na

Crizotinib in MET-amplified lung cancers

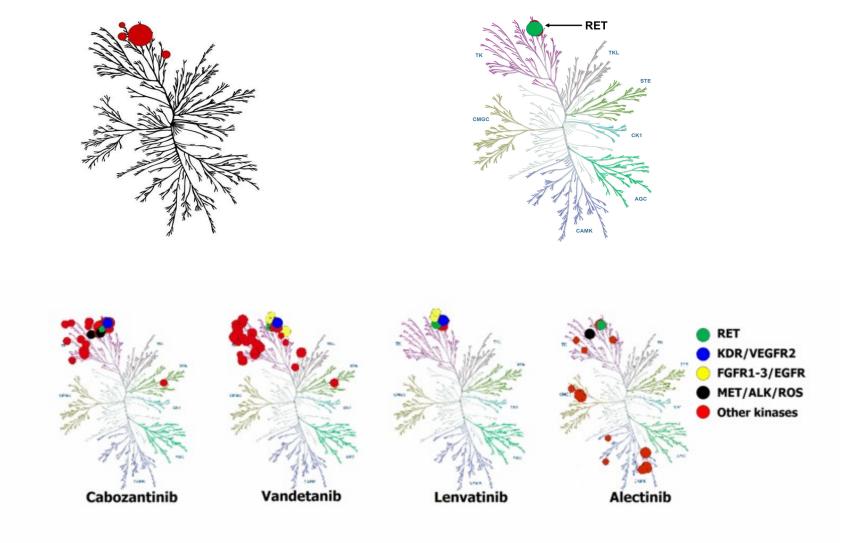
Multicenter phase 1 expansion cohort Crizotinib 250 mg twice daily Primary endpoint: overall response		<i>MET</i> amplification determined by FISH		
	Low <i>MET</i> (<i>MET/CEP7</i> 1.8-2.2) n=3	Intermediate <i>MET</i> (<i>MET/CEP7</i> >2.2-<5.0) n=14	High <i>MET</i> (<i>MET/CEP7</i> ≥5.0) n=20	
Overall response, n (%)	1 (33%) (95%Cl 0.8-90.6)	2 (14.3%) (95%Cl 1.8-42.8)	8 (40%) (95%Cl 19.1-63.9)	
Medan DoR (mo)	12.1	3.7	5.5	
PFS (mo)	1.8 (0.8, 14.0)	1.9 (1.3, 5.5)	6.7 (3.4, 7.4)	
100 800- 600- 200- 200- 200- 200- 200- 200- 2	Complete response Partial response Stable disease Progressive disease Sample analyzed by central testing	100 - 08 - 09 - 00 - 00 - 00 - 00 - 00 -		



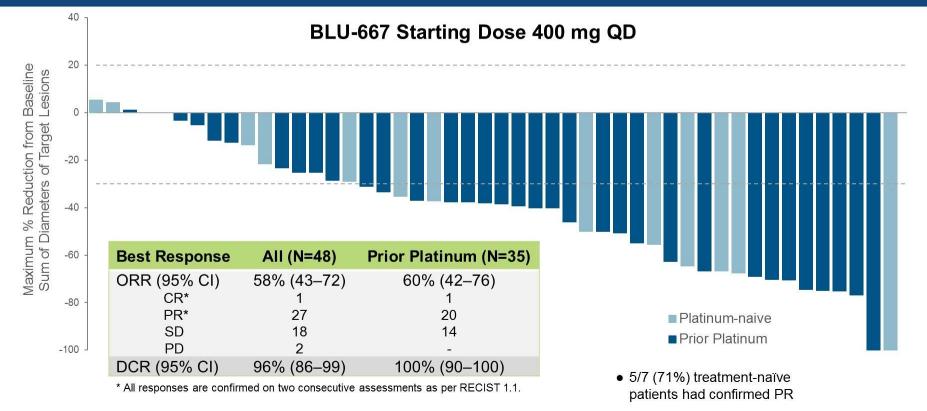
Camidge et al, ASCO Annual Meeting 2018; abstract 9062

RET Alterations

- RET (REarranged during Transfection) can be altered in two distinct ways
 - point mutations found predominantly in MTC
 - fusions seen in papillary thyroid cancer and NSCLC
 - 12 known fusion partners
 - Intact thyrosine kinase domain fused with upstream partner.
 - KIF5B is the most common fusion partner in lung cancer
- Frequency in lung caner: 1-2 % overall
- Testing
 - Immunohistochemistry (IHC) ?
 - Fluorescent in situ hybridization (FISH)
 - Next generation sequencing (NGS)
 - RT-PCR


Ju YS, et al. Genome Res. 2012;22:436-445.; Drilon A, et al. Cancer Discov. 2013;3:630-635.

Wang R, et al. J Clin Oncol. 2012;30:4352-4359; Kohno T, et al. Cancer Sci. 2013;104:1396-1400.


Selective RET vs multikinase RET inhibitors

LOXO-292

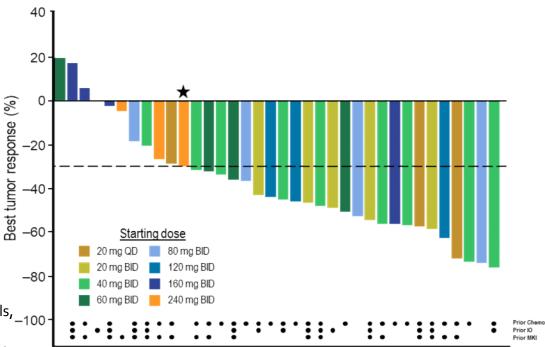
BLU-667 Demonstrates Substantial Antitumor Activity in RET Fusion+ Advanced NSCLC

BLU-667 is Well Tolerated by Patients with RET Fusion+ Advanced NSCLC

	RET Fusion+ Advanced NSCLC 400 mg QD Starting Dose (N=120)			
	Treatment-Emergent (≥15% overall)		Treatme	nt-Related
Adverse Events	All	Grade ≥3	All	Grade ≥3
Constipation	30%	2%	17%	2%
Neutropeniaª	26%	13%	26%	13%
AST increased	24%	5%	20%	2%
Fatigue	21%	3%	13%	3%
Hypertension	20%	13%	13%	10%
Anemia	18%	7%	11%	4%
Diarrhea	18%	2%	9%	=
Pyrexia	18%	Area	2%	· m .
ALT increased	17%	3%	13%	2%
Cough	17%	-	3%	-
Dry mouth Additional grade >3 treatme	17%	-	12%	-

Additional grade \geq 3 treatment related AEs (\geq 2%): increased CPK (3%), leukopenia^b (3%).

Among 120 pts with advanced NSCLC receiving BLU-667 starting dose of 400 mg QD:

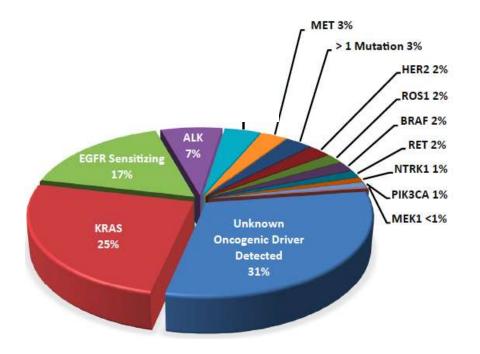

- Treatment-related toxicity is generally low-grade and reversible
- 7% discontinued BLU-667 due to treatment-related toxicity*
 - Pneumonitis, respiratory distress/ hypoxemia, mucositis/colitis, myelosuppression, gait disturbance, anemia

* Across the entire study (n=276), rate of discontinuation due to treatment-related toxicity is 4%.

Efficacy of LOXO-292 in *RET* fusion-positive NSCLC (RECIST 1.1)

ORR (95% CI)	68% (n=26/38) (51–83%)
Confirmed ORR* (95% CI)	68% (n=25/37) (50–82%)
CR	_
PR**	26
SD	8
PD	2
NE	2

- RECIST 1.1 responses were seen at all starting dose levels, prior to any intrapatient dose escalation, and in 18/26 (69%) responding patients at each patient's starting dose
- Activity independent of prior therapy
- 4/4 confirmed intracranial responses (1 CR, 3 PR) in patients with measurable CNS lesions


1% G3 diarrhea, 1% G3 headache

+ pending confirmation; * Excludes one patient with unconfirmed PR pending confirmation at time of data cut-off; ** 25 confirmed PR, 1 unconfirmed PR pending confirmation

NSCLC patients enrolled as of April 2, 2018. Follow-up as of July 19, 2018. Presented at WCLC 2018

Summary – More and Better Pieces of Pie

> 50%