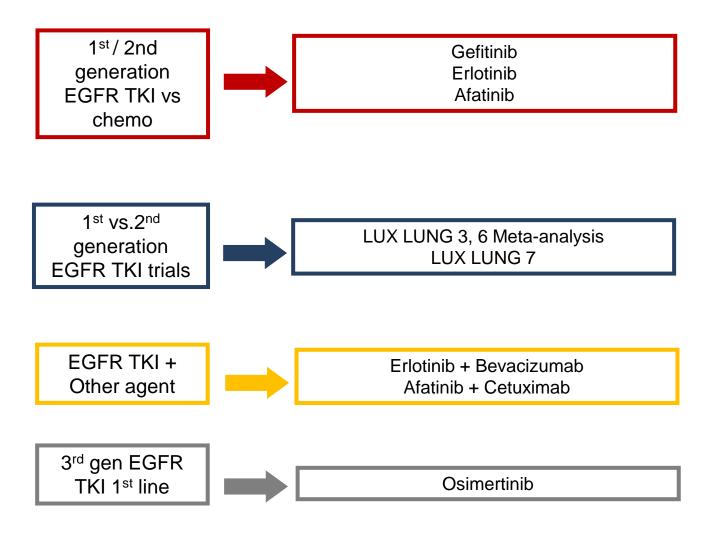
Management of EGFR-mutant NSCLC

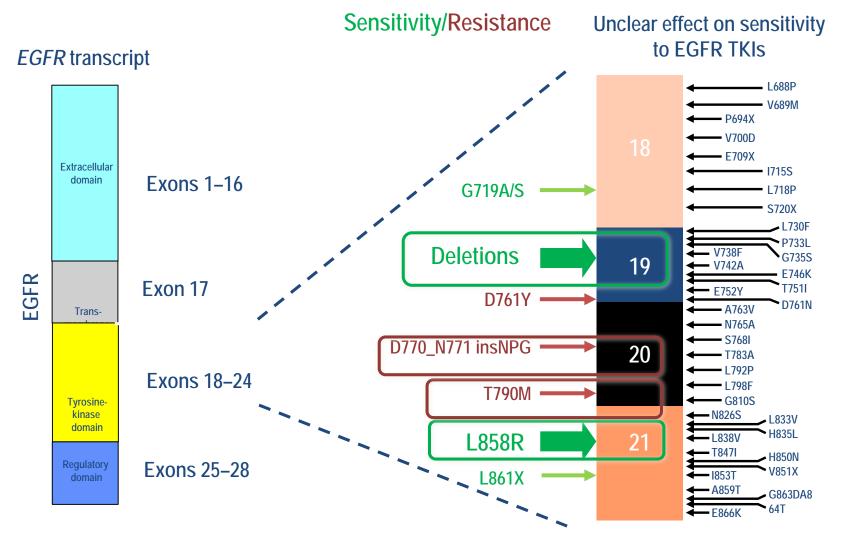
Jonathan Riess, MD, MS Assistant Professor UC Davis Comprehensive Cancer Center

Disclosures

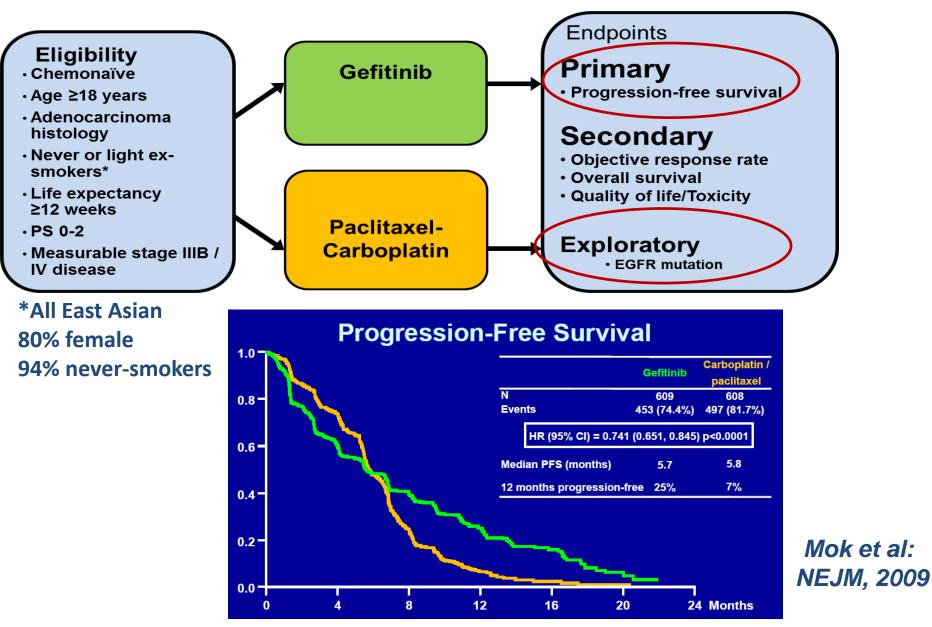
Research Funding: Merck, Novartis, AstraZeneca, Millenium


Consulting: AbbVie, MedTronic, Ariad, Celgene, Clovis

Copyright 2003 by Randy Glasbergen. www.glasbergen.com



"I am dressed for success! Of course, my idea of success may not be exactly the same as yours."


Outline: EGFR Mutant NSCLC- 1st line

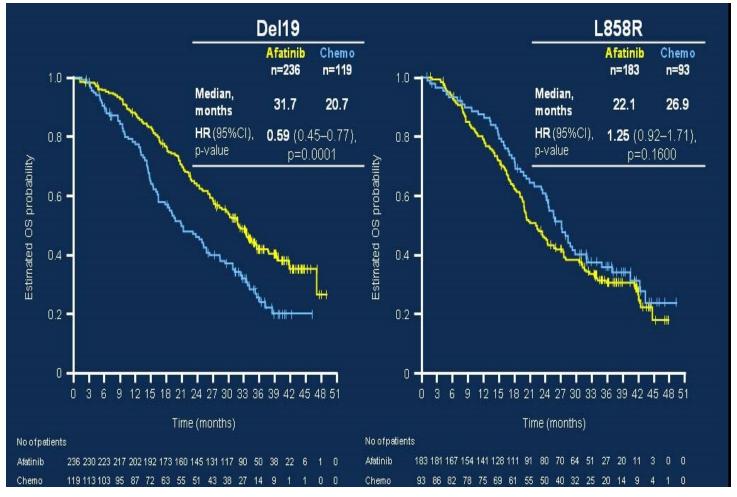
Varying Sensitivity of EGFR Mutation Subtypes to EGFR TKI Therapy

IPASS: Gefitinib vs Chemotherapy in East Asian Patients with Advanced Lung Adenocarcinoma

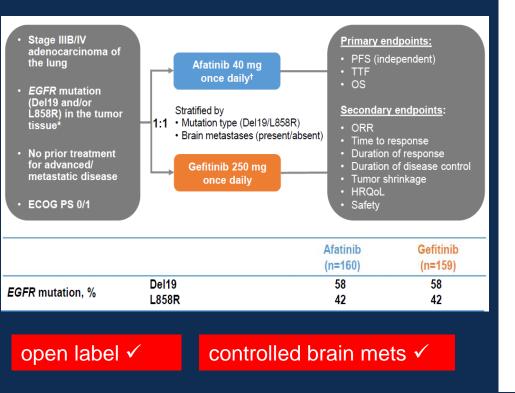


EGFR TKIs vs Chemotherapy in EGFR-Mutated NSCLC

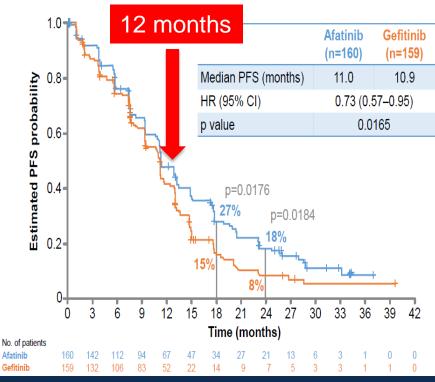
Study	Treatment	RR	Median PFS (mo)	Median OS
NEJ002 ^[1] N=230	Gefitinib vs carboplatin/ paclitaxel	74 v 31%	10.8 vs 5.4 (<i>P</i> < .001)	30.5 vs 23.6 HR = 0.89
WJOTG ^[2,3] N=177	Gefitinib vs CDDP/ docetaxel	62 v 32%	9.2 vs 6.3 (<i>P</i> < .0001)	36 vs 39 HR = 1.25
OPTIMAL ^[4,5] N=165	Erlotinib vs carboplatin/ gemcitabine	83 v 36%	13.1 vs 4.6 (<i>P</i> < .0001)	30.4 vs 31.5 HR = 1.065
EURTAC ^[6] N=174	Erlotinib vs platinum-based chemotherapy	58 v 15%	9.7 vs 5.2 (<i>P</i> < .0001)	19.3 vs 19.5 HR = 0.93
LUX-Lung 3 ^[7] N=345	Afatinib vs CDDP/Pem	61 v 22%	11.1 vs 6.9 (<i>P</i> < .0004)	28.2 vs 28.2 HR = 0.88
LUX-Lung-6 N=364	Afatinib vs CDDP/Gem	67 v 23%	11.0 v. 5.6 HR = 0.28	23.1 vs 23.5 HR = 0.93


- Gefitinib, Erlotinib & Afatinib all superior to Platinum chemotherapy for RR & PFS
- No improvement in OS in these randomized trials

Combined OS with Afatinib: Common Mutations


Yang et al., ASCO 2014; Abstract 8004; Yang JC, et al. *Lancet Oncol.* 2015;16(2):141-151.

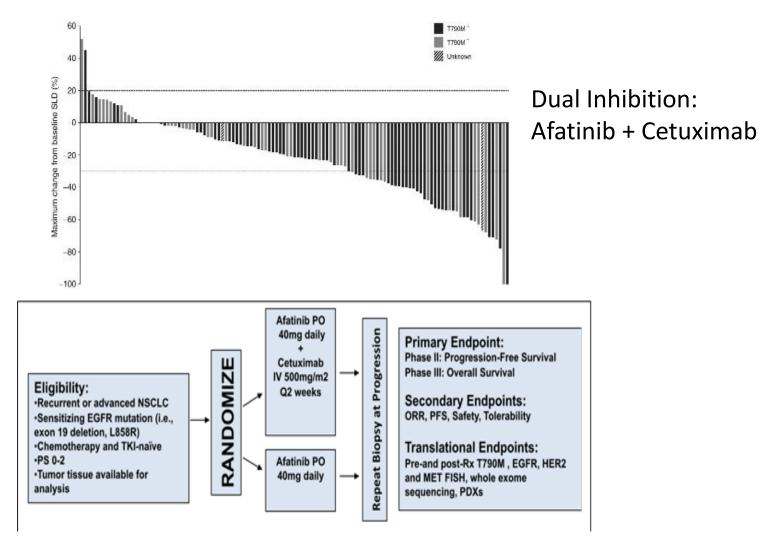
Combined OS with Afatinib by Mutation Categories



Yang et al., ASCO 2014; Abstract 8004; Yang JC, et al. Lancet Oncol. 2015;16(2):141-151.

LUX-Lung 7: Phase 2b trial

PFS by independent review

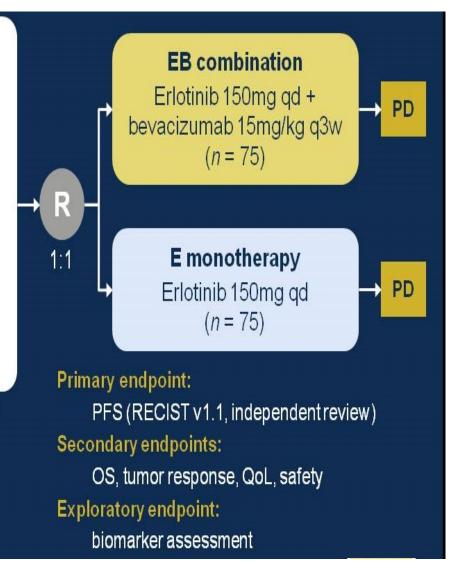

Park Lancet Oncol (2016)

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author, Permission required for reuse.

Presented by: Sanjay Popat @

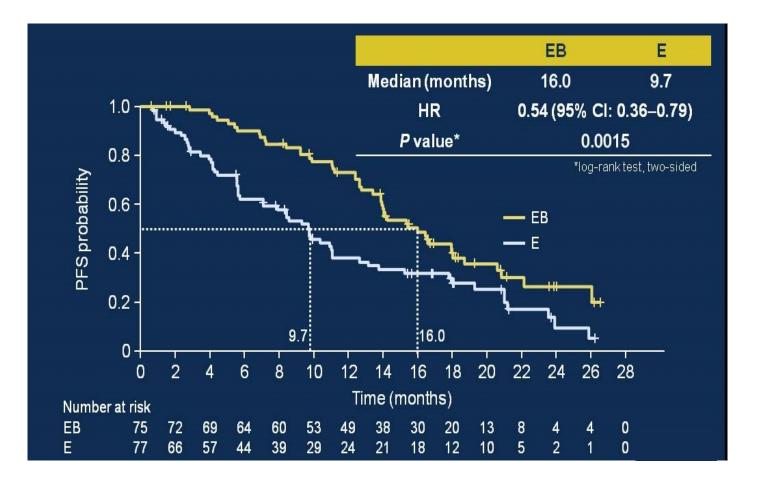
@drsanjaypopat

S1403: A Randomized Phase 2/3 Trial of Afatinib + Cetuximab Versus Afatinib Alone in Treatment-Naïve Pts With Advanced, EGFR Mutation + NSCLC



Erlotinib + Bevacizumab vs Erlotinib in EGFR Mutated NSCLC

Chemotherapy-naïve Stage IIIB/IV or postoperative recurrence Non-squamous NSCLC Activating *EGFR* mutations* Exon 19 deletion Exon 21 L858R Age ≥20 years PS 0–1 No brain metastasis


*T790M excluded

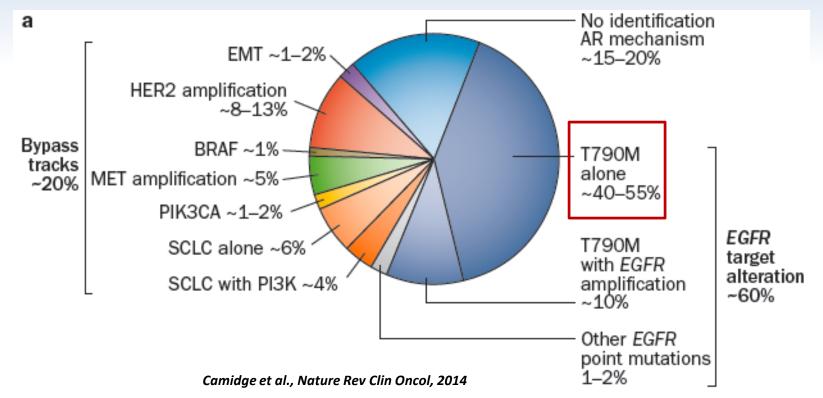
Stratification factors: sex, smoking status, clinical stage, EGFR mutation type

Kato et al., ASCO 2014; Abstract 8005; Seto T, et al. *Lancet Oncol.* 2014;15(11):1236-1244.

Erlotinib + Bevacizumab vs Erlotinib in EGFR Mutated NSCLC

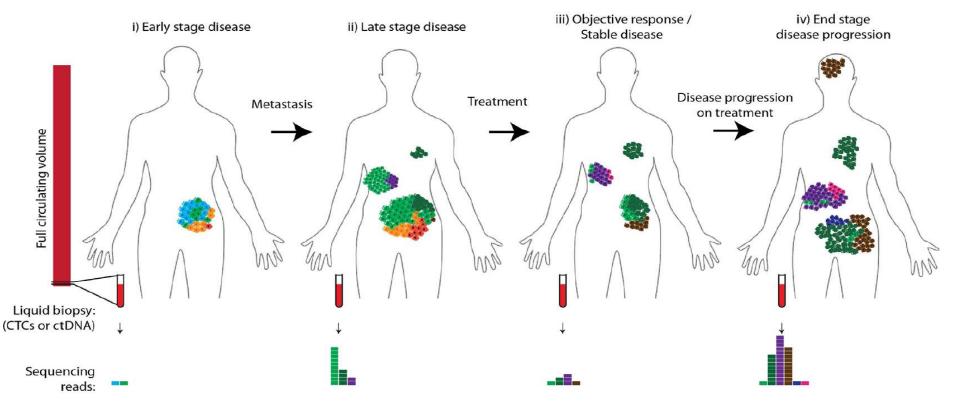
Kato et al., ASCO 2014; Abstract 8005; Seto T, et al. *Lancet Oncol.* 2014;15(11):1236-1244.

PFS by independent review


Safety Overview

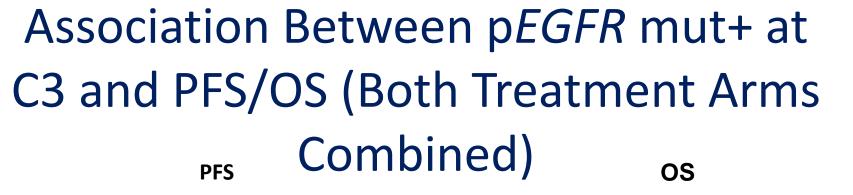
		EB (n=75)	E (n=77)
<	Grade ≥3 AEs	68 (91%)*	41 (53%)
	Serious AEs	18 (24%)	19 (25%)
	Death due to	0 (0%)	1 (1%)**
	AE *Higher incidence of	grade ≥3 AEs in EB arm was driven I	hy HTN events

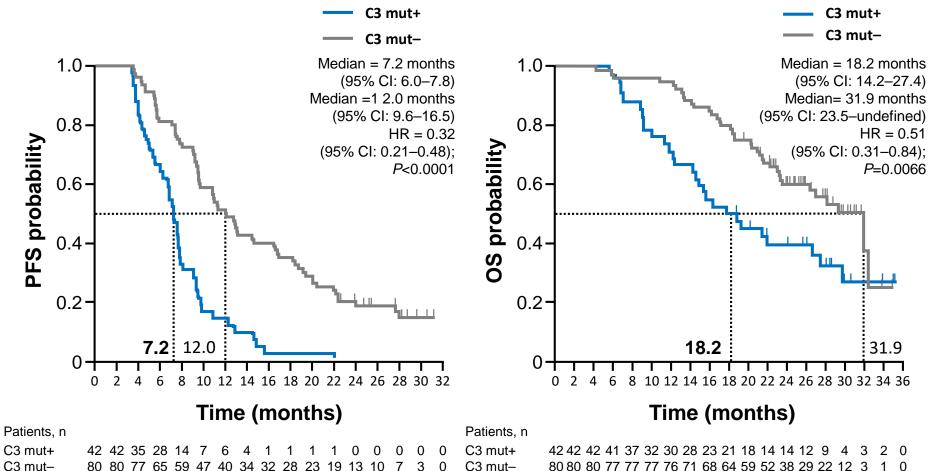
**Drowning


Kato et al., ASCO 2014; Abstract 8005; Seto T, et al. Lancet Oncol. 2014;15(11):1236-1244.

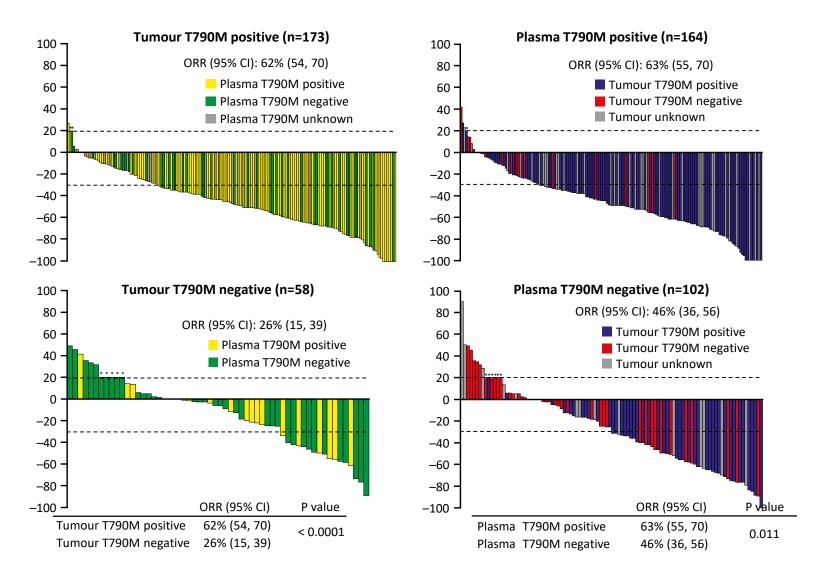
Mechanisms of Acquired Resistance to EGFR TKIs in EGFR-mutated Lung Cancers

- At the time of acquired resistance, T790M is found in over 50% of repeat biopsies¹
- T790M may not always be the cause of clinical resistance, even when present
- Several bypass mechanisms of resistance, including MET or HER2 amplification, or PIK3CA or BRAF mutation, have now been identified
- SCLC transformation can also occur, but is uncommon-rare

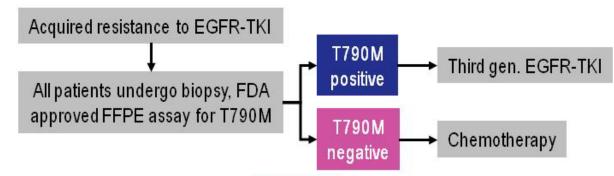

Role of "Liquid Biopsy" (Plasma cf DNA) in determining mechanisms of Acquired Resistance

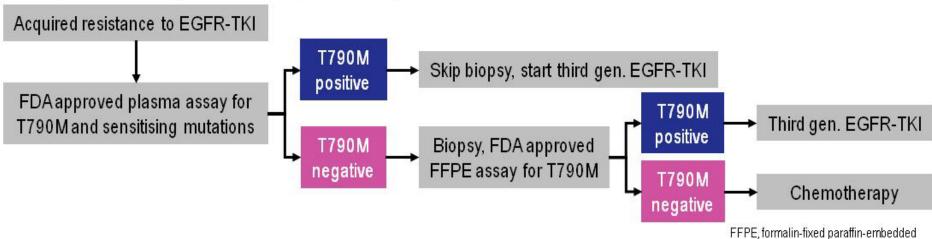


Advantages of plasma cf DNA over Tumor re-biopsy


- Reflects shed tumor DNA into plasma, providing a "global perspective"
- Abrogates the issue of tumor heterogeneity
- Relatively non-invasive & can be repeated serially to monitor tumor response
- Can detect resistance mutations in plasma prior to radiographic detection

from Burrell and Swanton, Mol Oncol 2014


High ORR in patients with tumour or plasma positive T790M cancers treated with Osimertinib


Oxnard et al. ELCC 2016

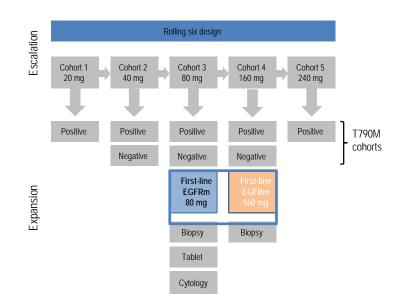
Proposed change in paradigm to integrate plasma genotyping for T790M testing

A. Conventional paradigm

B. Proposed paradigm for use of plasma diagnostics

Oxnard et al. ELCC 2016

Third Generation EGFR TKIs overcome Acquired Resistance to EGFR T790M


The NEW ENGLAND JOURNAL of MEDICINE				
ESTABLISHED IN 1812	APRIL 30, 2015	VOL. 372 NO. 18		
AZD9291 in EGFR Inhibitor–Resistant Non–Small-Cell				
Lung Cancer				
David Planchard, M.D., Ph.D., Yuichird	u-Chou Su, M.D., Leora Horn, M.	m, M.D., Myung-Ju Ahn, M.D., Ph.D., D., Daniel Haggstrom, M.D.,		

Kathryn H. Brown, Ph.D., Paul A. Dickinson, Ph.D., Serban Ghiorghiu, M.D., and Malcolm Ranson, M.B., Ch.B., Ph.D.

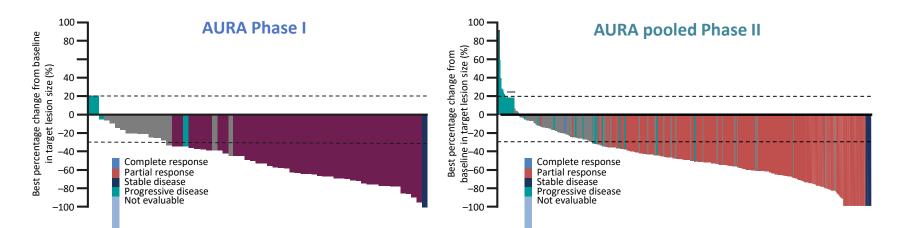
AURA Phase I dose escalation/expansion: study design

First-line cohort objective

 Safety and tolerability of osimertinib (80 mg or 160 mg qd orally) as first-line therapy for patients with EGFRm advanced NSCLC

Key inclusion criteria:

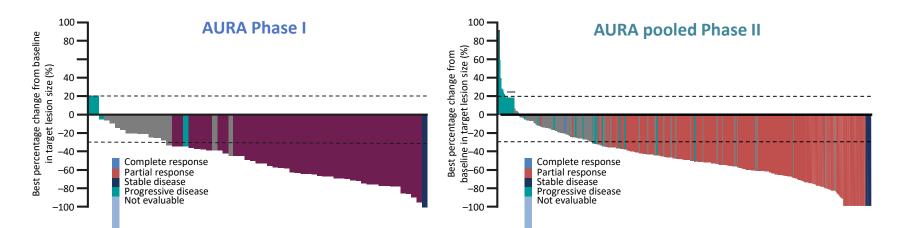
- Aged ≥18 (≥20 in Japan)
- Locally advanced or metastatic NSCLC
- No prior therapy for advanced disease
- Measurable disease at baseline
- Patients must have EGFR mutation positive NSCLC (local test)


Key exclusion criteria:

- Prior history of ILD
- » Symptomatic brain metastases

Data cut-off: 4 January 2016

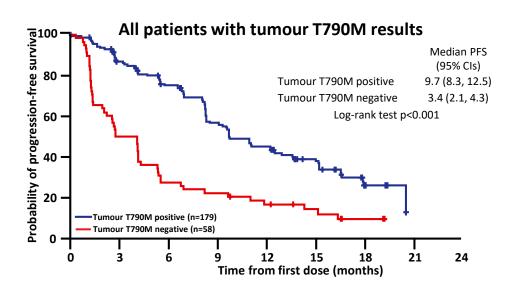
- Data from cohorts in grayed out boxes are not included in the analyses reported here
- ILD, interstitial lung disease; qd, once-daily dosing


Tumour response to Osimertinib treatment

	AURA Ph I (80 mg) N=61	AURA pooled Ph II (80 mg) N=397
Confirmed ORR	71% (95% CI 57, 82)	66% (95% CI 61, 71)
Disease control rate ⁺	93% (95% CI 84, 98)	91% (95% CI 88, 94)
Best objective response Complete response Partial response Stable disease ≥6 weeks Progressive disease	1 42 14 2	6 256 99 25

Yang et al: ELCC 2016

Tumour response to Osimertinib treatment

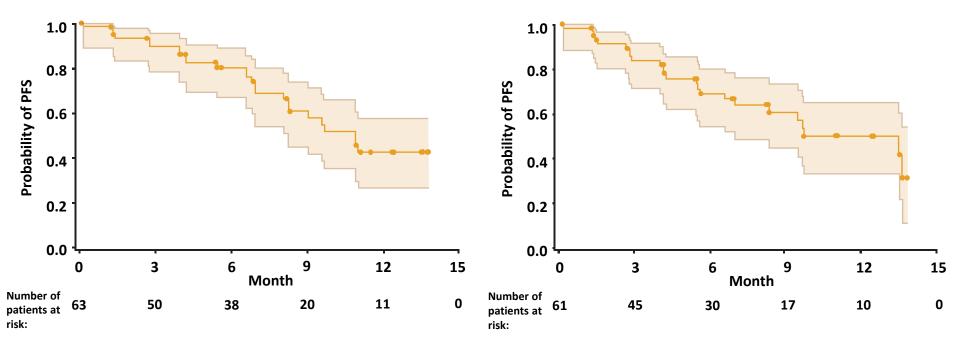


	AURA Ph I (80 mg) N=61	AURA pooled Ph II (80 mg) N=397
Confirmed ORR	71% (95% CI 57, 82)	66% (95% CI 61, 71)
Disease control rate ⁺	93% (95% CI 84, 98)	91% (95% CI 88, 94)
Best objective response Complete response Partial response Stable disease ≥6 weeks Progressive disease	1 42 14 2	6 256 99 25

Yang et al: ELCC 2016

Osimertinib PFS is longest in those patients with T790M positive cancers

Tumour T790M positive predicts for a prolonged median PFS of 9.7 months, longer than seen in tumour T790M negative cases (p<0.001)



Oxnard et al. ELCC 2016

T790M Positive (Central Test) 80 mg Cohort – PFS

Investigator assessed

Independent review

Median PFS, **10.9 months** (95% CI: 8.3, not calculable; 40% maturity, 25/63 events)

Median PFS, 13.5 months (95% CI: 8.3, not calculable; 38% maturity, 24/63 events)

- Despite the effectiveness of Osimertinib acquired resistance is almost universal
- However, the mechanisms of resistance are heterogeneous

Key eligibility criteria

- ≥18 years (≥20 years in Japan)
- Locally advanced or metastatic NSCLC
- Evidence of disease progression following first-line EGFR-TKI therapy
- Documented EGFRm and central confirmation of tumour *EGFR* T790M mutation from a tissue biopsy taken after disease progression on first-line EGFR-TKI treatment
- WHO performance status of 0 or 1
- No more than one prior line of treatment for advanced NSCLC
- No prior neo-adjuvant or adjuvant chemotherapy treatment within 6 months prior to starting first EGFR-TKI treatment
- Stable* asymptomatic CNS metastases allowed

Osimertinib (n=279) 80 mg orally QD Platinumpemetrexed (n=140) Q3W for up to 6 cycles+ optional maintenance pemetrexed[#]

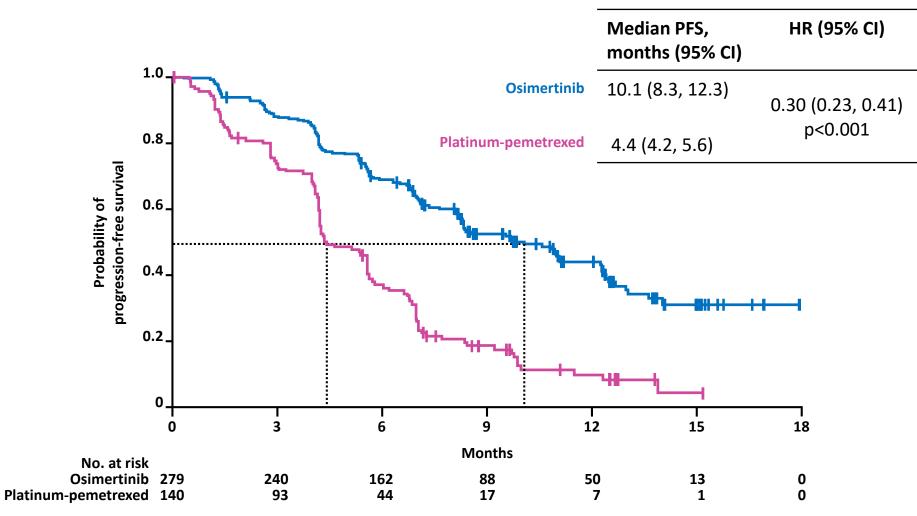
R

2:1

AURA3 study design

Endpoints

Primary:

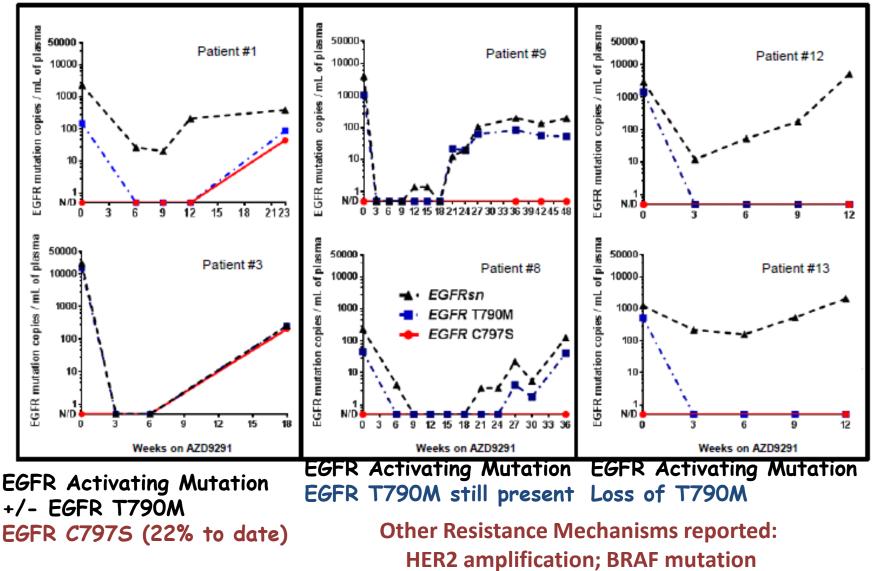

 PFS by investigator assessment (RECISTv1.1)

Secondary and exploratory:

- Overall survival
- Objective response rate
- Duration of response
- Disease control rate
- Tumour shrinkage
- BICR-assessed PFS
- Patient reported outcomes
- Safety and tolerability

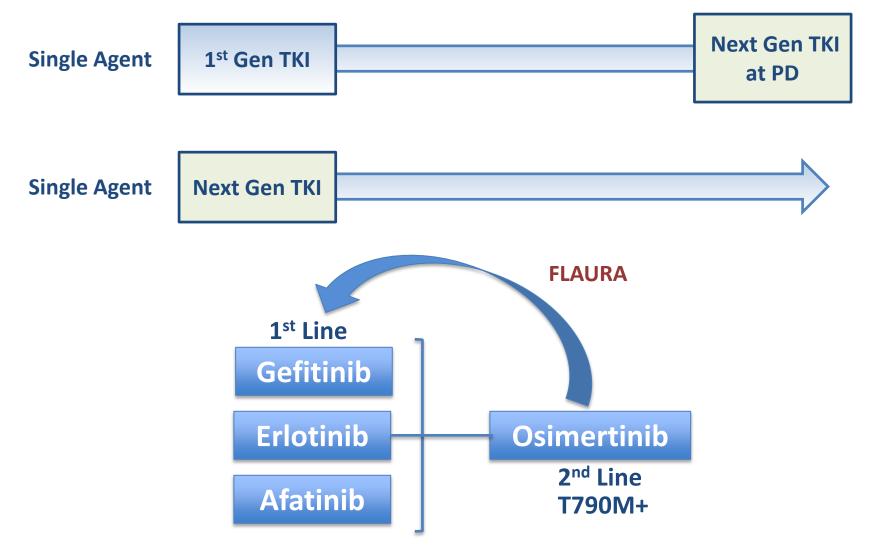
Papadimitrakopoulou et al: ESMO 2016

AURA3 primary endpoint: PFS by investigator assessment


Analysis of PFS by BICR was consistent with the investigator-based analysis: HR 0.28 (95% CI 0.20, 0.38), p<0.001; median PFS 11.0 vs 4.2 months.

Population: intent-to-treat

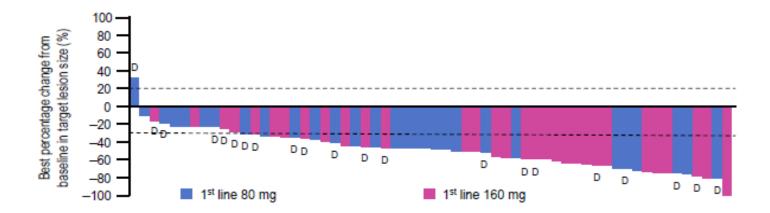
Progression-free survival defined as time from randomisation until date of objective disease progression or death. Progression included deaths in the absence of RECIST progression. Tick marks indicate censored data; CI, confidence interval


Papadimitrakopoulou et al: ESMO 2016

Mechanisms of Acquired Resistance to Osimertinib Serial profiling of cfDNA reveals 3 molecular subtypes

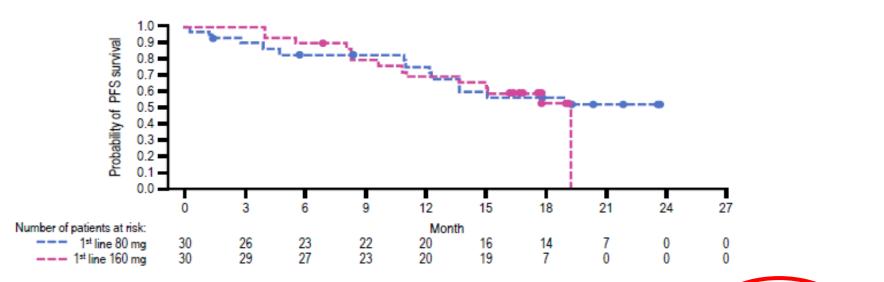
Thress et al, Nature Medicine, 2015

Strategies for Optimizing 1st-line Therapy for EGFR-mutated NSCLC: Is There an Optimal Sequence of EGFR Inhibitors?


Adapted from Gandara et al. JLCS 2016

Osimertinib (AZD9291) as first-line treatment for EGFR mutation-positive advanced NSCLC: updated efficacy and safety results from two Phase I expansion cohorts

Suresh S Ramalingam,¹ James C-H Yang,² Chee Khoon Lee,³ Takayasu Kurata,⁴ Dong-Wan Kim,⁵ Thomas John,⁶ Naoyuki Nogami,⁷ Yuichiro Ohe,⁸ Mireille Cantarini,⁹ Helen Mann,⁹ Yuri Rukazenkov,⁹ Serban Ghiorghiu,¹⁰ Pasi A Jänne¹¹


¹Emory School of Medicine, Atlanta, GA, USA; ²National Taiwan University and National Taiwan University Cancer Center, Taipei, Taiwan; ³St George Hospital, Sydney, Australia; ⁴Kansai Medical University Hirakata Hospital, Osaka, Japan; ⁵Seoul National University Hospital, Seoul, Republic of Korea; ⁶Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia; ⁷National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan; ⁸National Cancer Center Hospital East, Kashiwa-City, Japan; ⁹AstraZeneca, Macclesfield, UK; ¹⁰AstraZeneca, Cambridge, UK; ¹¹Dana-Farber Cancer Institute, Boston, MA, USA

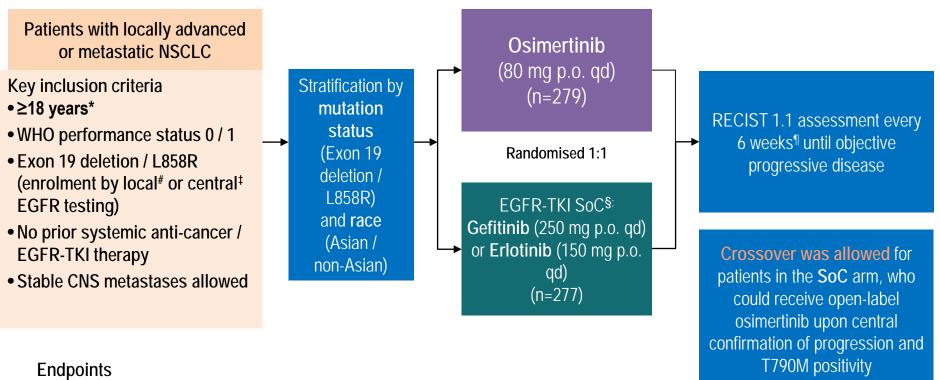
Osimertinib as 1st line therapy of EGFR-mutated NSCLC (AURA cohort): Overall Response Rate

	80 mg	160 mg	Total
	n=30	n=30	N=60
Confirmed ORR	67%	87%	77%
	(95% CI 47, 83)	(95% CI 69, 96)	(95% Cl 64, 87)
Disease control rate*	93%	100%	98%
	(95% CI 78, 99)	(95% CI 88, 100)	(95% CI 89, 100)
Best objective response Complete response Partial response Stable disease ≥6 weeks Progressive disease	0 20 8 2	2 24 4 0	2 44 12 2

Osimertinib as 1st line therapy of EGFR-mutated NSCLC (AURA cohort): PFS

	80 mg 160 mg		Total
	n=30	n=30	N=60
Median PFS,* months (95% CI)	NC (12.3, NC)	19.3 (11.1, 19.3)	19.3 (13.7, NC)
Remaining alive and progression-free, [†] % (95% CI) 12 months 18 months	75 (55, 88) 57 (36, 73)	69 (49, 83) 53 (32, 70)	72 (59, 82) 55 (41, 67)

Population: safety analysis set; data cut-off: 4 January 2016


Progression events that do not occur within 14 weeks of the last evaluable assessment (or first dose) are censored

Circles on the Kaplan-Meier plot denote censored observations

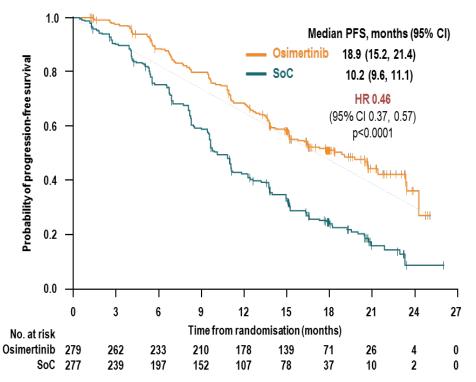
Progression-free survival is the time from date of first dosing until the date of objective disease progression or death [†]Calculated using the Kaplan-Meier technique

MADRID ESTO CONGRESS FLAURA: Osimertinib vs Gefitinib/Erlotinib in EGFR-mutated NSCLC

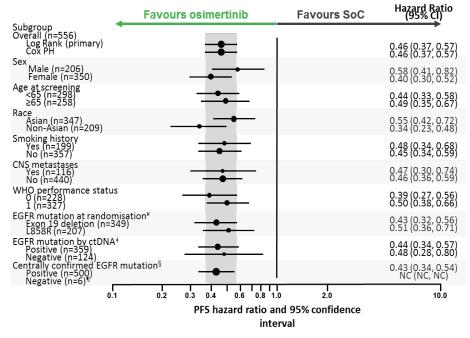
- Primary endpoint: PFS based on investigator assessment (according to RECIST 1.1)
 - The study had a 90% power to detect a hazard ratio of 0.71 (representing a 29% improvement in median PFS from 10 months to 14.1 months) at a two-sided alpha-level of 5%
- Secondary endpoints: objective response rate, duration of response, disease control rate, depth of response, overall survival, patient reported outcomes, safety

FLAURA data cut-off: 12 June 2017; NCT02296125

*>20 years in Japan; #With central laboratory assessment performed for sensitivity; *cobas EGFR Mutation Test (Roche Molecular Systems); [§]Sites to select either gefitinib or erlotinib as the sole comparator prior to site initiation; [¶]Every 12 weeks after 18 months


CNS, central nervous system; EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; PFS, progression-free survival; p.o., orally; RECIST 1.1, Response Evaluation Criteria In Solid Tumors version 1.1; qd, once daily; SoC, standard-of-care;

TKI, tyrosine kinase inhibitor; WHO, World Health Organization


Ramalingam S, et al. ESMO 2017. Abstract LBA2_PR

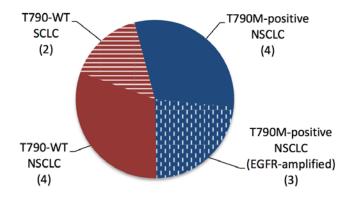
³ FLAURA: Primary End Point of PFS by Investigator

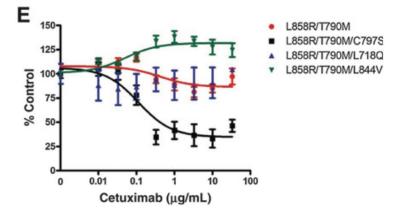
PFS in patients with brain mets (n=116) HR=0.47 PFS in patients without brain mets (n=440) HR=0.46

Ramalingam et al. ESMO 2017. Abstract LBA2

FLAURA : Objective Response Rate & Interim OS

	Osimertinib (n=279)	SoC (n=277)	
ORR (95% CI)	80% (75 <i>,</i> 85)	76% (70 <i>,</i> 81)	
Odds ratio [#] (95% CI)	1.28 (0.85, 1.93); p=0.2335		
Complete response, n (%)	7 (3)	4 (1)	
Partial response, n (%)	216 (77)	206 (74)	
Stable disease ≥6 weeks	47 (17)	46 (17)	
Progression, n (%)	3 (1)	14 (5)	
Not evaluable, n (%)	6 (2)	7 (3)	
Remaining in response [§] , (95% CI)			
At 12 months	64% (58, 71)	37% (31 <i>,</i> 44)	
At 18 months	49% (41 <i>,</i> 56)	19% (13 <i>,</i> 26)	


Interim OS results: favor Osimertinib vs SoC, HR 0.63 (95% CI: 0.45, 0.88), p=0.0068 (NS)

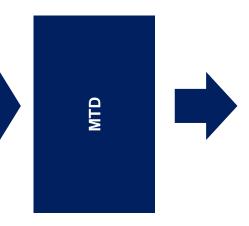

Note: A p-value of <0.0015 was required for statistical significance at 25% maturity

Take Home Messages:

- Based on FLAURA, Osimertinib is "a new Standard of Care" in the 1st line therapy of EGFR-mutated NSCLC
- Superior activity of Osimertinib against brain metastases and prevention of new CNS lesions
- Fewer side effects with Osimertinib

Dual EGFR-Blockade with Osimertinib and Necitumumab to Overcome Acquired Resistance to 3rd Generation EGFR-TKI

- A. EGFR-amplification as a resistance mechanism To Rociletinib
- Z Piotrowska et al. Cancer Discovery 2015.
- L. Sequist et al. JAMA Oncol. 2015

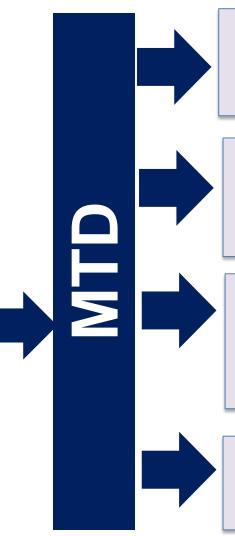

B. Activity of EGFR-Monoclonal Antibody in EGFR-L858R/C797S/T790M ModelD. Ercan et al. CCR. 2015.

Targeting a New Spectrum of Resistance Mechanisms

Combo Drug	Mechanism	PI
Bevacizumab	Anti-VEGF	H. Yu (MSKCC)
Bevacizumab (brain mets)	Anti-VEGF	S. Goldberg (Yale)
Dasatinib	SRC inhibitor (synergy Cripto-1 overexpressing tumors)	G. Giaccone (Georgetown)
Gefitinib	EGFR-TKI (C797S)	A. Redig (DFCI)
Ramucirumab or Necitumumab	Anti-VEGFR2/EGFR- moAb (T790M+ve)	Lilly
Necitumumab / Gefitinib	EGFR-moAb / C797S	JW Riess (UC Davis)
Navitoclax (T790M+ve)	Anti-Bcl2/Bcl-xL (pre- clinical synergy T790M+)	G. Oxnard (DFCI)
Savolitinib	MET	G. Oxnard (DFCI)

A Phase I Trial of AZD9291 and Necitumumab in EGFR Mutant NSCLC with Previous EGFR-TKI Resistance

3+3 dose escalation of AZD9291 and Necitumumab in Advanced EGFR Mutant NSCLC with Previous EGFR-TKI Resistance (1st-3rd gen)


Dose Expansion in 12 evaluable EGFR T790M negative patients with EGFR-TKI as last previous treatment (afatinib, gefitinib, erlotinib).

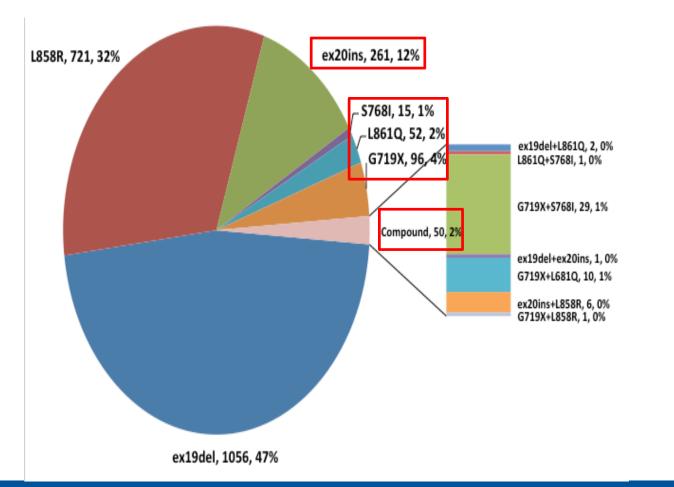
Primary Endpoint: Safety and Tolerability Main Secondary Endpoint: ORR is T790M negative population (3≥12 responses)

PI: JW Riess (UCD) Co-PI David Gandara (UCD) Statistician: Susan Groshen (USC)

Molecular Studies

Biopsy – Pre-treatment and post progression for EGFR T790M, EGFR FISH and NGS Plasma cfDNA for EGFR-TKI resistance mechanisms Creation of EGFR-TKI resistant PDX Single Cell NGS for Intratumoral Heterogeneity Dose Escalation of Osimertinib and Necitumumab in Advanced EGFR Mutant NSCLC with Previous EGFR-TKI Resistance (1st-3rd gen)

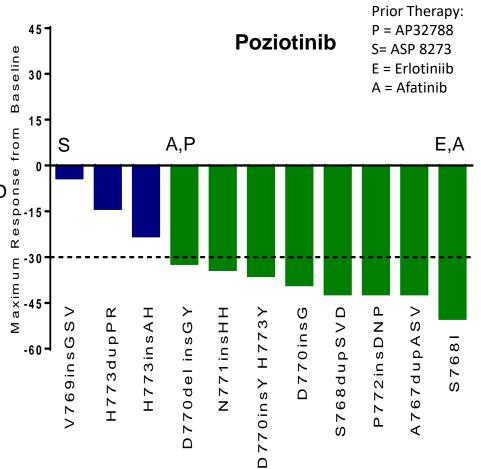
Cohort A: T790M negative, PD on afatinib, gefitinib, erlotinib as last treatment


Cohort B: EGFR T790M negative, PD on osimertinib or other 3rd gen EGFR-TKI

Cohort C: EGFR T790M positive, PD on osimertinib or other 3rd gen EGFR-TKI

Cohort D: EGFR Exon 20 Insertion NSCLC with PD on platinum based chemotherapy

Frequency and Distribution of EGFR-mutations Detected by CGP in this series

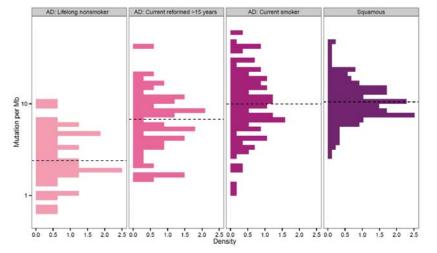


- EGFR mutations were detected in 2,251/14,483
 NSCLC cases (~15%)
- EGFR Exon 20 insertions comprise 12% of EGFRactivating mutations
- 3rd most common group of mutations) and 1.8% of NSCLC samples tested

Poziotinib in EGFR Exon20 Ins NSCLC induces partial responses in EGFR Exon 20 mutations

-11 EGFR exon 20 patients with baseline and follow up scans at 2 m (longest on treatment=6 months).
-<u>Activity</u>: 8/11 PR observed; 2 patients have had additional follow up scans confirming PR.
-duration of response not yet evaluable; only one patient with PD thus far.
-Evidence of CNS activity in patient with CNS metastasis and another with LMD
-additional patient treated on compassionate use IND (CIND) also had PR

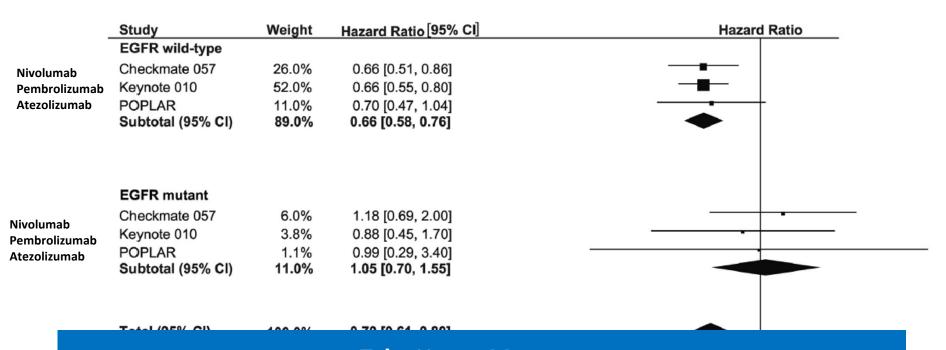
-<u>Toxicities</u>: significant EGFR-related toxicities include rash, diarrhea, paronychia, mucositis consistent with those previously described. -55% underwent dose reduction to 12mg thus far


PD-L1 Expression in EGFR-Mutant versus KRAS-Mutant NSCLC

	EGFR-Mutant (N=62)	KRAS-Mutant (N=65)	P Value
PD-L1+ (≥50%)	7 (11%)	11 (17%)	0.449
CD8+ TILs ^a per mm ² Median Range	185.1 (6.1-1161)	330.1 (8.5-2567)	0.011
Concurrent PD-L1 Expression & CD8+ TILs PD-L1+ (≥50%) & high CD8+ TILs ^b	2/46 (4.3%)	10/56 (18%)	0.061

^aCytology specimens were excluded from evaluation of CD8+ TILs.

Gainor JF, et al. Clin Cancer Res 2016


^bHigh CD8+ TILs defined as ≥ median in the pretreatment control population (330 cells/mm²)

Mutational Load: Smokers vs. Non-smokers

Rizvi N, et al. Science 2015;348(6230):124-128; Gibbons DL, et al. Mol Cancer Res. 2014;12(1):3-13

Clinical Experience of PD-(L)1 Inhibitors in EGFR+ NSCLC

Take Home Messages:

EGFR-mutant NSCLC less responsive to single agent PD-(L)1 blockade.

This is c/w non-smoking associated lung cancers, likely due to low PDL1 expression, mutational load, less relevant immune cells (CD8).

Look for clinical trials with for these patients (immunotherapy combos)

Take Home Points

- Osimertinib new standard 1st line treatment for metastatic EGFR-mutant NSCLC
- Likely new spectrum of resistance mutations post-1st line osimertinib (no T790M other resistance mutations (C797S)) with need for new clinical trials
- PD-(L)1 antibodies as single agents appear to be less effective in EGFR-mutant NSCLC compared to smoking related cancers.
- Newer EGFR/HER2 TKI agents such as poziotinib and AP32788 in early phase clinical development and may have activity in EGFR Exon 20 Insertion NSCLC
- Plasma cfDNA can be used to detect EGFR-activating and resistance mutations, but if negative it is not a substitute for tissue biopsy.