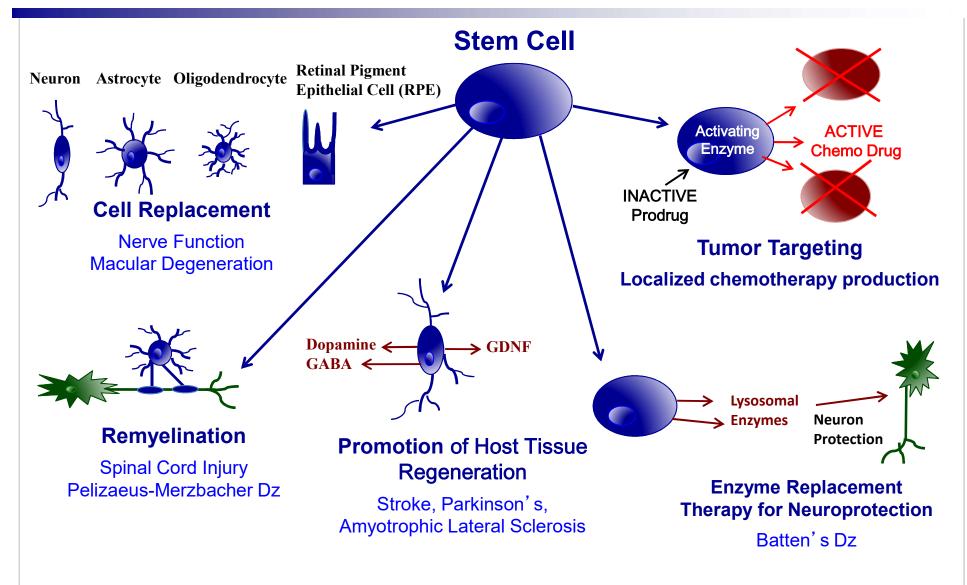


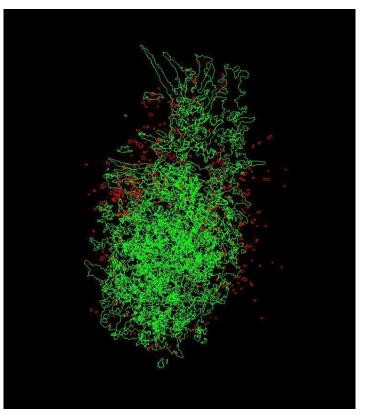
Neural Stem Cell-Based Anti-Cancer Gene Therapy for Gliomas


Jana Portnow, MD Associate Professor, Oncology Associate Director, City of Hope Brain Tumor Program **Disclosures**

None

Neural Stem Cell-Mediated CNS Therapies in Clinical Trials

Sources of NSCs: autologous; allogeneic: embryonic, adult; genetically-modified

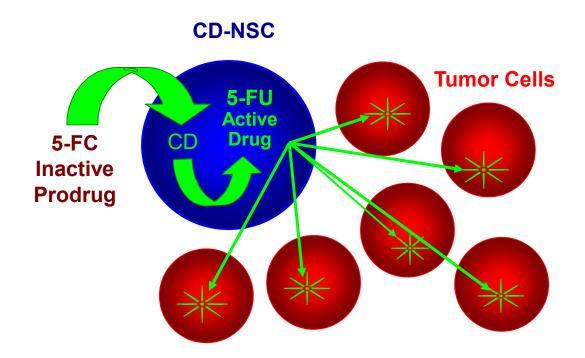

HB1.F3.C21 Neural Stem Cells

NSCs inherently tumor-tropic

V-myc immortalized to maintain stem-like properties, including the ability to migrate and remain undifferentiated

 Can be modified to deliver a therapeutic agent

Human NSCs can be used as vehicles for drug delivery to the brain



Green: U251 tumor in mouse brain Red: Di-I labeled NSCs administered intraventricularly

NSC-Mediated Enzyme/Prodrug Gene Therapy

Engineer NSCs to express enzyme that can activate a prodrug to an anti-cancer agent Administered NSCs localize to tumor sites

CD-NSC + 5-FC \rightarrow 5-FU Chemotherapy production localized to tumor sites

First-in-Human Study of a NSC-Mediated Anti-Cancer Therapy

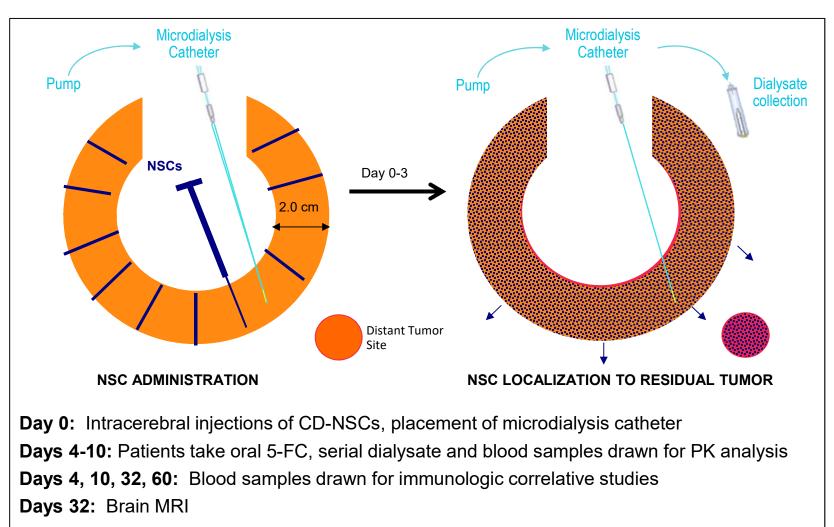
Primary Objective:

Determine the **safety and feasibility** of intracerebral administration of allogeneic genetically modified NSCs in combination with oral 5-FC in patients with recurrent high-grade gliomas.

Secondary Objectives:

Demonstrate proof of concept:

- > Conversion 5-FC to 5-FU by CD-expressing NSCs
- > NSC migration to tumor foci


Assess the immunogenicity of NSCs

Determine the fate of NSCs

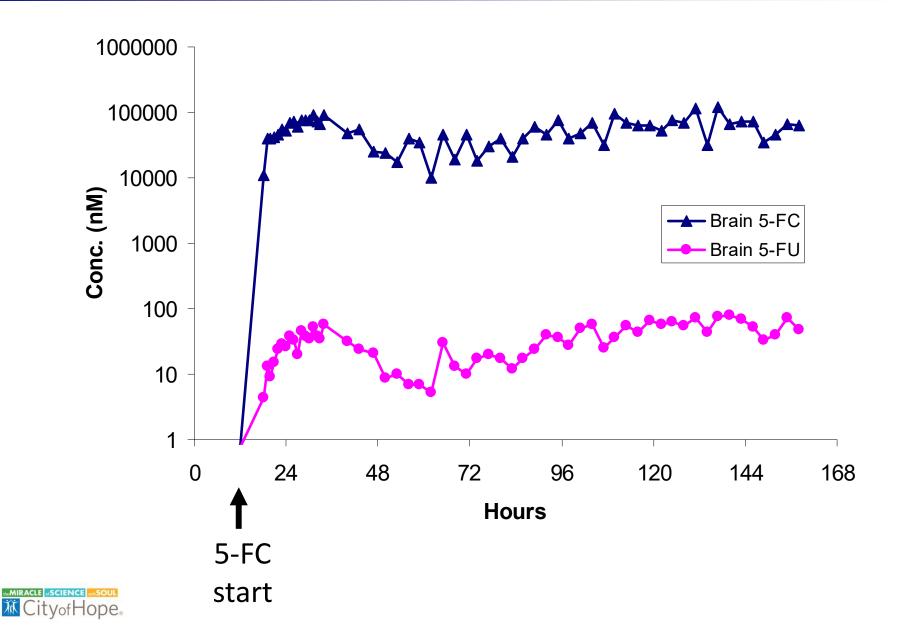
Funding: NIH/NCI R21 CA137639-01A1

First-in-Human Study of a NSC-Mediated Anti-Cancer Therapy

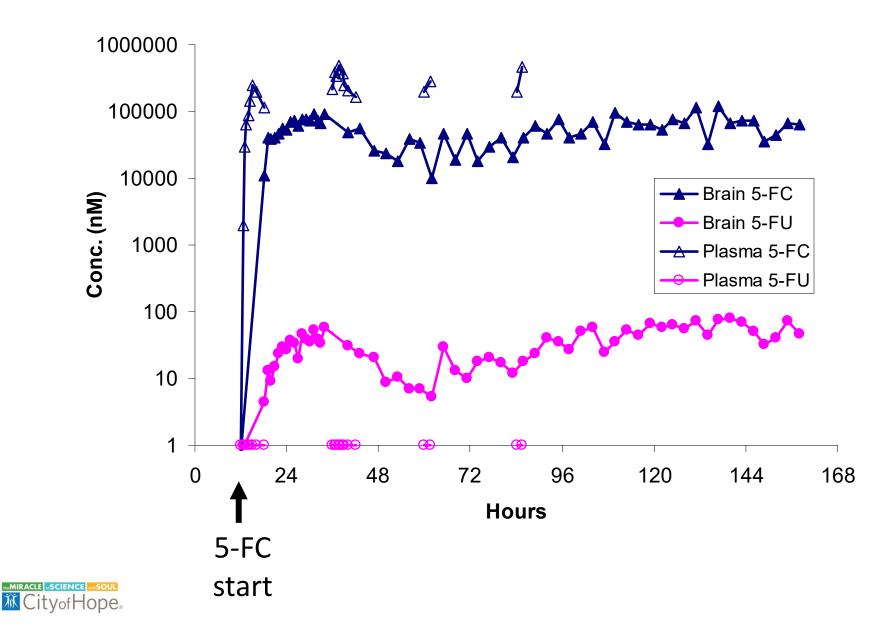
SURGICAL CAVITY

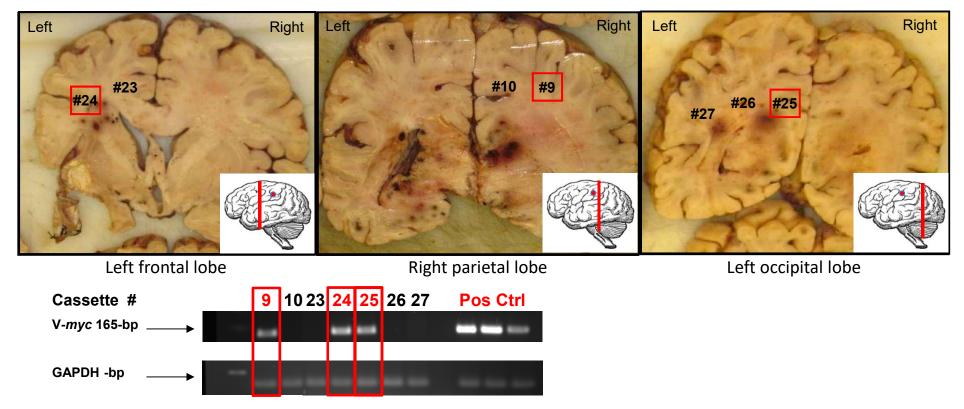
CityofHope

Portnow et al., Clin Cancer Res 2016


First-in-Human Study

Dose Level	CD-NSCs	5-FC (mg/kg /day)
1	10 x 10 ⁶	75
2	10 x 10 ⁶	150
3	50 x 10 ⁶	150


- 12 evaluable patients treated
- 1 dose limiting toxicity possibly related to 5-FC: grade 3 transaminitis
- Best response: stable disease for 5 months


Pt #4 5-FC & 5-FU in Brain

Pt #4 5-FC & 5-FU in Brain and Plasma

Evidence of NSC Migration to Distant Foci of Tumor

Nested PCR for *v-myc* (a marker for the CD-NSCs)

V-myc-positive areas (NSCs) were detected within tumor foci distant from the primary injection site in the right parietal lobe, including the opposite cerebral hemisphere.

Summary: First-in-Human Study of CD-NSCs + 5-FC

- Safety of 1 dose of intracranial HB1.F3.CD NSCs
- Proof of Concept conversion of prodrug to active drug by NSCs
- No humoral, CD4/CD8 T-cell or NK immunogenicity on first exposure
- Fate of NSCs (2 brain autopsies):
 - NSCs detected at tumor sites distant from injection site including within the contralateral hemisphere
 - No evidence of secondary tumors

Portnow et al, Clin Cancer Res 2016

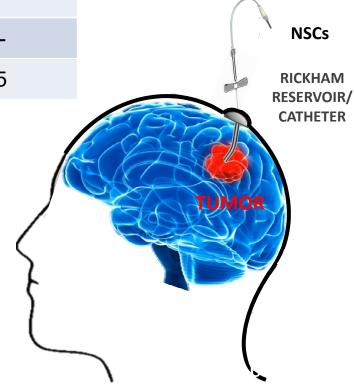
Phase I CD-NSC Study

Goals:

- Determine the maximum number (volume) of NSCs that can be administered intracranially.
- Feasibility of administering repeated doses of NSCs through a Rickham.
- Assess for possible immune responses developing after repeated exposure to these allogeneic NSCs.

Funding:R01 grant from the FDA Orphan Products Development ProgramCity of HopePhase One Foundation

Treatment Schema


3+3 dose escalation design

Dose Level	CD-NSCs	5-FC (mg/kg /day)	Leucovorin (mg q 6h)
1	50 x 10 ⁶	150	
2	100 x 10 ⁶	150	
3	150 x 10 ⁶	150	
4	150 x 10 ⁶	150	25

Treatment cycle: 28 days

CityofHope

- CD-NSCs administered intracranially via a Rickham on days 1 & 15
- 3 days after each CD-NSC dose
 5-FC (and leucovorin) administered orally every 6 hours x 7 days (on days 4-10 & 18-24)

Summary of Results

15 evaluable patients treated

Median age: 57 31% had recurrent grade 3 gliomas; 69% recurrent GBM.

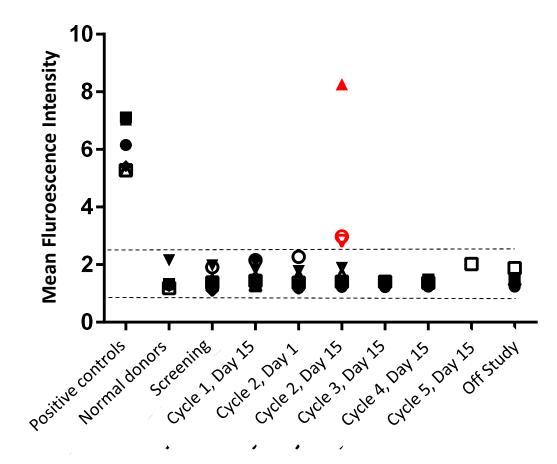
Safety

NSC dose of 150 million was well tolerated.

1 dose limiting toxicity: grade 3 catheter-related wound infection. Most common toxicity: grade 2 fatigue, thrombocytopenia, nausea.

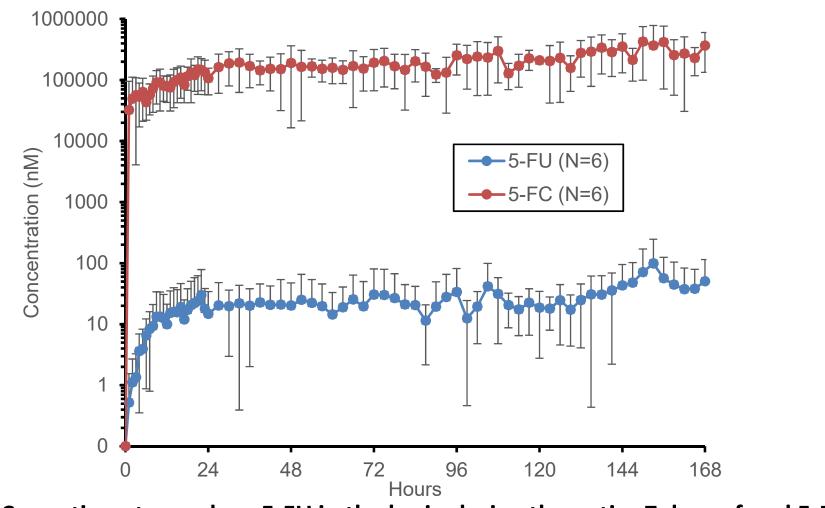
Median # of treatment cycles: 2 (range: 1-5).

PCR for V-myc: no evidence of NSCs in systemic circulation.


Testing for replication-competent retrovirus was negative.

Efficacy

2 patients had stable disease for 5 months.



Assessment for Development of Antibodies Against the NSCs

3 patients developed antibodies against the neural stem cells after the 3rd dose. No correlation with # of cycles administered or use of dexamethasone.

Microdialysis Data From Proximal Catheters

CD-NSCs continue to produce 5-FU in the brain during the entire 7 days of oral 5-FC.

Summary: Phase I Study of CD-NSCs + 5-FC

Safety of multiple doses of intracranial HB1.F3.CD NSCs

Feasibility of Rickham catheter to administer NSCs into the brain

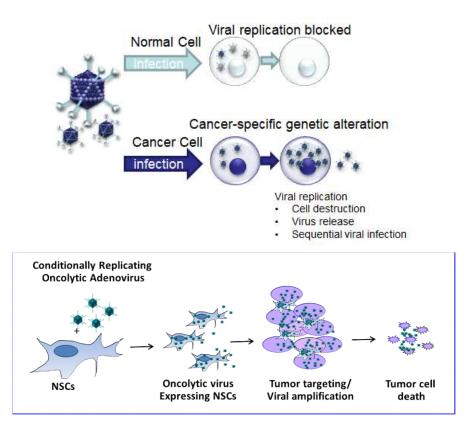
20% of patients developed anti-NSC antibodies with repeat exposure

Intracerebral microdialysis data

NSCs converted 5-FC to 5-FU in the brain throughout the entire 5-FC dosing interval.

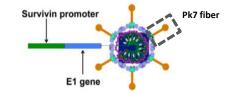
5-FU IC50 concentrations in brain not achieved at highest NSC dose. However, the cytotoxic effect of 5-FU is time-dependent, and the impact of continuous exposure to lower levels is TBD.

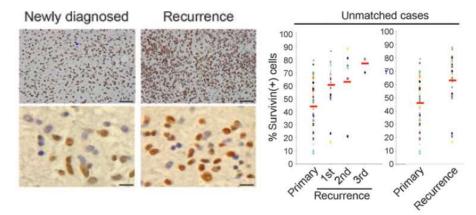
Future Directions


Neural stem cells as a platform technology for targeting anticancer agents to tumor cells in the brain

prodrug converting enzymes: CD, carboxylesterase (NCT02192359)
oncolytic viruses: CRAd-S-pk7 (NCT03072134)
Oligonucleotides (Cpg-STAT3)
monoclonal antibodies (HER2)
Immune modulators (IL-2)
Differentiating agents (Wnt-11, Twist, Snail)

NSC-Based Oncolytic Virotherapy

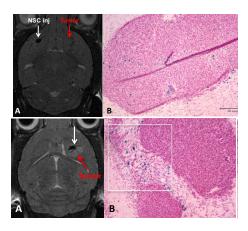

- Oncolytic viruses only infect tumor cells
- Kill infected cells by
 - overwhelming replication
 - eliciting a host anti-tumor immune response
 - Acting as a direct immunostimulant
- Viral progeny spreads throughout the tumor, subsequently infecting and lysing surrounding cancer cells
- CRAds Conditionally Replicative Adenoviruses
- CRAds can activate the immune system to induce anti-tumor immunity

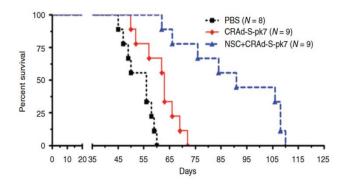

Rationale for CRAd-S-pk7

- CRAds specifically kill cancer cells while sparing normal cells based on exploitation of a tumor specific promoter
- The CRAd-S-pk7 selectively replicates in tumor cells expressing survivin

Viral element	Effect	
Survivin	Restricts viral replication in tumor cells	
E1 gene	Essential gene for viral replication	
Pk7 fiber	Enhances infectivity via integrin binding	

• Survivin expression is upregulated in recurrent GBM


Guvenc, H. et al. 2012 Clin Cancer Res



Rationale for NSC Delivery of CRAd-S-pk7

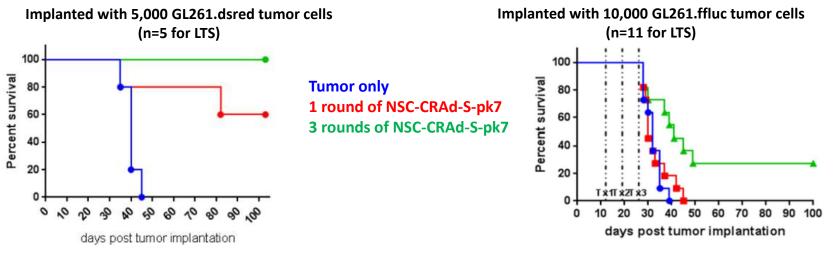
Advantages to using neural stem cells as delivery vehicle for oncolytic virus:

- NSCs protect the oncolytic virus from neutralizing antibodies en route to tumor sites
- NSCs deliver the oncolytic virus to multiple invasive tumor sites (crossing normal tissue) to <u>improve viral biodistribution</u>

Preliminary Clinical Data

• First-in-human study in newly diagnosed GBM patients (NCT 03072134)

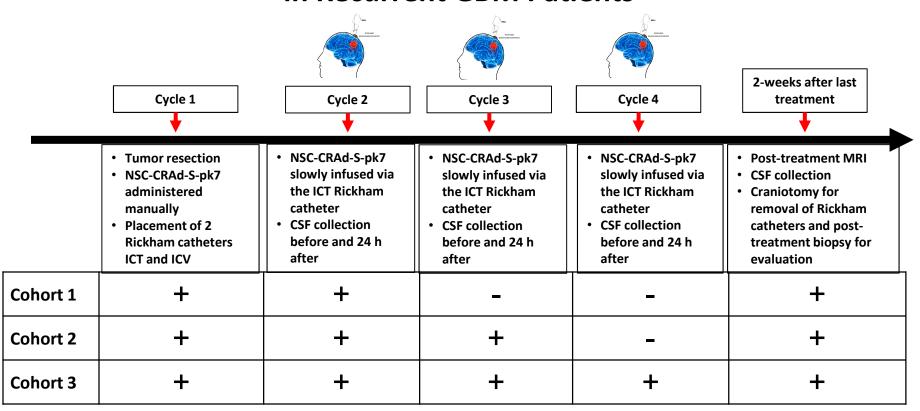
Assessing safety of a single dose of NSC-CRAd-S-pk7


Cohort	Number of NSCs injected	Total Viral Dose (vp/patient)	Number of participants registered	Number of DLTs
1	50 x 10 ⁶	6.25 x 10 ¹⁰	3	0
2	100 x 10 ⁶	1.25 x 10 ¹¹	3	0
3	150 x 10 ⁶	1.875 x 10 ¹¹	6	1

Clinical trial currently open at Northwestern University and COH

Preliminary Preclinical Data

Single versus multiple weekly doses of NSC-CRAd-S-pk7


PBS treatment: all non-treated mice died by day 48 1 Round of treatment: 3/5 mice were alive at day 100 3 Rounds of treatment: 5/5 mice were alive at day 100 PBS treatment: all non-treated mice died by day 40 1 Round of treatment: all mice died by day 47 3 Rounds of treatment: 4/11 mice alive at day 100

(Aboody, unpublished data)

Next Phase I Study

Assessment of Multiple Weekly Doses of NSC-CRAd-S-pk7 in Recurrent GBM Patients

Cycle = 1 week

City of Hope Brain Tumor Team

Behnam Badie, MD Chief, Neurosurgery Director, Brain Tumor Program

Jana Portnow, MD Neuro-Oncology Assoc. Director, Brain Tumor Program

Karen Aboody, MD Neurosciences

Timothy Synold, PharmD Clinical and Molecular Pharmacology

Mike Chen, MD, PhD Neurosurgery

Savita Dandapani, MD, PhD Radiation Oncology

Julie Ressler, MD Chief, Neuroradiology

Rahul Jandial, MD, PhD Neurosurgery

Massimo D'Apuzzo, MD, PhD Neuropathology

Eric Radany, MD, PhD Radiation Oncology

Neural Stem Cells Migrate to Tumor Cells

NSCs respond to multiple factors produced by tumor cells & the tumor microenvironment

Extracellular Matrix: Human GBM-derived ECM laminin > fibronectin > tenascin

<u>Hypoxia</u>: HIF-1α upregulated factors

<u>VEGF</u>: tumor neovasculature, angiogenic tumors

Soluble Factors: chemokines/cytokines, inflammation (IL-6, IL-8)

Tumor Ligands	NSC Receptors	
HGF (SF)	c-Met	
EGF	EGFR	
VEGF	VEGFR	
SCF	c-Kit	
SDF-1 (CCL12)	CXCR4	
MCP-1 (CCL2)	CCR2	
PDGF-A,B	PDGFRa	
UPA	uPAR	

Aboody et al, PNAS, 2000; Schmidt et al, Neoplasia, 2005; Ziu et al, J Neuro-Onc,2006; Kendall et al, Stem Cells, 2008; Zhao et al, Mol Canc Res, 2008; Gutova et al, Stem Cells, 2008; Zhao et al, Stem Cells, 2012

