

Inmunoterapia en cancer de pulmón.

Luis E. Raez MD FACP FCCP
President-elect Florida Society of Clinical Oncology
(FLASCO)

Chief of Hematology/Oncology &
Medical Director
Memorial Cancer Institute/Memorial Health Care
System

Clinical Professor of Medicine
Herbert Wertheim College of Medicine
Florida International University

Cancer Institute

Research Support: BMS

Genentech/Roche

Pfizer

Biodesix

MSD

Merck Serono

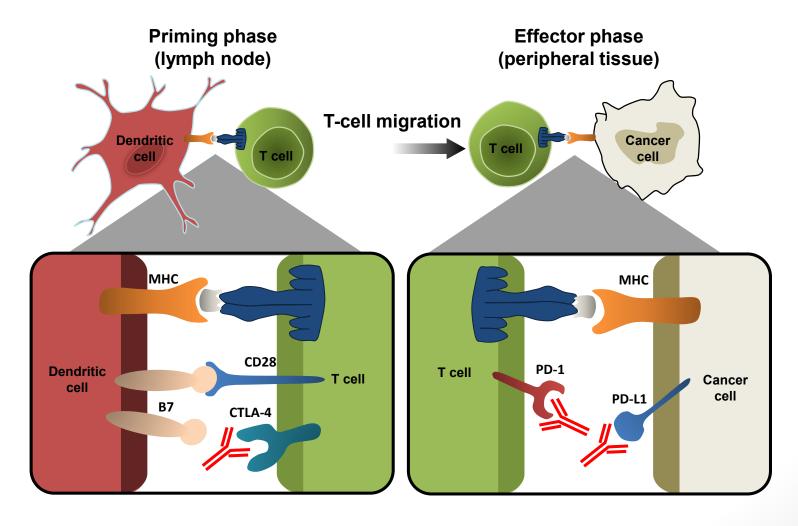
Lilly Oncology

Boheringer Ingelheim

Astra-Zeneca

Liquid Genomics

Speakers Bureau/Stocks: None


Stronger Together

Stronger Together

Stronger Together

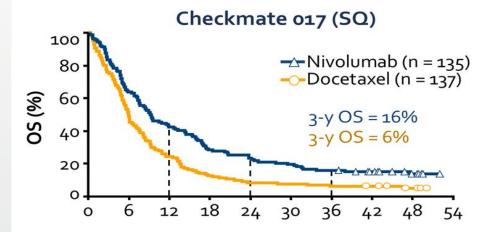
Immunotherapy: Checkpoint blockade

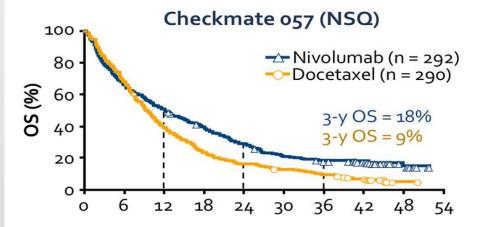
Ribas A. N Engl J Med. 2012;366:2517-2519.

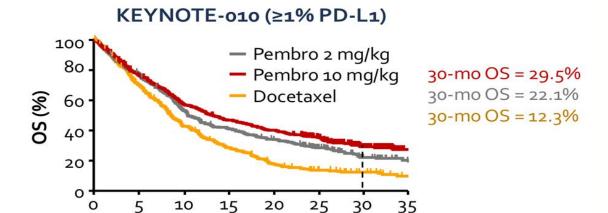
Cancer Institute

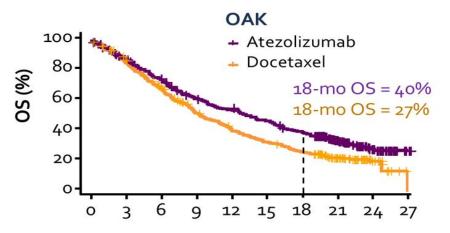
Checkpoint Blockade

Anti-CTLA 4	Anti-PD-L1	Anti-PD-1
Expilimumab (Fully human IgG1) FDA approved 2011	MDX-1105 (Fully human IgG4) Phase I	MDX 1106, Nivolumab (Fully human IgG4) FDA approved for melanoma, NSCLC, urothelial carcinoma, RCC, HL, SCCHN
Tremelimumab (Fully human IgG2) Phase III	MPDL3280A, RG7446, Atezolizumab Phase II-III FDA approved 2016 NSCLC	CT-011 Pidilizumab (Humanized IgG1) Phase II
	MEDI473(5, Durvalumab; Phase III	MK3475 Pembrolizumab (formerly Lambrolizumab) (Humanized IgG4) FDA approved for melanoma, NSCLC, SCCHN
	MSB0010718C, Avelumab Phase I-II	AMP-224 (B7-DC/IgG1fusion protein) Phase I-II
		MEDI0680, AMP514 Phase I


Stronger Together

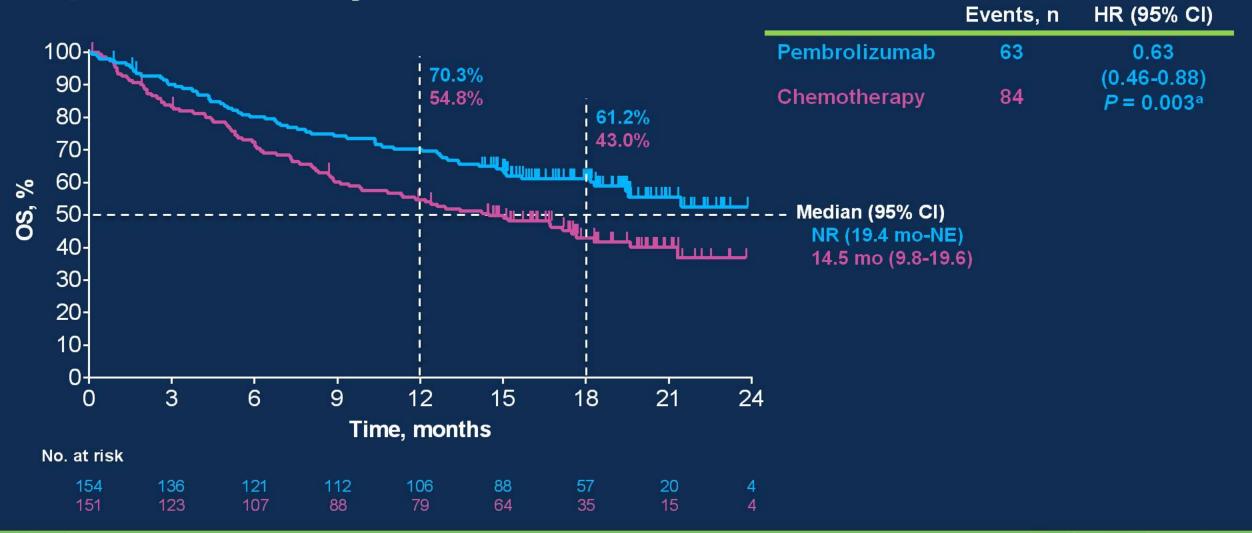



NSCLC Second line Immunotherapy


Nivolumab [Checkmate 057 and 017]
Pembrolizumab [Keynote 010]
Atezolizumab [Oak]

A consistent but limited OS benefit in 2nd line

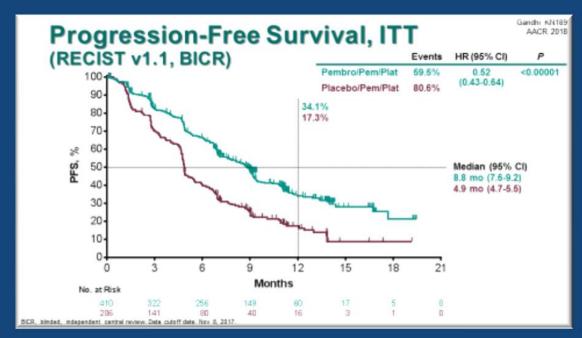
Felip, ESMO 2017; Herbst, ASCO 2017; Rittmeyer, Lancet 2017

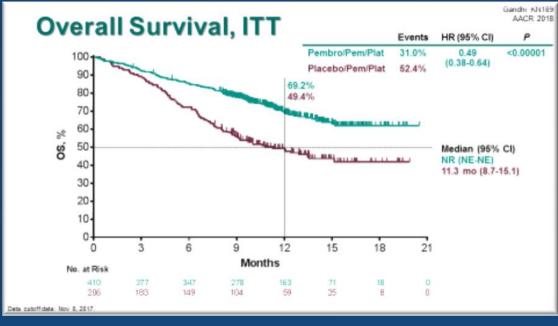


NSCLC First line Immunotherapy

Pembrolizumab [Keynote 024]

Kaplan-Meier Estimate of OS: Updated Analysis

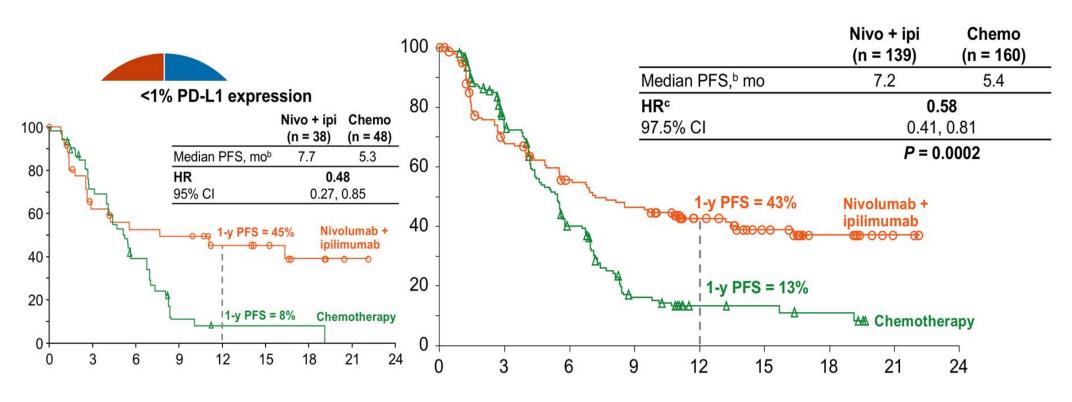




Combining Immunotherapy

- Chemotherapy: (NSQCC)
 Carboplatin/Pemetrexed/Pembrolizumab
 [Keynote 021 (9/2017) and Keynote 189 (1/2018)]
- 2) Immunotherapy (NSQCC and SQCC)
 Ipilimumab and nivolumab
 [Checkmate 227 (2/2018)]

KEYNOTE 189 Co-primary endpoints: mPFS and mOS



	СРР	Control
mPFS (mo)	8.8 (7.6-9.2)	4.9 (4.7-5.5)
HR, 95% CI, <i>p</i> value	0.52 (0.43-0.64) P = <0.00001	


	СРР	Control
mOS (mo)	NR	11.3 (8.7-15.1)
HR, 95% CI, <i>p</i> value	0.49 (0.38-0.64) $P = < 0.00001$	

Ipilimumab/nivolumab is better than platinum chemotherapy in TMB ≥ 10Mb irrespective of PD-L1 CheckMate 227

Primary endpoint PFS in high TMB (≥10Mut/Mb) HR 1.07 in <10Mut/Mb

ASCO 2018

- Keynote 042: First Line (NSQCC)
 Carbo/Pem vs Pembro [PD-L1 >1%]
- IMPOWER 150: First Line (NSQCC)
 Carbo/Paclit/Bev/Atezo vs SOC

• IMPOWER 131: First Line (SQCC)
Carbo/Nab-Pac/Atezo vs SOC

Stronger Together

KEYNOTE 407: First Line (SQCC)

Carbo/Paclit or Nab/Pembro vs SOC Stronger Together

Stronger Together

KEYNOTE-042 Study Design

Key Eligibility Criteria

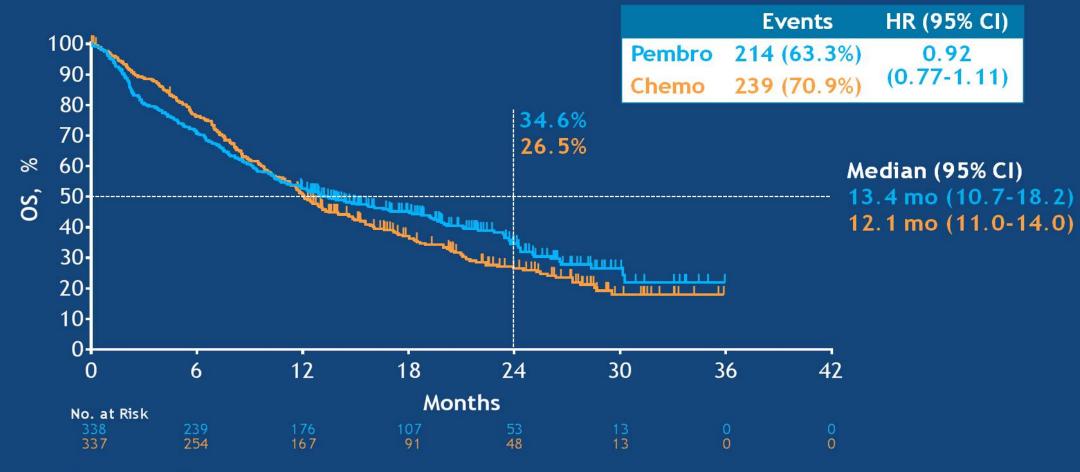
- Untreated locally advanced or metastatic NSCLC of any histology
- PD-L1 TPS ≥1%
- No sensitizing EGFR or ALK alterations
- ECOG PS 0 or 1
- No untreated or unstable CNS metastases
- No history of pneumonitis that required systemic corticosteroids

Stratification Factors

- Region (east Asia vs rest of the world)
- ECOG PS (0 vs 1)
- Histology (squamous vs nonsquamous)
- PD-L1 TPS (≥50% vs 1-49%)

Pembrolizumab 200 mg Q3W for up to 35 cycles

Carboplatin AUC 5 or 6 Q3W +
Paclitaxel 200 mg/m² Q3W^a
OR
Carboplatin AUC 5 or 6 Q3W +
Pemetrexed 500 mg/m² Q3W^a
for up to 6 cycles


End points

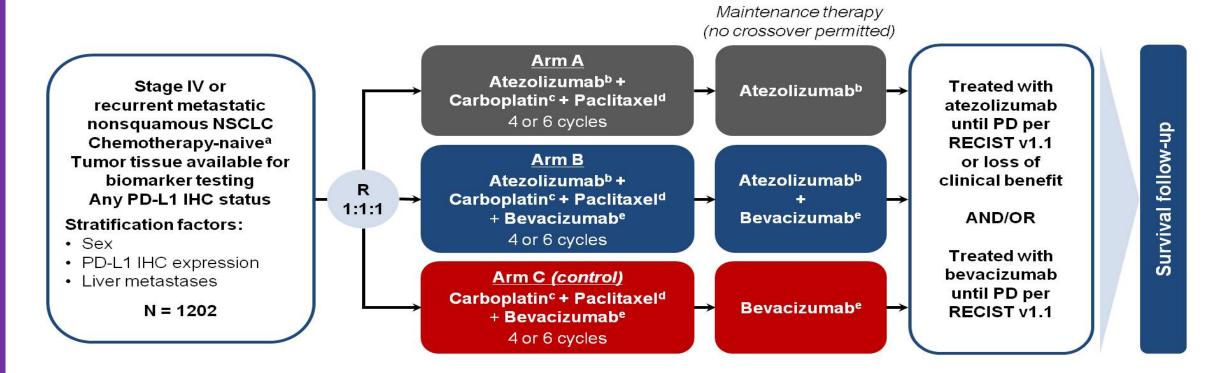
- Primary: OS in PD-L1 TPS ≥50%, ≥20%, and ≥1%
- Secondary: PFS and ORR in TPS ≥50%, ≥20%, and ≥1%; safety in TPS ≥1%

^aPemetrexed maintenance therapy was optional but strongly encouraged for patients with nonsquamous histology.

Overall Survival: TPS ≥1-49% (Exploratory Analysisa)

^aNo alpha allocated to this comparison.

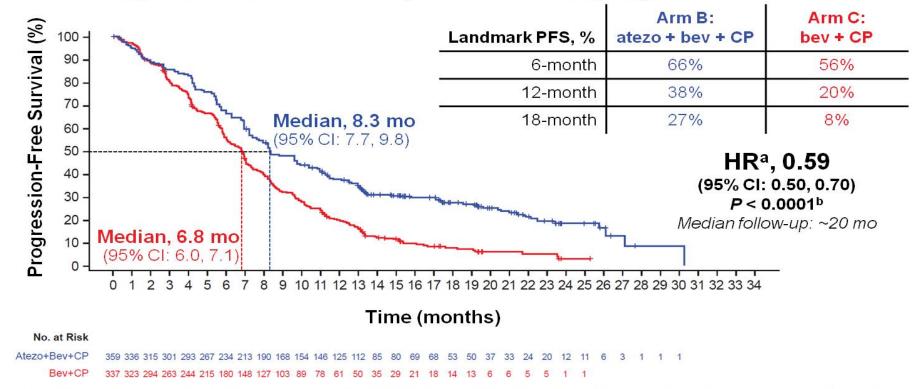
PRESENTED AT: 2018 ASCO ANNUAL MEETING


IMpower150: Overall Survival Analysis of a Randomized Phase III Study of Atezolizumab + Chemotherapy ± Bevacizumab vs Chemotherapy + Bevacizumab in 1L Nonsquamous NSCLC

Mark A. Socinski,¹ Robert Jotte,² Federico Cappuzzo,³ Francisco Orlandi,⁴ Daniil Stroyakovskiy,⁵ Naoyuki Nogami,⁶ Delvys Rodríguez-Abreu,⁷ Denis Moro-Sibilot,⁸ Christian A. Thomas,⁹ Fabrice Barlesi,¹⁰ Gene Finley,¹¹ Claudia Kelsch,¹² Anthony Lee,¹² Shelley Coleman,¹² Yijing Shen,¹² Marcin Kowanetz,¹² Ariel Lopez-Chavez,¹² Alan Sandler,¹² Martin Reck¹³

¹Florida Hospital Cancer Institute, Orlando, FL; ²Rocky Mountain Cancer Centers, Denver, CO and US Oncology, Houston, TX; ³Azienda Unità Sanitaria Locale della Romagna, Ravenna, Italy; ⁴Instituto Nacional del Torax, Santiago, Chile; ⁵Moscow City Oncology Hospital, Moscow, Russia; ⁶National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan; ⁷Complejo Hospitalario Univesitario Insular Materno-Infantil de Gran Canaria, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain; ⁸Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France; ⁹New England Cancer Specialists, Scarborough, ME; ¹⁰Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Marseille, France; ¹¹Allegheny Health Network Cancer Institute, Pittsburgh, PA; ¹²Genentech, Inc., South San Francisco, CA; ¹³Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany

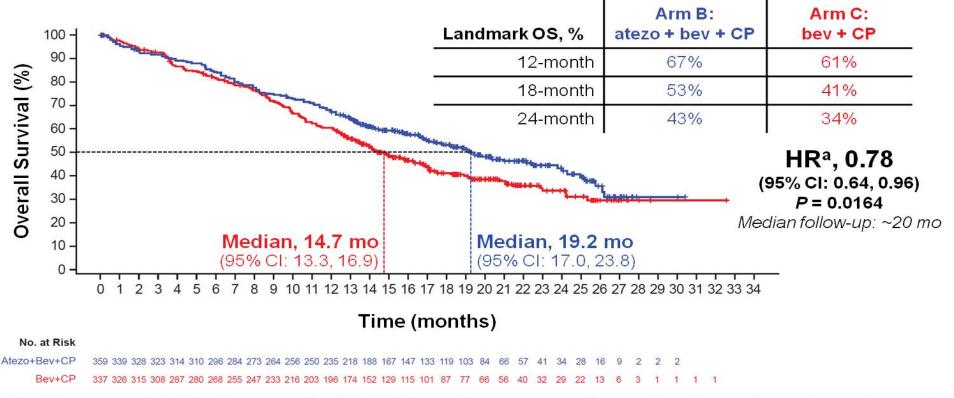
IMpower150 Study Design



^b Atezolizumab: 1200 mg IV q3w. ^c Carboplatin: AUC 6 IV q3w. ^d Paclitaxel: 200 mg/m² IV q3w. ^e Bevacizumab: 15 mg/kg IV q3w.

^a Patients with a sensitizing EGFR mutation or ALK translocation must have disease progression or intolerance of treatment with one or more approved targeted therapies.

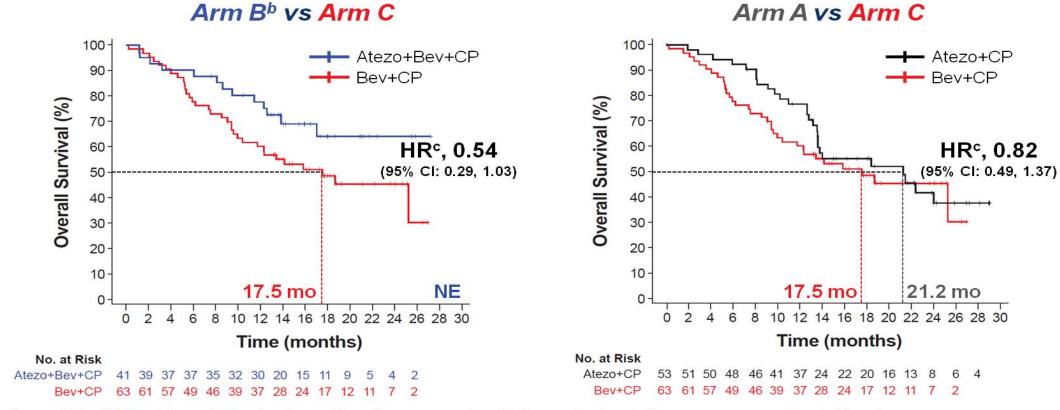
Updated PFS Analysis in the ITT-WT (Arm B vs Arm C)


Statistically significant and clinically meaningful PFS benefit with atezolizumab + bevacizumab + chemotherapy vs bevacizumab + chemotherapy was previously observed¹ and continued to improve with additional follow-up

^a Stratified HR. ^b For descriptive purposes only. Data cutoff: January 22, 2018 1, Reck M, et al. ESMO IO 2017 [abstract LBA1 PR].

#ASCO18
Slides are the property of the author, permission required for reuse.

OS in the ITT-WT (Arm B vs Arm C)



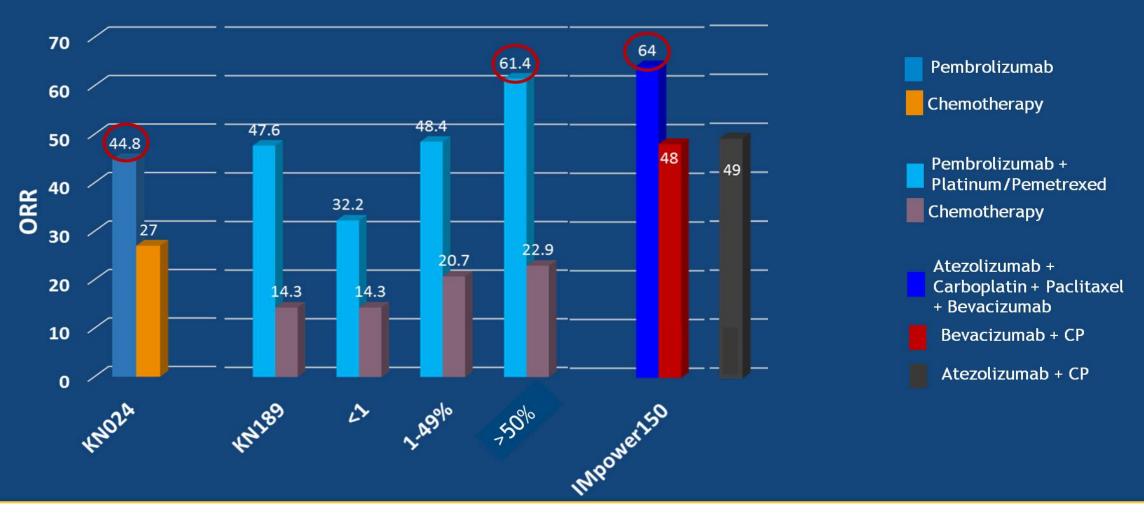
 Statistically significant and clinically meaningful OS benefit with atezolizumab + bevacizumab + chemotherapy vs bevacizumab + chemotherapy was observed

Stratified HR.
 Data cutoff: January 22, 2018

Addition of Bevacizumab to Atezolizumab and Chemotherapy Prolongs Survival of EGFR/ALK+ Patients^a

^a Patients with a sensitizing EGFR mutation or ALK translocation must have disease progression or intolerance of treatment with one or more approved targeted therapies.

^b One patient had *EGFR* exon 19 deletion and also tested *ALK* positive per central lab. ^c Unstratified HR. Data cutoff: January 22, 2018



#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr. Mark A. Socinski

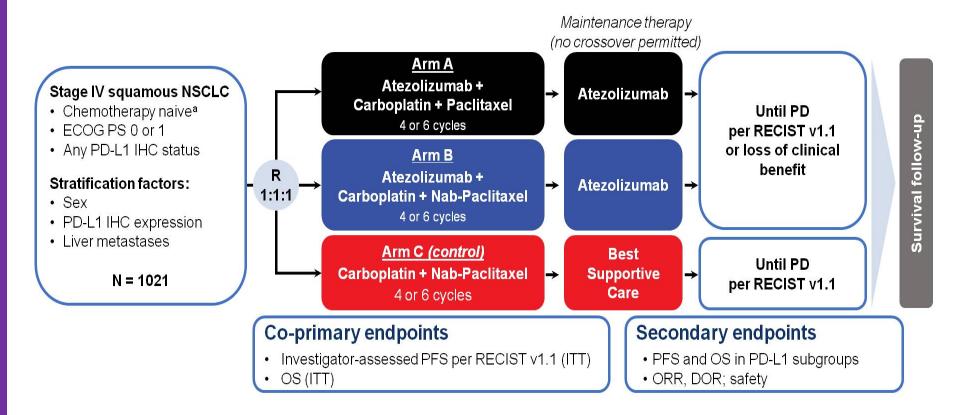
https://bit.ly/2Ld0jng

Chemotherapy does improve ORR

#ASCO18
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Melissa L. Johnson MD

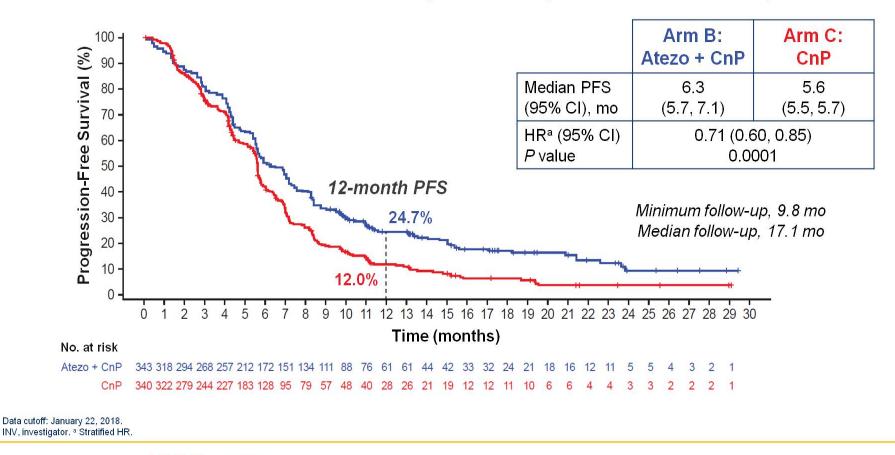
@MLJohnsonMD2


IMpower131: Primary PFS and Safety Analysis of a Randomized Phase III Study of Atezolizumab + Carboplatin + Paclitaxel or Nab-Paclitaxel vs Carboplatin + Nab-Paclitaxel as 1L Therapy in Advanced Squamous NSCLC

Robert Jotte,^{1,2} Federico Cappuzzo,³ Ihor Vynnychenko, ⁴ Daniil Stroyakovskiy,⁵ Delvys Rodriguez Abreu,⁶ Maen Hussein,⁷ Ross Soo,⁸ Henry J. Conter,⁹ Toshiyuki Kozuki,¹⁰ Carlos da Silva,¹¹ Vilma Graupner,¹² Shawn W. Sun,¹³ Ray Lin,¹³ Helen Jessop,¹² Marcin Kowanetz,¹³ Tien Hoang,¹³ Alan Sandler,¹³ Mark A. Socinski¹⁴

¹Rocky Mountain Cancer Centers, Denver, CO; ²US Oncology, Houston, TX; ³Azienda Unità Sanitaria Locale della Romagna, Ravenna, Italy; ⁴Sumy State University, Sumy, Ukraine; ⁵Moscow City Oncology Hospital, Moscow Healthcare Department, Moscow Oblast, Russia; ⁶Complejo Hospitalario Universitario Insular-Materno Infantil de Gran Canaria, Universidad de Las Palmas de Gran Canaria, Spain; ⁷Sarah Cannon Research Institute/Florida Cancer Specialists, Lady Lake, FL; ⁸Department of Haematology-Oncology, National University Hospital, Singapore; ⁹William Osler Health System, Brampton, ON, Canada; ¹⁰Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan; ¹¹Fundação Pio XII Institution – Cancer Hospital of Barretos, Barretos, São Paulo, Brazil; ¹²F. Hoffmann-La Roche, Ltd, Basel, Switzerland; ¹³Genentech, Inc., South San Francisco, CA; ¹⁴Florida Hospital Cancer Institute, Orlando, FL

IMpower131: Study Design



Atezolizumab 1200 mg IV q3w; carboplatin AUC 6 IV q3w; nab-paclitaxel 100 mg/m² IV qw; paclitaxel 200 mg/m² IV q3w.

^a Patients with a sensitising *EGFR* mutation or *ALK* translocation must have disease progression or intolerance to treatment with ≥ 1 approved targeted therapies. Testing for *EGFR* mutation or *ALK* translocation must have disease progression or intolerance to treatment with ≥ 1 approved targeted therapies. Testing for *EGFR* mutation or *ALK* translocation must have disease progression or intolerance to treatment with ≥ 1 approved targeted therapies. Testing for *EGFR* mutation or *ALK* translocation must have disease progression or intolerance to treatment with ≥ 1 approved targeted therapies.

INV-Assessed PFS in the ITT Population (Arm B vs Arm C)

PRESENTED AT:

#ASCO18
Slides are the property of the author, permission required for reuse.

KEYNOTE-407: Phase 3 Study of Carboplatin-Paclitaxel/Nab-Paclitaxel With or Without Pembrolizumab for Metastatic Squamous NSCLC

Luis Paz-Ares,¹ Alexander Luft,² Ali Tafreshi,³ Mahmut Gümüş,⁴ Julien Mazières,⁵ Barbara Hermes,⁶ Filiz Çay Senler,⁷ Andrea Fülöp,⁸ Jeronimo Rodriguez Cid,⁹ Shunichi Sugawara,¹⁰ Ying Cheng,¹¹ Silvia Novello,¹² Balazs Halmos,¹³ Yue Shentu,¹⁴ Xiaodong Li,¹⁴ Gregory M Lubiniecki,¹⁴ Bilal Piperdi,¹⁴ Dariusz Kowalski¹⁵

¹Hospital Universitario 12 de Octubre, Madrid, Spain; ²Leningrad Regional Clinical Hospital, St. Petersburg, Russia; ³Wollongong Hospital, Wollongong, NSW, Australia; ⁴Kartal Research and Training Hospital, Istanbul, Turkey; ⁵Centre Hospitalier Universitaire de Toulouse, Toulouse, France; ⁶Universitätskinikum Tübingen, Tuebingen, Germany; ⁷Ankara University, Ankara, Turkey; ⁸Országos Korányi TBC és Pulmonológiai Intézet, Budapest, Hungary; ⁹Oncology Center, Medica Sur Hospital, Mexico City, Mexico; ¹⁰Sendai Kousei Hospital, Sendai, Japan; ¹¹Cancer Hospital of Jilin Province, Changchun, China; ¹²University of Turin, Orbassano, Italy; ¹³Albert Einstein College of Medicine, Bronx, NY, USA; ¹⁴Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁵Maria Skłodowska-Curie Institute of Oncology, Warsaw, Poland

KEYNOTE-407 Study Design (NCT02775435)

Key Eligibility Criteria

- Untreated stage IV NSCLC with squamous histology
- ECOG PS 0 or 1
- Provision of a sample for PD-L1 assessment
- No symptomatic brain metastases
- No pneumonitis requiring systemic steroids

Pembrolizumab 200 mg Q3W +
Carboplatin AUC 6 Q3W +
Paclitaxel 200 mg/m² Q3W OR
nab-Paclitaxel 100 mg/m² Q1W

for 4 cycles (each 3 wk)

Pembrolizumab 200 mg Q3W for up to 31 cycles

Placebo (normal saline) Q3W +
Carboplatin AUC 6 Q3W +
Paclitaxel 200 mg/m² Q3W OR
nab-Paclitaxel 100 mg/m² Q1W
for 4 cycles (each 3 wk)

Placebo (normal saline) Q3W for up to 31 cycles

Stratification Factors

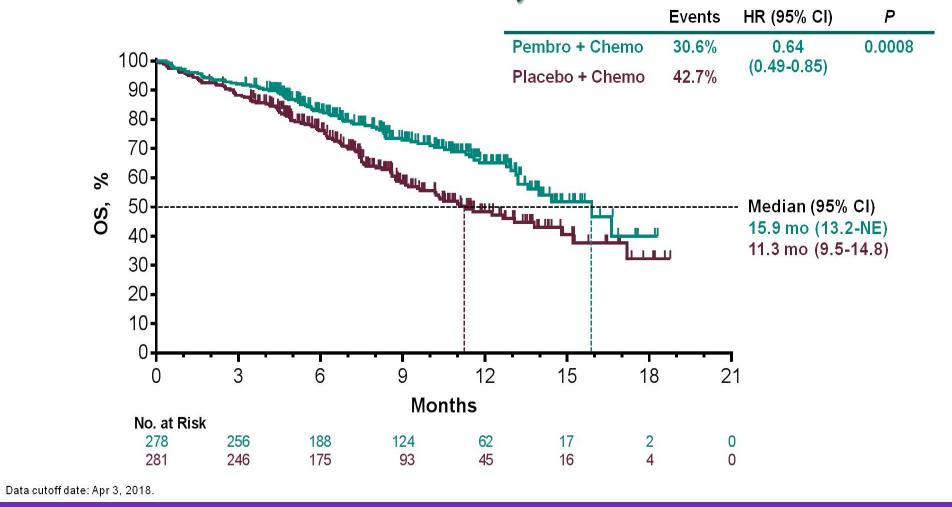
- PD-L1 expression (TPS^a <1% vs ≥1%)
- Choice of taxane (paclitaxel vs nab-paclitaxel)
- Geographic region (east Asia vs rest of world)

End points

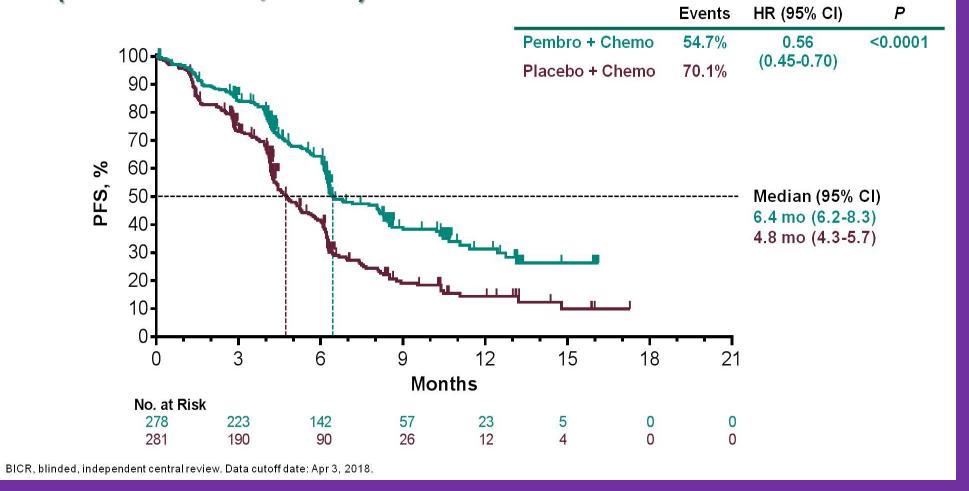
(1:1)

- Primary: PFS (RECIST v1.1, BICR) and OS
- Secondary: ORR and DOR (RECIST v1.1, BICR), safety

Optional Crossover^b


Pembrolizumab
200 mg Q3W

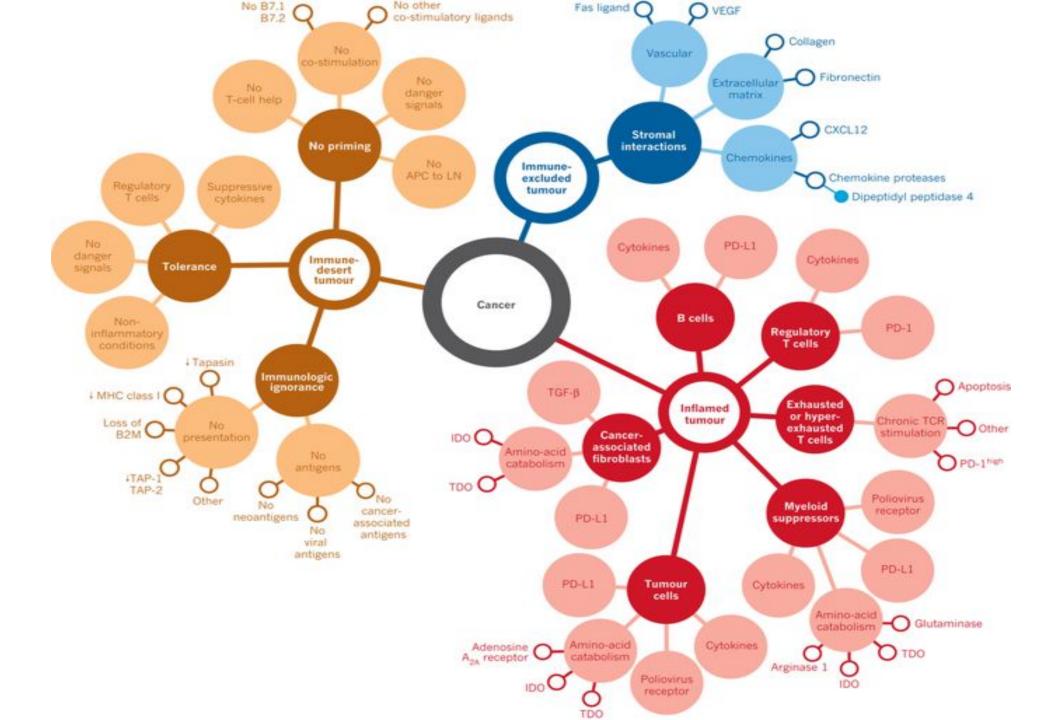
For up to 35 cycles


BICR, blinded independent central radiologic review. Percentage of tumor cells with membranous PD-L1 staining assessed using the PD-L1 IHC 22C3 pharmDx assay.

Patients could crossover during combination therapy or monotherapy. To be eligible for crossover, PD must have been verified by BICR and all safety criteria had to be met.

Overall Survival at IA2, ITT

Progression-Free Survival at IA2, ITT (RECIST v1.1, BICR)



Conclusions ASCO 2018

- KEYNOTE 042: Carbo/Pem vs Pembro [PD-L1 >1%].
 Better OS except group PDL-1: 1-49%
- IMPOWER 150: Carbo/Paclit/Bev/Atezo vs SOC.

 Better OS across all levels of PD-L1
- IMPOWER 131: (SQCC) Carbo/Nab-Pac/Atezo vs SOC Better PFS, potential new SOC
- KEYNOTE 407: (SQCC) Carbo/Paclit or Nab/Pembro vs SOC Better OS all PD-L1 groups (NEW SOC)
- Adds to KEYNOTE 189: Carbo/Pem/Pem for NSQCC and Checkmate 227: Ipi+Nivo better PFS for all in pts high TMB

What is new for Immunotherapy in NSCLC

- Deacetylase Inhibitors
- Vaccines (Heat shock Protein gp96)
- STK11/LKB1 and KEAP
- Cytokines
- Adenosine pathway
- Combination checkpoints
- Adoptive T cell therapies (TILs, TILs + anti Policy Together TCRs)
- B-catenin pathway

Stronger Together

Stronger Together

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

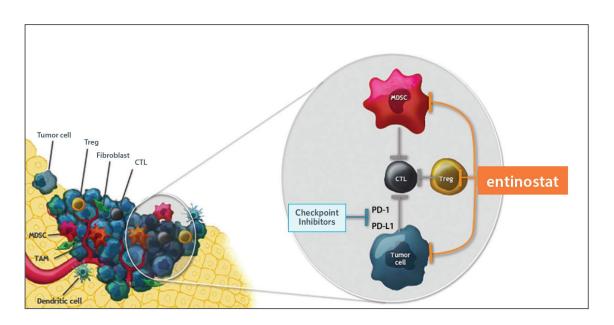
Efficacy/safety of entinostat and pembrolizumab in NSCLC patients previously treated with anti-PD-(L)1 therapy

Matthew D. Hellmann¹, Pasi A. Jänne², Mateusz Opyrchal³, Navid Hafez⁴, Luis E. Raez⁵, Dmitry Gabrilovich⁶, Fang Wang⁶, Peter Ordentlich⁷, Susan Brouwer⁷, Serap Sankoh⁷, Emmett Schmidt⁸, Michael L. Meyers⁷, Suresh S. Ramalingam⁹

¹Memorial Sloan Kettering Cancer Center, New York, USA, ²Dana-Farber Cancer Institute, Boston, MA, USA, ³Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA, ⁴Yale Cancer Center, New Haven, CT, USA, ⁵Memorial Cancer Institute, Pembroke Pines, FL, USA, ⁶The Wistar Institute, Philadelphia, PA, USA, ⁷Syndax Pharmaceuticals, Inc., Waltham, MA, USA, ⁸Merck & Co., Inc., Kenilworth, NJ, USA, ⁹The Winship Cancer Institute of Emory University, Atlanta, GA, USA

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada


INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

WCLC2018.IASLC.ORG

#WCLC2018

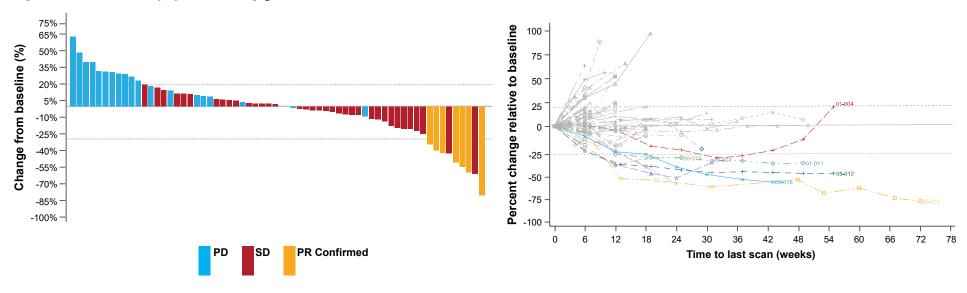
Treatment options are limited for patients with NSCLC whose disease has progressed on anti-PD-(L)1 therapy¹

- Entinostat (ENT) is an oral class I-selective histone deacetylase inhibitor²
- ENT leads to downregulation of immunosuppressive cell types in the tumor microenvironment²
- Synergy with anti-PD1 inhibition in preclinical models²
- Promising activity shown in combination with pembrolizumab in patients with melanoma and lung cancer^{3,4}

NSCLC, non-small cell lung cancer.

- 1. Zimmer L, et al. Eur J Cancer. 2017;75:47-55. 2. Orillion A, et al. Clin Cancer Res. 2017;23:5187-5201. 3. Agarwala SS, et al. Presented at ASCO 2018. Abstract 9530.
- 4. Gandhi L, et al. Presented at ASCO 2018. Abstract 9036.

IASLC 19th World Conference on Lung Cancer


September 23–26, 2018 Toronto, Canada

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

WCLC2018.IASLC.ORG

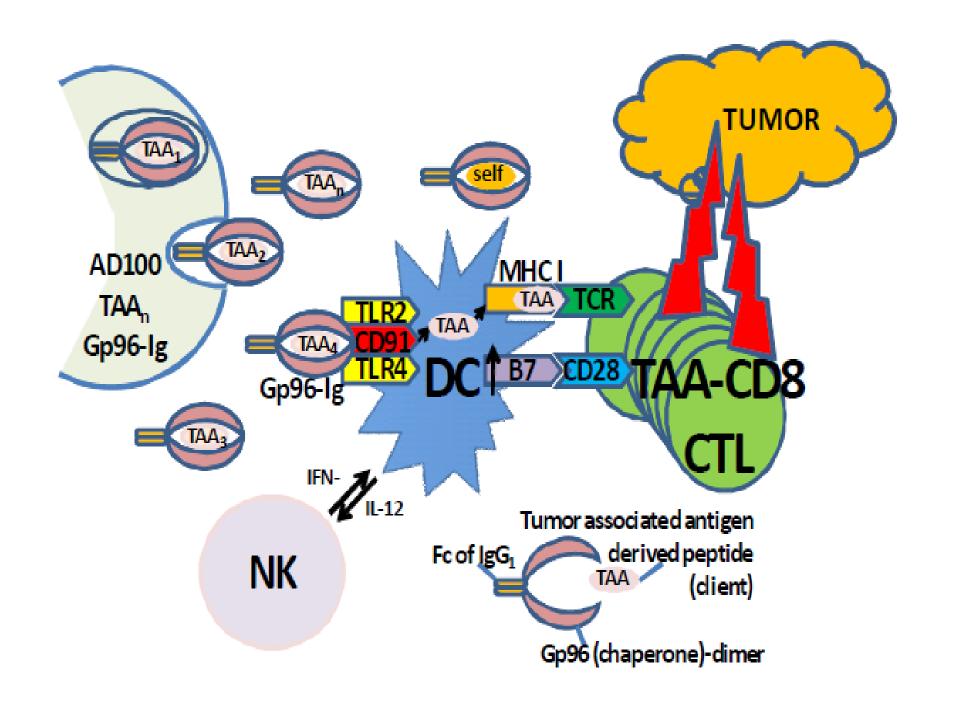
#WCLC2018

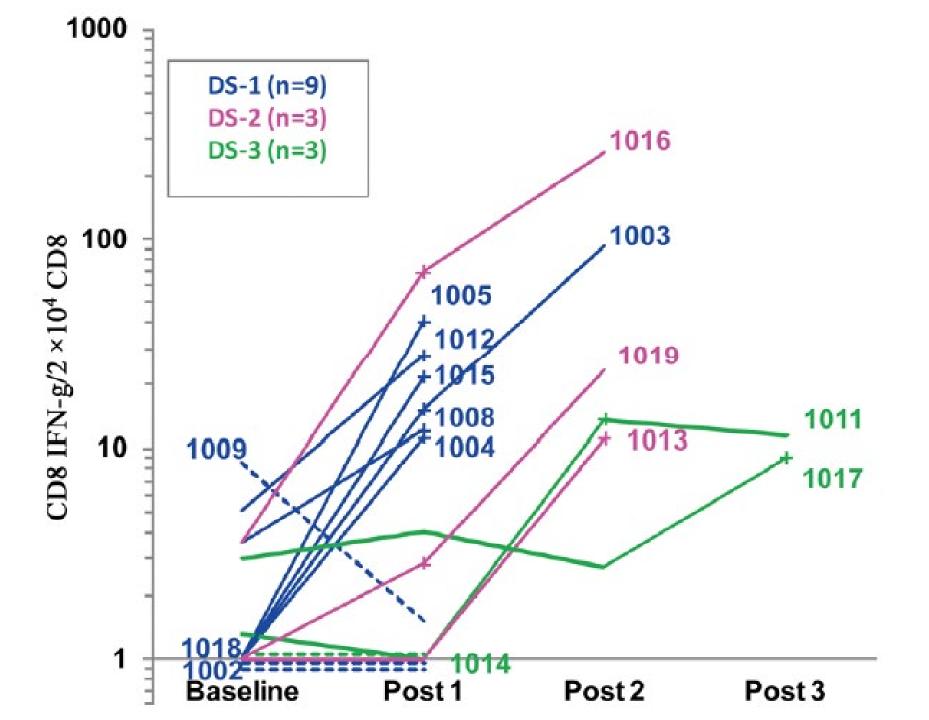
Durable responses were observed in patients who experienced progression on prior anti-PD(L)1 therapy

- Objective response rate with ENT + PEMBRO was 10% (7 of 72, 95% CI: 4-19%)
 - Median duration of response was 5.3 months
 - An additional 50% of patients achieved disease stabilization
- Median progression-free survival = 2.8 months (95% CI: 2.1-4.1)

CI, confidence interval; ENT, entinostat; PEMBRO, pembrolizumab; PD, progressive disease; PR, partial response; SD, stable disease.

CD8 T cell response in a phase I study of therapeutic vaccination of advanced NSCLC with allogeneic tumor cells secreting endoplasmic reticulum-chaperone gp96-Ig-peptide complexes*


Luis E. Raez¹, Gail R. Walker², Paulette Baldie¹, Eva Fisher³, Jorge E. Gomez¹, Khaled Tolba¹, Edgardo S. Santos¹, Eckhard R. Podack^{3#}


¹Department of Medicine, Division of Hematology/Oncology, University of Miami, Miller School of Medicine, Miami, USA

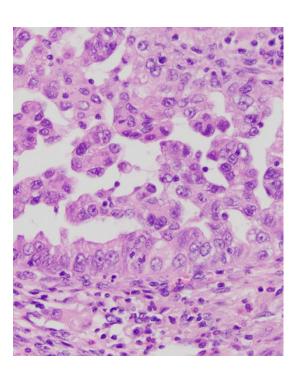
²Sylvester Comprehensive Cancer Center, Biostatistics Core Facility, University of Miami, Miller School of Medicine, Miami, USA

³Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, USA;

[#]Corresponding Author: epodack@miami.edu

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer


September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

STK11/LKB1 mutation

Enriched in KRAS-mutated adenocarcinomas
Generally exclusive of TP53 mutations
Associated with loss of LKB1 protein expression
A negative prognostic indicator
Promotes neutrophil recruitment and suppresses T cell activity

Calles et al. Clin Cancer Res. 2015 Jun 15;21(12):2851-60. Koyama et al. Cancer Res. 2016 Mar 1;76(5):999-1008.

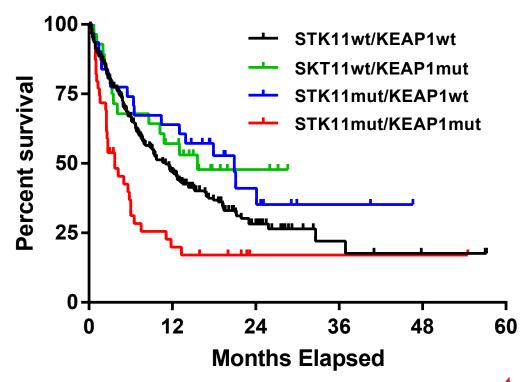
IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER


Retrospective single center analysis.

In 308 patients who have received PD-1/PD-L1 therapy (majority at ≥2nd line), those with STK11/KEAP1 mut (n=39):

- Were almost universally smokers
- Showed significantly worse OS and PFS than WT tumors

 despite significantly higher TMB than
 WT tumors (9.4 vs 6.1 mut/mb)
- In a separate cohort of tumors, STK11/KEAP1 mut and STK11mut/KEAP1WT patients have low PD-L1 expression

Overall Survival

Memorial Regional Hospital | Memorial Regional Hospital South | Joe DiMaggio Children's Hospital

Memorial Hospital West | Memorial Hospital Miramar | Memorial Hospital Pembroke