

# NTRK Inhibitors, Exon 20 and Other Agents

Luis E. Raez, MD FACP FCCP
President Florida Society of Clinical Oncology (FLASCO)
Chief Scientific Officer&Medical Director
Memorial Cancer Institute/Memorial Health Care System
Clinical Professor of Medicine
Herbert Wertheim College of Medicine
Florida International University



#### **EDITORIAL**



### Tumor Type-Agnostic Treatment and the Future of Cancer Therapy

Luis E. Raez 1 . Edgardo S. Santos 2

Published online: 10 October 2018 © Springer Nature Switzerland AG 2018

It is fascinating to see how the science of cancer therapy has evolved. We first classified tumors as "solid" or "liquid" and created the specialties of oncology and hematology to later discover that the shape of the tumors has nothing to do with their etiology, so we ended up combining both specialties. Next, we proceeded to classify cancers according to the organ they grow in, thinking that the origin of the tumors is what causes their biological behaviors, and could guide us in understanding and fighting them properly. After so many years taking this approach, with both tremendous successes and deep disappointments, we are now beginning to appreciate that there is much more complexity to cancer biology than simply the tissue that tumors arise from.

Malandar mashanisma (DNA mutations translacations

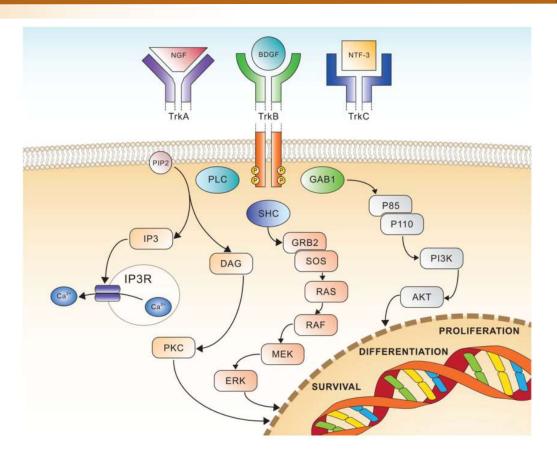
In the current issue, Kummar and Lassen [2] present a very comprehensive review of NTRK gene aberrations as one example of success in using this tumor site-agnostic approach. The authors review the diagnostic and treatment strategies that are being implemented to deal with NTRK-fusion genes and the diseases that they cause.

NTRK genes encode for the Trk-family of tyrosine kinases: TrkA, TrkB, and TrkC (encoded by NTRK1, NTRK2, and NTRK3). Normally, these proteins are involved in the development of the nervous system [3]. However, Trks are also present in solid tumors as fusion proteins responsible for the growth of cancer cells, and these oncogenic fusions are associated with poor survival in lung cancers and other tumor

termon [A] An annu errith narround other amanagemen (a.e. ATV

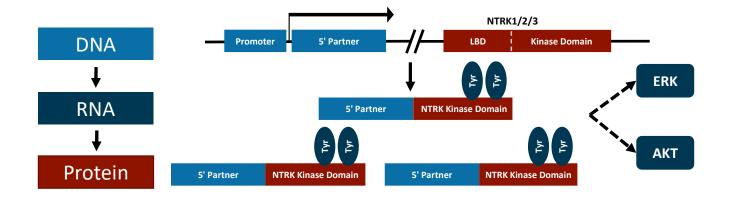


# **NTRK** inhibitors


Larotrectenib

Entrectinib

**LOXO 195** 


# An Introduction to NTRK

- NTRK genes: 1, 2, and 3 encode TRK proteins: A, B, and C
- Normally regulate neuronal development in utero and sensation of pain, proprioception, and appetite postnatally
- NTRK gene fusions found in large number of solid tumors and leukemias
  - Common in rare cancers:
    - Infantile fibrosarcoma/cellular CMN
  - Rare in more common cancers
    - NRSTS, gliomas, melanomas, thyroid cancer, breast cancer, other adult epithelial cancers

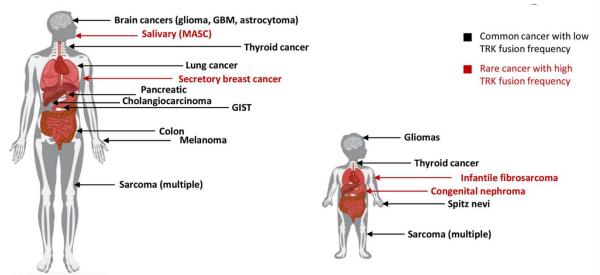


# NTRK Fusions

- Beyond the embryo, TRK proteins are primarily limited to the nervous system<sup>[a]</sup>
- 3 neurotrophin receptors encoded by 3 distinct genes that regulate specific normal functions<sup>[a,b]</sup>
  - NTRK1 → TRKA → Pain, thermoregulation
  - NTRK2 → TRKB → Movement, memory, mood, appetite, body weight
  - NTRK3 → TRKC → Proprioception
- Recurrent chromosomal fusion events have been identified across diverse pediatric and adult cancers<sup>[a,b]</sup>



# Larotrectinib in *TRK*-fusion cancers


Diseases

| Tumor type             | #/ percentage |
|------------------------|---------------|
| Salivary gland tumor   | 12 (22%)      |
| Soft tissue sarcoma    | 11 (20%)      |
| Infantile fibrosarcoma | 7 (13%)       |
| Thyroid cancer         | 5 (9%)        |
| Colon cancer           | 4 (7%)        |
| Lung cancer            | 4 (7%)        |
| Melanoma               | 4 (7%)        |
| GIST                   | 3 (5%)        |
| Cholangiocarcinoma     | 2 (4%)        |
| Appendix               | 1 (2%)        |
| Breast                 | 1 (2%)        |
| Pancreas               | 1 (2%)        |

| Lineacy                     |             |  |  |  |
|-----------------------------|-------------|--|--|--|
| Parameter                   | Result      |  |  |  |
| ORR                         | 75% (41/55) |  |  |  |
| Median time to response     | 1.8 months  |  |  |  |
| Median duration of response | NR          |  |  |  |
| Median PFS                  | NR          |  |  |  |
| 1-year PFS                  | 55%         |  |  |  |

# Prevalence

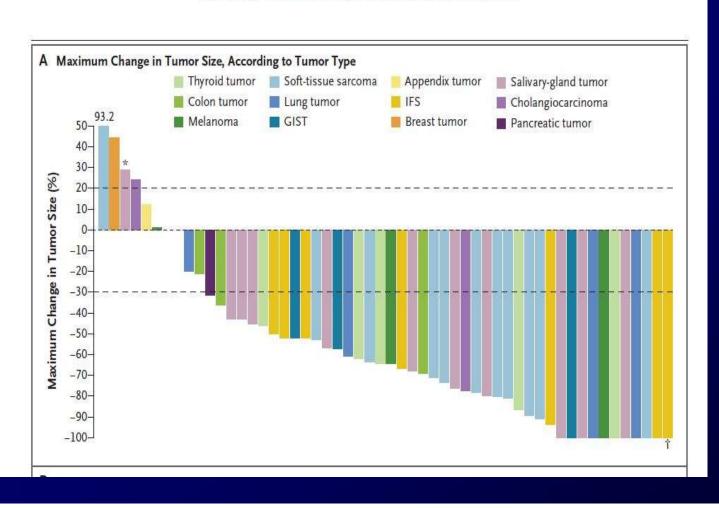
 Estimated 1500 to 5000 US patients with NTRK fusion-positive cancers<sup>[a]</sup>



 NTRK1 fusions are found in approximately 1% of adenocarcinomas of the lung<sup>[b]</sup>

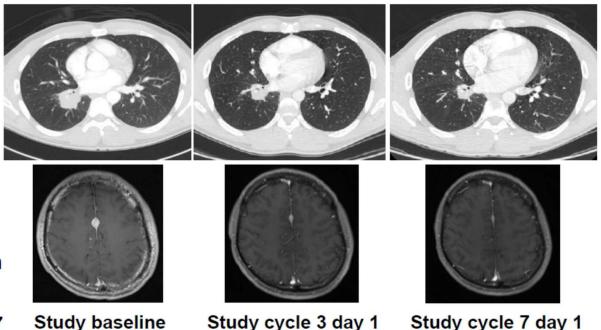
a. Hyman DM, et al. ASCO® 2017. Abstract LBA2501; b. Tsao AS, et al. J Thorac Oncol. 2016;11:613-638.

### The NEW ENGLAND JOURNAL of MEDICINE


### ORIGINAL ARTICLE

# Efficacy of Larotrectinib in TRK Fusion– Positive Cancers in Adults and Children

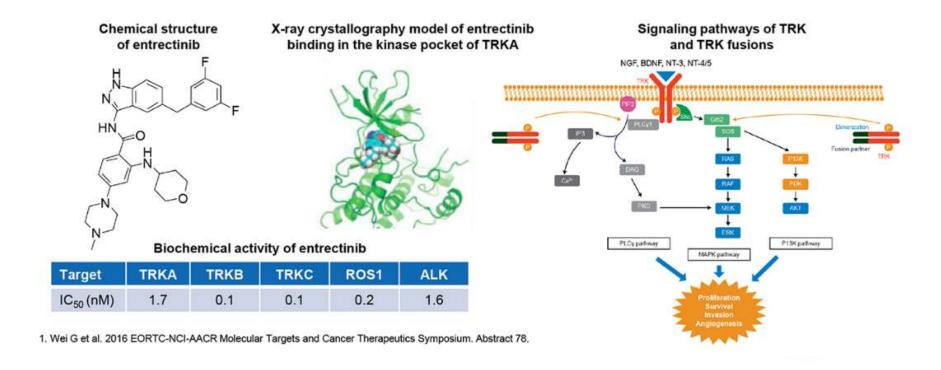
A. Drilon, T.W. Laetsch, S. Kummar, S.G. DuBois, U.N. Lassen, G.D. Demetri,
M. Nathenson, R.C. Doebele, A.F. Farago, A.S. Pappo, B. Turpin, A. Dowlati,
M.S. Brose, L. Mascarenhas, N. Federman, J. Berlin, W.S. El-Deiry, C. Baik,
J. Deeken, V. Boni, R. Nagasubramanian, M. Taylor, E.R. Rudzinski,
F. Meric-Bernstam, D.P.S. Sohal, P.C. Ma, L.E. Raez, J.F. Hechtman, R. Benayed,
M. Ladanyi, B.B. Tuch, K. Ebata, S. Cruickshank, N.C. Ku, M.C. Cox,
D.S. Hawkins, D.S. Hong, and D.M. Hyman


### ABSTRACT

### The NEW ENGLAND JOURNAL of MEDICINE



# **Preliminary Evidence of Brain Penetration**


- 28 yo male progressed through cisplatin and etoposide
- TPR-NTRK1 non-small cell lung cancer
- 100mg BID
- Resolution of cough and pain
- Currently on study in cycle 7



Hong D et al. Proc AACR Annual Meeting 2016. Abstr CT008.

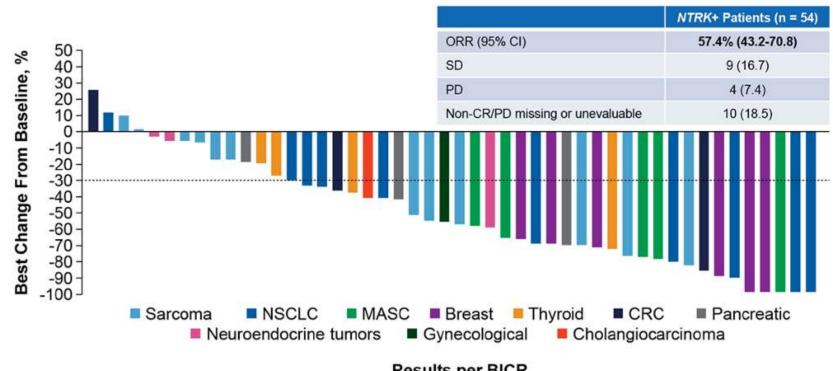
## Entrectinib: Pan-TRK/ROS1/ALK Inhibitor1

Orally administered inhibitor of TRKA/B/C, ROS1, and ALK



## Entrectinib Development Program: Combined Phase 1 Studies<sup>1</sup>

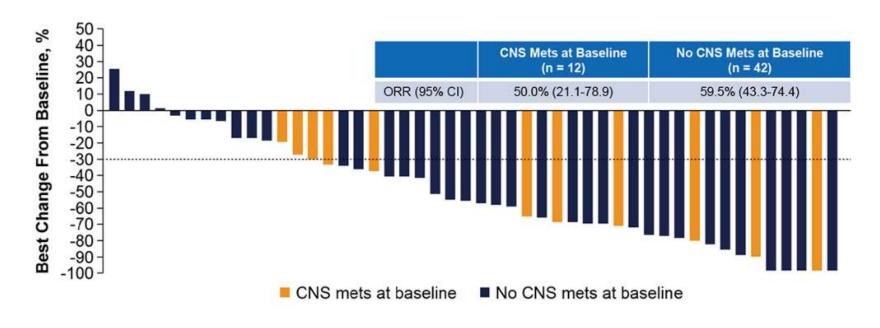
### ALKA-372-001 (N = 54)


- Dosing: Intermittent and continuous
- NTRK/ROS1/ALK alterations
- Italy
  - FIH study: Nerviano Medical Sciences in October 2012 → Ignyta assumed responsibility in November 2013

### STARTRK-1 (N = 65)

- Dosing: Continuous
- NTRK/ROS1/ALK alterations
- US, EU, and Asia
  - Ignyta initiated in July 2014

- · RP2D: 600 mg PO once daily, continuous
- Total clinical experience (n = 119 patients)
  - Updated safety and efficacy data
  - Data cut-off: March 7, 2016


# Entrectinib Activity in NTRK Fusion-Positive Solid Tumors: Individual Patient Responses by Tumor Type<sup>1</sup>



Results per BICR

Demetri GD et al. ESMO 2018. Abstract LBA17.

# Entrectinib Activity in *NTRK* Fusion-Positive Solid Tumors: Individual Responses by CNS Mets Status<sup>1</sup>



### Results per BICR

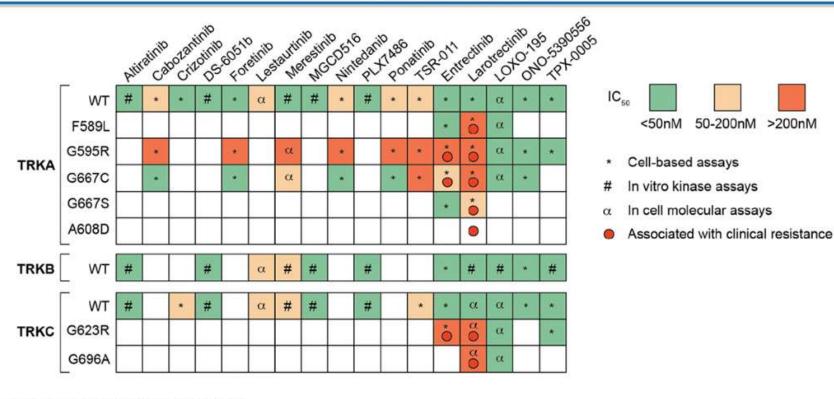
1. Demetri GD et al. ESMO 2018. Abstract LBA17.

## Entrectinib: Safety Overview<sup>1</sup>

| Treatment-Related AEs<br>Reported in ≥10% of Patients | NTRK Fusion-Positive Safety<br>Population (n = 68) |          | Overall safety population<br>(N = 355) |          |
|-------------------------------------------------------|----------------------------------------------------|----------|----------------------------------------|----------|
| Patients, n (%)                                       | Grades 1/2                                         | Grade 3  | Grades 1/2                             | Grade 3  |
| Dysgeusia                                             | 32 (47.1)                                          | 0        | 146 (41.1)                             | 1 (0.3)  |
| Constipation                                          | 19 (27.9)                                          | 0        | 83 (23.4)                              | 1 (0.3)  |
| Fatigue                                               | 19 (27.9)                                          | 5 (7.4)  | 89 (25.1)                              | 10 (2.8) |
| Diarrhoea                                             | 18 (26.5)                                          | 1 (1.5)  | 76 (21.4)                              | 5 (1.4)  |
| Oedema peripheral                                     | 16 (23.5)                                          | 1 (1.5)  | 49 (13.8)                              | 1 (0.3)  |
| Dizziness                                             | 16 (23.5)                                          | 1 (1.5)  | 88 (24.8)                              | 2 (0.6)  |
| Blood creatinine increase                             | 12 (17.6)                                          | 1 (1.5)  | 52 (14.6)                              | 2 (0.6)  |
| Paraesthesia                                          | 11 (16.2)                                          | 0        | 67 (18.9)                              | 0        |
| Nausea                                                | 10 (14.7)                                          | 0        | 74 (20.8)                              | 0        |
| Vomiting                                              | 9 (13.2)                                           | 0        | 48 (13.5)                              | 0        |
| Arthralgia                                            | 8 (11.8)                                           | 0        | 42 (11.8)                              | 2 (0.6)  |
| Myalgia                                               | 8 (11.8)                                           | 0        | 52 (14.6)                              | 2 (0.6)  |
| Weight increased                                      | 8 (11.8)                                           | 7 (10.3) | 51 (14.4)                              | 18 (5.1) |
| AST increase                                          | 7 (10.3)                                           | 0        | 35 (9.9)                               | 3 (0.8)  |
| Muscular Weakness                                     | 6 (8.8)                                            | 1 (1.5)  | 22 (6.2)                               | 3 (0.8)  |
| Anaemia                                               | 5 (7.4)                                            | 8 (11.8) | 27 (7.6)                               | 16 (4.5) |

# Overall safety population (N = 355)

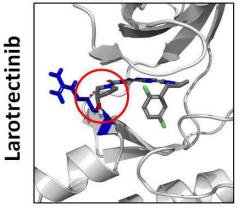
- Most adverse events were grades 1/2 and reversible
- · Treatment-related AEs leading to

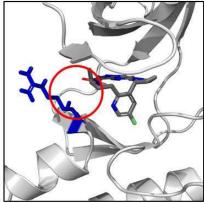

Dose reduction: 27.3%Dose interruption: 25.4%

- Discontinuation from treatment: 3.9%
- No grade 5 treatment-related events

Treatment-related AEs in the NTRK fusion-positive safety population are consistent with the overall safety population

<sup>1.</sup> Demetri GD et al. ESMO 2018. Abstract LBA17.


## TRK Inhibitors Have Different Levels of Activity Against Emergent Mutations<sup>1</sup>

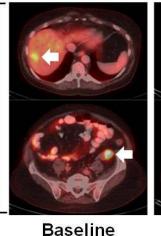


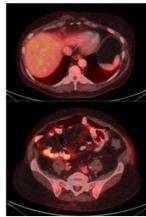

<sup>1.</sup> Cocco E et al. Nat Rev Clin Oncol. 2018;15:731-747.

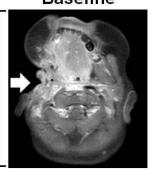
# LOXO-195 to Address TRK Acquired Resistance

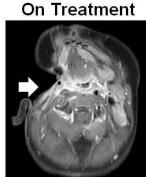
**TRKA G595R** 







LOXO-195


| Tumor type | Fusion     | Resistance<br>mutation      |
|------------|------------|-----------------------------|
| Colorectal | TPM3-NTRK1 | TRKA G595R                  |
| Colorectal | LMNA-NTRK1 | TRKA G595R                  |
| NSCLC      | TPR-NTRK1  | TRKA G595R                  |
| Sarcoma*   | TPM3-NTRK1 | TRKA G595R                  |
| IFS        | ETV6-NTRK3 | TRKC G623R                  |
| Cholangio* | LMNA-NTRK1 | TRKA F589L* +<br>GNAS Q227H |


TRK solvent front mutations detected in 5 of 6 patients with acquired resistance. First 2 patients successfully treated with LOXO-195.

**LOXO-195 Treatment** 







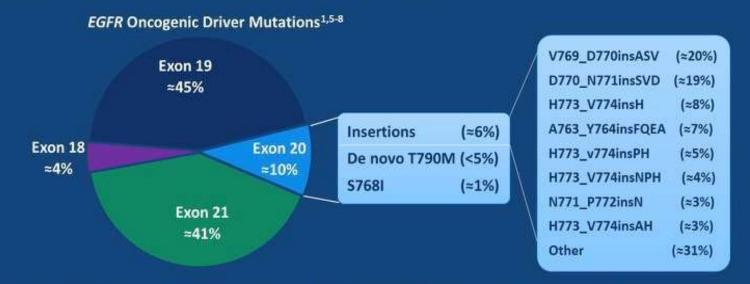


### **TRK** inhibition

Table 1. Active clinical trials of TRK inhibitors in patients with NTRK fusion tumors<sup>a</sup>

| Agent                          | Kinase targets              | Phase                 | NTRK fusion tumor type                                                                   | Start date     | Status         | Estimated<br>participants |
|--------------------------------|-----------------------------|-----------------------|------------------------------------------------------------------------------------------|----------------|----------------|---------------------------|
| Larotrectinib TRKA, TRKB, TRKC | ſ                           | Advanced solid tumors | May 2014                                                                                 | Recruiting     | 90             |                           |
|                                |                             | П                     | Advanced solid tumors                                                                    | October 2015   | Recruiting     | 151                       |
|                                |                             | 1/11                  | Advanced solid or primary CNS tumors (pediatric)                                         | December 2015  | Recruiting     | 92                        |
| Entrectinib                    | TRKA, TRKB, TRKC, ALK, ROS1 | I.                    | Locally advanced or metastatic solid tumors <sup>b</sup>                                 | June 2014      | Recruiting     | 125                       |
|                                |                             | 11                    | Locally advanced or metastatic solid tumors <sup>b</sup>                                 | October 2015   | Recruiting     | 300                       |
|                                |                             | I/Ib                  | Recurrent or refractory solid tumors and primary CNS tumors (pediatric)                  | December 2015  | Recruiting     | 190                       |
| DS-6051b                       | TRKA, TRKB, TRKC, ROS1      | I.                    | Advanced solid tumors <sup>c</sup>                                                       | September 2014 | Not recruiting | 70                        |
|                                |                             | Ï                     | Advanced solid tumors (Japanese patients)                                                | February 2016  | Not recruiting | 15                        |
| TSR-011                        | TRKA, TRKB, TRKC, ALK       | I/IIa                 | Advanced solid tumors and lymphomas <sup>d</sup>                                         | October 2012   | Unknown        | 72                        |
| TPX-0005 <sup>e</sup>          | TRKA, TRKB, TRKC, ALK, ROS1 | 1/11                  | Locally advanced or metastatic solid tumor (including non-Hodgkin lymphoma) <sup>b</sup> | February, 2017 | Recruiting     | 450                       |
| LOXO-195e                      | TRKA, TRKB, TRKC            | 1/11                  | Advanced solid tumor progressing after prior<br>TRK inhibitor treatment                  | July, 2017     | Recruiting     | 93                        |

CNS central nervous system


<sup>&</sup>lt;sup>a</sup>As registered with ClinicalTrials.gov.

blnclusion of patients with ROS1, or ALK gene rearrangements permitted.

Inclusion of patients with ROS1 gene rearrangements permitted.

dInclusion of patients with ALK gene rearrangements permitted.
eSecond generation TRK inhibitor with activity against TRK proteins with resistance mutations.

## EGFR Exon 20 Insertions in NSCLC



- Approximately 6% of EGFR-mutated NSCLC tumors have EGFR exon 20 insertion mutations, and there are no approved targeted treatment options for patients with these mutations<sup>1</sup>
- Currently approved EGFR TKIs have shown efficacy in NSCLC patients with common activating EGFR mutations, but are largely
  ineffective in patients with EGFR exon 20 insertions, with poor response rates and median PFS of approximately 2 months<sup>2,4</sup>

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; PFS, progression-free survival; TKI, tyrosine kinase inhibitor. 1. Kobayashi Y, Mitsudomi T. Cancer Sci 2016;107:1179–1186; 2. Wu J-Y et al. Clin Cancer Res 2008;14:4877–4882; 3. Naidoo J et al. Cancer 2015;121:3212-3220; 4. Yasuda H et al. Sci Transl Med. 2013;5:1-23; 5. Arcila ME et al. Mol Cancer Ther 2013;12:220–229; 6. Oxnard GR et al. J Thorac Oncol 2013;8:179–184; 7. Inukai M et al. Cancer Res. 2006;66:7854-7858; 8. Yasuda H et al. Lancet Oncol. 2012;13:e23-31.

## TAK-788 Antitumor Activity in Patients With EGFR Exon 20 Insertions



| Exon 20<br>Insertion<br>Variant | No. of<br>Patients | No. of<br>Confirmed<br>Responders, n | Confirmed<br>ORR |
|---------------------------------|--------------------|--------------------------------------|------------------|
| 769_ASV                         | 5                  | 2                                    | 40%              |
| 773_NPH                         | 4                  | 2                                    | 50%              |
| Exact variant<br>unknown        | 4                  | 2                                    | 50%              |
| Other                           | 15                 | 6                                    | 40%              |

- Median (range) best percent change: -32.5% (-100%, 26.3%)
- Three patients were excluded from the waterfall plot: 1 patient had nonmeasurable baseline target lesions, and 2 patients had no follow-up scans

IO, immuno-oncology therapy; PD, progressive disease.



## **Treatment-Related AEs in Patients Treated With TAK-788**

| Any grade: ≥20% of all patients | All Patients<br>160 mg<br>(n=7 | g qd <sup>a</sup> | All Patients Treated at Any Dose <sup>b</sup> (N=137) |             |  |
|---------------------------------|--------------------------------|-------------------|-------------------------------------------------------|-------------|--|
| Grade ≥3: ≥3% of all patients   | Any Grade, %                   | Grade ≥3, %       | Any Grade, %                                          | Grade ≥3, % |  |
| Diarrhea                        | 85                             | 18                | 74                                                    | 12          |  |
| Nausea                          | 43                             | 6                 | 33                                                    | 4           |  |
| Rash                            | 36                             | 1                 | 26                                                    | 1           |  |
| Vomiting                        | 29                             | 3                 | 22                                                    | 2           |  |
| Decreased appetite              | 25                             | 1                 | 22                                                    | 1           |  |
| Stomatitis                      | 18                             | 4                 | 14                                                    | 3           |  |
| ncreased lipase                 | 10                             | 6                 | 8                                                     | 3           |  |
| ncreased amylase                | 8                              | 4                 | 8                                                     | 3           |  |

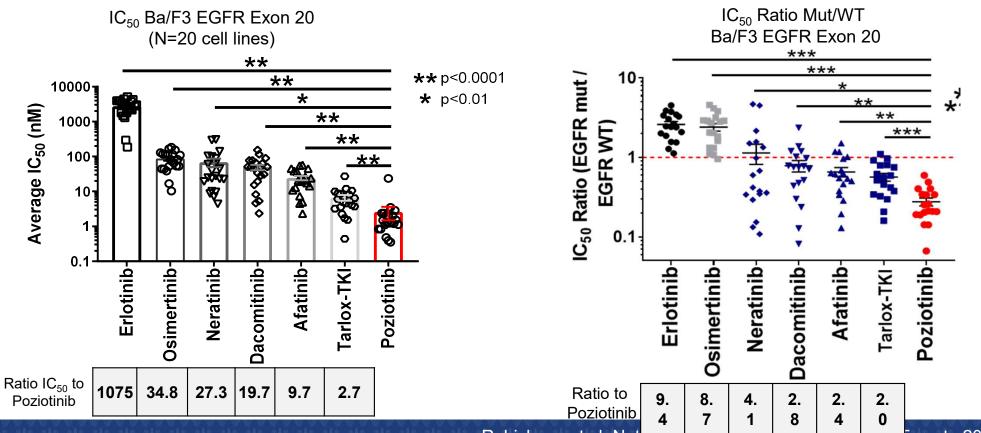
Patients who received at least 1 dose of TAK-788 at 160 mg qd (initial dose) during dose escalation or expansion cohorts 1 to 7. Patients who received at least 1 dose of TAK -788 (5-180 mg total daily dose) during the escalation or expansion phase. Data cutoff: 1 Mar 2019.

- Most treatment-related AEs were grade 1-2 and reversible
- Per protocol, no primary prophylaxis plan for AEs was in place
- Food instructions have been updated in this ongoing study with the potential to improve gastrointestinal tolerability based on emerging data in healthy subjects that suggest lack of low-fat meal effect on PK of TAK-788



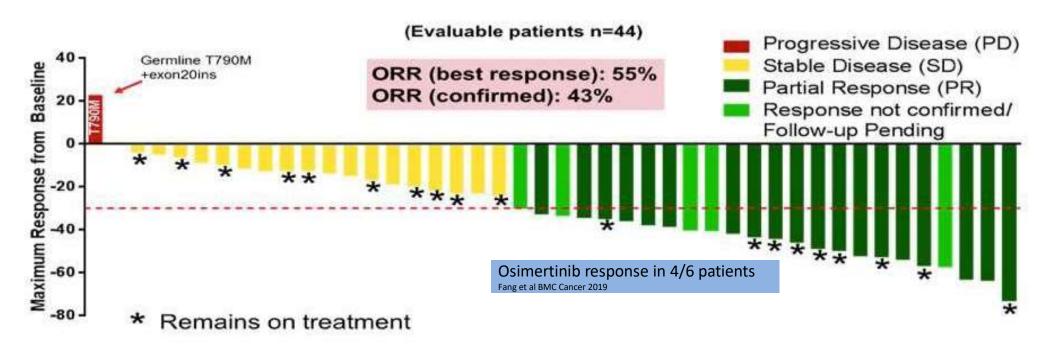


### 2019 World Conference on Lung Cancer


September 7-10, 2019 | Barcelona, Spain

wclc2019.iaslc.com

#WCLC19


Conquering Thoracic Cancers Worldwide

## Poziotinib is a potent selective inhibitor of EGFR exon 20 insertions in vitro



Robichaux et al. Nat ivied 2018, JV Heymach, VVCLC Toronto 2018

# Poziotinib efficacy in EGFR Exon 20 mutant NSCLC

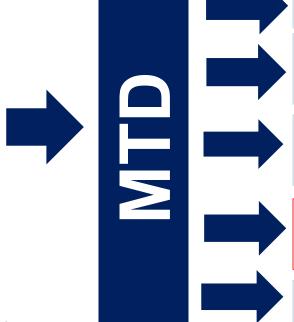




wclc2019.iaslc.com | #WCLC19

Conquering Thoracic Cancers Worldwide

## Conclusion


- Poziotinib is a potent selective inhibitor of EGFR exon 20 mutant *in vitro*, and is associated with PFS of 5.5 months and confirmed response rate of 43% in a phase II clinical trial
- Similar resistance mechanisms observed as other approved EGFR TKIs: EGFR-dependent mechanisms (T790M) and other EGFR tyrosine kinase domain point mutations
- EGFR-independent resistance mechanisms include activation of bypass pathways and EMT
- Pre-clinical studies to overcome/delay resistance are underway.

#WCLC19

Conquering Thoracic Cancers Worldwide

# Osimertinib and Necitumumab in EGFR mutant NSCLC (NCI: 9898)

Dose Escalation
of Osimertinib
and
Necitumumab in
Advanced EGFR
Mutant NSCLC

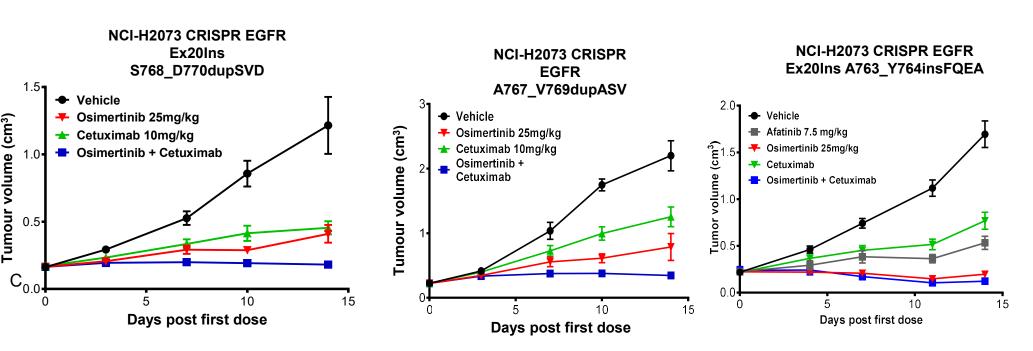


Cohort A: T790M negative, PD on afatinib, gefitinib, erlotinib as last treatment

Cohort B: EGFR T790M negative, PD on osimertinib or other 3<sup>rd</sup> gen EGFR-TKI

Cohort C: EGFR T790M positive, PD on osimertinib or other 3<sup>rd</sup> gen EGFR-TKI

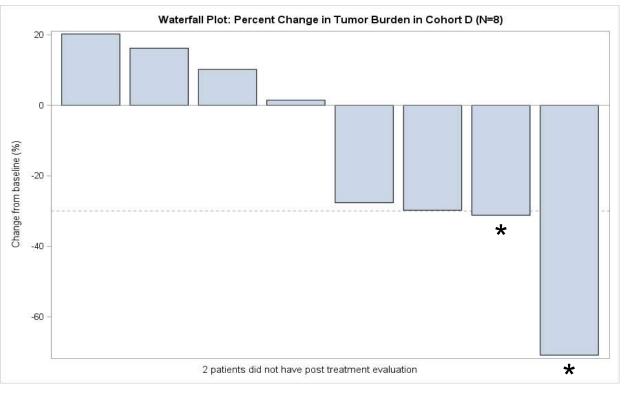
Cohort D: EGFR Exon 20 Insertion NSCLC with PD on platinum based chemotherapy


Cohort E: EGFR mut NSCLC with PD on first line osimertinib

JW Riess et al. ASCO 2019

Presenter Jonathan W. Riess, UC Davis, USA

Conquering Thoracic Cancers Worldwide


# Osimertinib and EGFR-moAb Inhibits Tumor Growth in CRISPRengineered EGFR Exon 20 ins Models






Conquering Thoracic Cancers Worldwide

## Osimertinib and Necitumumab is Clinically Active in EGFR Exon 20 ins NSCLC



2 confirmed responses 8 pts evaluable for response Accrual until N=18 for cohort

\* Confirmed Response

