Immediate loading Implants in esthetic zone

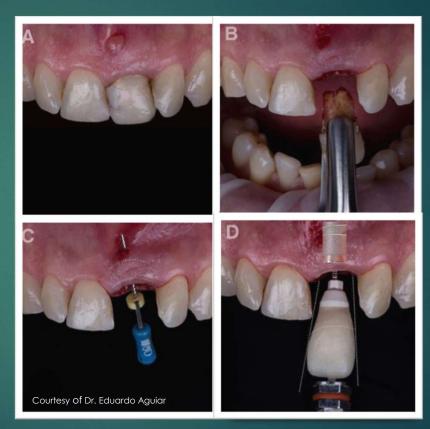
RICARDO POLANCO DDS
GENERAL PRACTICE RESIDENCY
UNIVERSITY OF MIAMI

UNIVERSITY OF MIAMI

MILLER SCHOOL of MEDICINE

Table of contents

- **▶**Introduction
- ▶Key factors for immediate loading
- Advantages and disadvantages
- Immediate loading technique
- ► Case Presentation
- ▶ Conclusion


Conventional loading:	Prosthesis connected to the dental implant > 2 months subsequent to implant placement.
Early loading:	Prosthesis connected to the dental implant between 1 week and 2 months subsequent to implant placement
Immediate loading: Esposito M, Grusovin MG, Willings M, Coulthard P, Worthington HV. Interventions for replacing	missing teeth: Different times for loading dental implants. Cochrane Database Systemic Review 2007

Immediate loading: is a non submerged, one stage surgery where loading of implants with provisional restoration is done at the same appointment or shortly

thereafter. Immediate LOADING IN IMPLANT DENTISTRY, Journal of Oral Implantology ,2004

Temporary Restoration Options

- **▶**Removable:
- Essix
- RPD
- ► <u>Fixed</u>:
- Maryland,
- Temporary crown

Table of contents

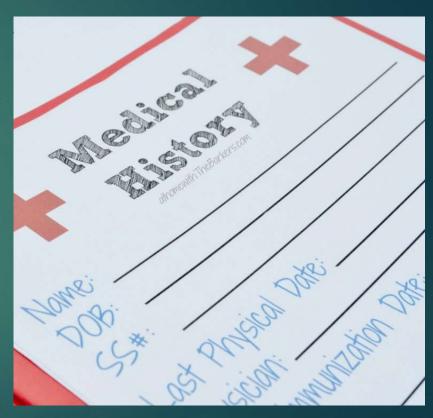
- **▶**Introduction
- Key factors for immediate loading
- Advantages and disadvantages
- Immediate loading technique
- **▶**Case Presentation
- **▶**Conclusion

Case Evaluation / Selection

- Review of medical Hx
- Dental Hx

(previous dental treatments, parafunctional habits)

► Intraoral examination


(soft tissue, ridge, occlusion, clearance)

▶ Image records

(BW, PA, Panorex, CBCT)

Diagnostic models

(mounted)

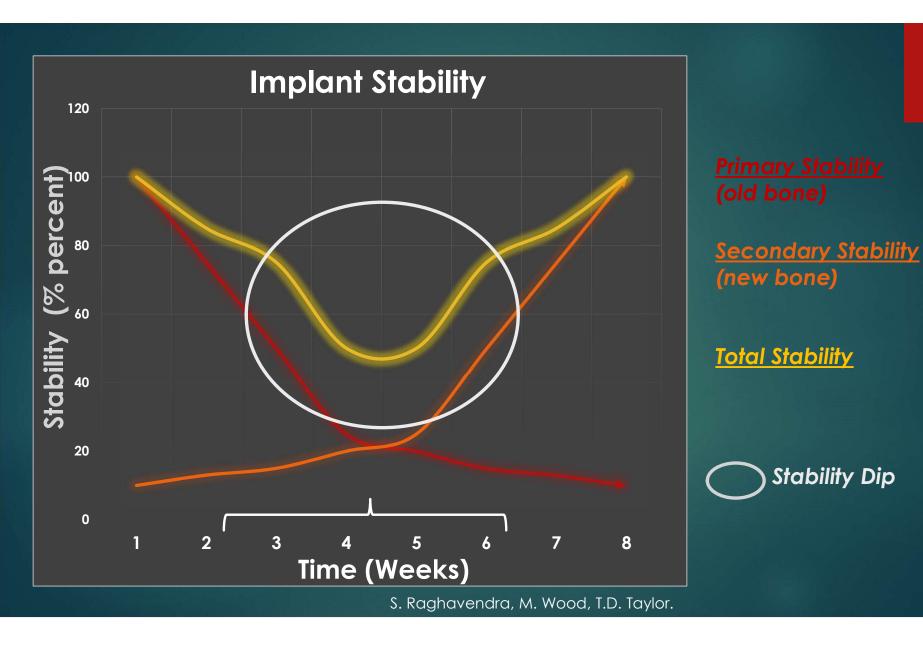
Key Factors for Immediate Loading

- ► Implant characteristics
- ▶ Bone quality and quantity

> INITIAL STABILITY

This is the key factor in deciding whether or not to load immediately.

Loading Protocols for Single-Implant Crowns: A Systematic Review and Meta-Analysis


Goran I. Benic, Dr Med Dent¹/Javier Mir-Mari, DDS²/Christoph H.F. Hämmerle, Prof Dr Med Dent³

						At	1 y
Study	Year of publication	Loading protocol	No. of implants	No. of implant drop-outs	Mean follow-up (y)	No. of failures	Survival rate
Crespi et al ⁵	2008	Immediate Conventional	20 20	0	2 2	0	100% 100%
De Rouck et al ¹⁰	2009	Immediate Conventional	24 25	0	1	1 2	96% 92%
Degidi et al ⁴	2009	Immediate Conventional	30 30	0	3 3	0	100% 100%
den Hartog et al ³	2011	Immediate Conventional	31 31	0	1.5 1.5	1 0	97% 100%
Donati et al ²²	2008	Immediate Conventional	50 57	0 2	1	1 0	98% 100%
Güncü et al ²³	2008	Immediate Conventional	12 12	0	1	1 0	92% 100%
Hall et al ¹²	2007	Immediate Conventional	14 14	1 2	1	1 0	92% 100%
Prosper et al ²⁴	2010	Immediate Conventional	60 60	0	5	2 2	97% 97%
Schincaglia et al ²⁵	2008	Immediate Conventional	15 15	0	1	1 0	93%
Shibly et al ⁶	2010	Immediate Conventional	30 30	1	2 2	1 2	97% 93%
Testori et al ²⁶	2007	Immediate Early	7 10	0	1	1 0	86% 100%

Immediate and conventional loaded implants are **equally successful** regarding implant survival and marginal bone loss.

This conclusion is primarily derived from studies evaluating implants inserted with a torque in the range of **20 to 45 Ncm** or a minimal ISQ in the range of 60 to 65.

228 Volume 29, Supplement, 2014

Table of contents

- **▶**Introduction
- Key factors for immediate loading
- Advantages and disadvantages
- Immediate loading technique
- **▶**Case Presentation
- **▶**Conclusion

Advantages and Disadvantages

- There is only one surgical procedure for the patient
- ▶ Immediate aesthetics results
- Better soft tissue shaping
- Papilla preservation
- More durable than a removable provisional (essix)
- No premature implant exposure associated with wearing a RPD

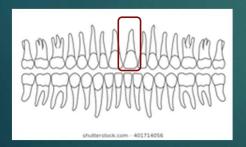
- Risk of early implant loss due to excessive loads
- It requires coordination between the surgeon and the restorative dentist
- ▶ Time consuming
- Technique sensitive, it requires skills and training
- Some material may become trapped under the tissue

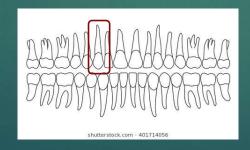
Table of contents

- **▶**Introduction
- Key factors for immediate loading.
- Advantages and disadvantages
- Immediate loading technique
- **▶**Case Presentation
- **▶**Conclusion

Immediate loading temporary crown

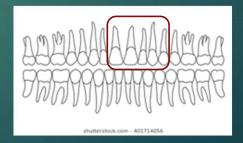
A fixed provisional is placed with no contact in centric occlusion or excursive movements.


We want to minimize any forces for the first eight weeks.


Case Presentation

Case Presentation

Single tooth
#9



Case 2
Single Tooth
#6

Case 3

5 units Bridge #8 to #12

Case 1 - Tooth #9

• Patient: Female

• Race: Hispanic

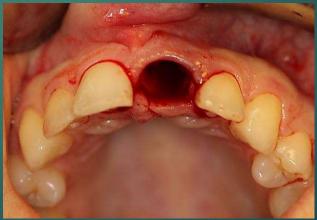
Age: 34 Years old

Allergies: not known allergies

Past dental Hx:

Hx of trauma

RCT was performed in 2014


Crown in 2015.

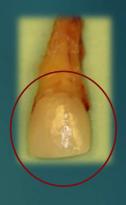
2018: Fistula associated with #9.

Dental Fracture

Extraction is indicated



Case 1 - Tooth #9



After 7 weeks:

- Healthy soft tissue
- Shaping soft tissue
- Better esthetics results

Before

After

Case 2 - Tooth #6

Patient : Male

Race: Afro American

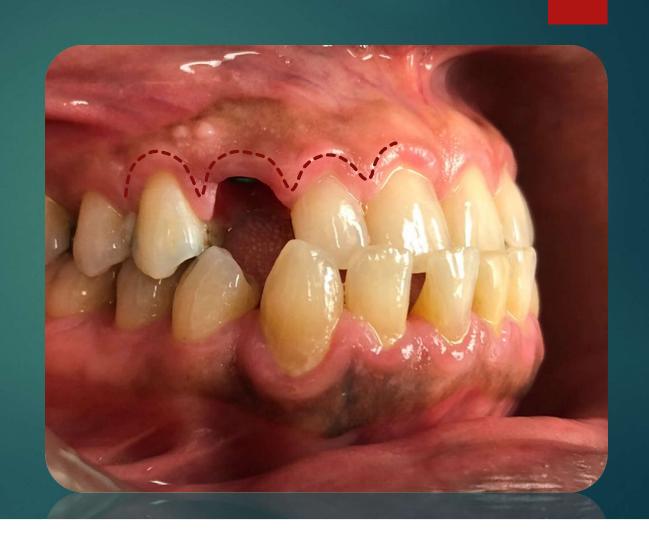
Age: 57 Years old

Allergies: not known

PMH: High blood pressure

Medication: Amlodipine

 Past dental Hx: Generalized chronic periodontitis, Mobility grade III in deciduous tooth "C"


Case 2 - Tooth #6

After 8 weeks

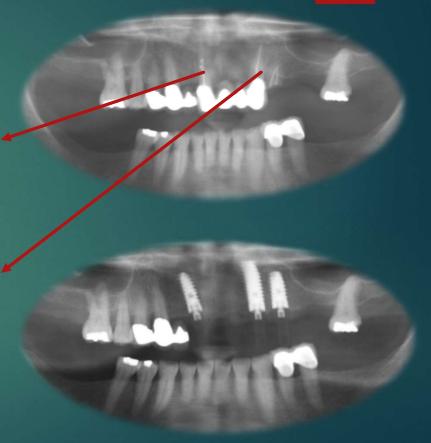
Case 3 - Bridge form #8-#12

Patient : Female

Race: Hispanic

Age: 56 Years old

Allergies: not known


PMH: High blood pressure

Medication: Amlodipine

 Dental Hx: Defective PFM non restorable bridge from tooth #8 to #11, retained root #12

Case 3 - Bridge form #8-#12

After 7 weeks

Conclusion

- Immediate loading may be a viable treatment option for cases requiring earliest restoration
- Better aesthetic results will be achieved
- This approach is considered technique sensitive and requires trained dental team for its execution
- Success rates are similar to those of the conventional loading when protocols are followed
- Proper treatment plan and follow-up of surgical and prosthetic protocols are extremely important
- Carefully patient / case selection, as well as surgical skill and prosthetic technique are the keys of success.

References

- ▶ 1.Guidelines on immediate loading in implants dentistry, Journal of Oral Implantology.2004
- ▶ 2.Turkyilmaz I. A comparison between insertion torque and resonance frequency in the assessment of torque capacity and primary stability of Brånemark System implants. J Oral Rehabil. 2006 Oct;33(10):754-9.
- ▶ 3.Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implant Res. 1996 Sep;7(3):261-7.
- 4.Wöhrle PS. Single-tooth replacement in the aesthetic zone with immediate provisionalization: fourteen consecutive case reports.
 Pract Periodontics Aesthet Dent. 1998 Nov-Dec;10(9):1107-14.
- ▶ 5.Rasmusson L, Kahnberg KE, Tan A. Effects of implant design and surface on bone regeneration and implant stability: an experimental study in the dog mandible. Clin Implant Dent Relat Res. 2001;3(1):2-8.
- 6.Stanford CM, Brand RA. Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J
 Prosthet Dent. 1999 May;81(5):553-61.
- ▶ 7.Romanos GE, Toh CG, Siar CH, Swaminathan D. Histologic and histomorphometric evaluation of peri-implant bone subjected to immediate loading: an experimental study with Macaca fascicularis. Int J Oral Maxillofacial Implants. 2002 Jan-Feb;17(1):44-51.
- ▶ 8.Garber DA, Salama MA, Salama H. Immediate total tooth replacement. Compend Contin. Educ. Dent. 2001 Mar;22(3):210-6, 218.
- 9.Barone A, Rispoli L, Vozza I, et al. Immediate restoration of single implants placed immediately after tooth extraction. J Periodontal. 2006 Nov;77(11):1914-20.
- ▶ 10.Cooper L, De Kok IJ, Reside GJ, et al. Immediate fixed restoration of the edentulous maxilla after implant placement. J Oral Maxillofacial Surg. 2005 Sep;63(9 Suppl 2):97-110.
- ▶ 11.The immediate loading of dental implants. Contin. Educ. Dent. 2007 Apr;28(4):216-25.
- 12.Esposito M, Grusovin MG, Willings M, Coulthard P, Worthington HV. Interventions for replacing missing teeth: Different times for loading dental implants. Cochrane Database Systemic Review 2007

Ricardo Polanco DDS.

General Practice Residency
University of Miami

UNIVERSITY OF MIAMI
MILLER SCHOOL
of MEDICINE

Division of
Oral Maxillofacial
Surgery & Dentistry

Immediate loading Implants in esthetic zone

RICARDO POLANCO DDS
GENERAL PRACTICE RESIDENCY
UNIVERSITY OF MIAMI

UNIVERSITY OF MIAMI

MILLER SCHOOL of MEDICINE

LITERATURE REVIEW

Survival Rate of Immediately vs Delayed Loaded Implants: Analysis of the Current Literature

Georgios Romanos, DDS, Dr med dent, PhD¹* Stuart Froum, DDS, MS² Cyril Hery, DDS² Sang-Choon Cho, DDS² Dennis Tarnow, DDS²

Romanos et al

TABLE 1					
Implant survival rates in immediately loaded implants*					
Study	Area	Loading Period	No. of Implants (Implant System)	ISR, %	
Ledermann ³²	Mdb	Up to 7 y	476 (Ledermann screw)	91.2	
Schnitman et al ³³	Mdb	Up to 10 y	28 (Branemark)	85.7	
Tarnow et al ³⁴	Mx/Mdb	2.5 y	69 (Branemark, Bonefit, Astra)	97.1	
Branemark et al ³⁵	Mdb	3 y	150 (Branemark)	98.0	
Chiapasco et al ³⁶	Mdb	2 y	40 (Branemark)	97.5	
Ericsson et al ⁶	Mx/Mdb	5 y	14 (Branemark)	85.7	
Buchs et al ³⁷	Mx/Mdb	2 y	142 (Altiva)	93.7	
Chow et al ⁵	Mdb	2 y	123 (Branemark)	98.3	
Grunder et al ³⁸	Mx/Mdb	2 y	91 (3i)	92.3	
Testori et al ¹⁸	Mdb	4 y	92 (3i)	98.9	
Rocci et al ¹¹	Mx	3 y	97 (Branemark)	90.7	
Degidi and Piattelli ³⁹	Mx/Mdb	Up to 7 y	93 (XiVE)	94.0	
Balshi et al ¹⁹	Mx	2.8 y	522 (Branemark)	99.0	
Glauser et al ²¹	Mx/Mdb	4 y	102 (Branemark)	97.1	
Van Steenberghe et al ²⁰	Mx	12 mo	43 (Branemark)	100.0	
Romanos and Nentwig ¹⁵	Posterior Mdb	2 y	36 (Ankylos)	100.0	
Total		3.58 v	2.118	94.9	

^{*}Mx indicates maxilla; Mdb, mandible; ISR, implant survival rate.

Immediately vs Delayed Loaded Implants

TABLE 2				
Implant survival rates in delayed loaded implants*				
Delayed Loading	Area	Loading Period, y	No. of Implants	ISR
Adell et al ²⁵	Mx/Mdb	15	2.768	81% (Mx) 91% (Mdb)
Albrektsson et al ²⁶	Mx/Mdb	5–7	8.139	84.9% (Mx) 99.1% (Mdb)
Zarb and Schmitt ²⁷	Mx/Mdb	5	262	88.55%†
Jemt and Lekholm ²⁸	Mx/Mdb	5	259	97.2%†
Branemark et al ²⁹	Mx/Mdb	10	882	79.3% (Mx) 90.5% (Mdb)
Lindquist et al ³⁰	Mdb	15	273	98.9%
Lazzara et al ³¹	Mx/Mdb	5	1.969	93.8% (Mx) 97% (Mdb)
Romeo et al ⁸	Mx/Mdb	7	759	94.7% (Mx) 95.98% (Mdb)
Total		8.85	15.311	91.68%

^{*}Mx indicates maxilla; Mdb, mandible; ISR, implant survival rate.

[†]Authors grouped maxilla and mandible together in results.

J Dent. 2014 Sep;42(9):1052-9. doi: 10.1016/j.jdent.2014.06.010. Epub 2014 Jul 1.

Immediate nonfunctional versus immediate functional loading and dental implant failure rates: a systematic review and meta-analysis.

Chrcanovic BR1, Albrektsson T2, Wennerberg A3.

Author information

- 1 Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden. Electronic address: bruno.chrcanovic@mah.se.
- 2 Department of Biomaterials, Göteborg University, Göteborg, Sweden.
- 3 Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden.

Abstract

OBJECTIVES: The purpose of the present review was to test the null hypothesis of no difference in the implant failure rates, postoperative infection, and marginal bone loss for patients being rehabilitated using dental implants with immediate nonfunctional loading (INFL) compared to immediate functional loading (IFL), against the alternative hypothesis of a difference.

METHODS: An electronic search without time or language restrictions was undertaken in March 2014. Eligibility criteria included clinical human studies, either randomized or not. The estimates of relative effect were expressed in risk ratio (RR) and mean difference (MD) in millimeters.

RESULTS: 1059 studies were identified and 11 studies were included, of which 7 were of high risk of bias, whereas four studies were of low risk of bias. The results showed that the procedure used (nonfunctional vs. functional) did not significantly affect the implant failure rates (P=0.70), with a RR of 0.87 (95% CI 0.44-1.75). The wide CI demonstrates uncertainty about the effect size. The analysis of postoperative infection was not possible due to lack of data. No apparent significant effects of non-occlusal loading on the marginal bone loss (MD 0.01mm, 95% CI -0.04-0.06; P=0.74) were observed.

CONCLUSIONS: The results of this study suggest that the differences in occlusal loading between INFL and IFL might not affect the survival of these dental implants and that there is no apparent significant effect on the marginal bone loss.

CLINICAL SIGNIFICANCE: There has been a controversy concerning whether dental implants should be subjected to immediate functional or nonfunctional loading. As the philosophies of treatment may alter over time, a periodic review of the different concepts is necessary to refine techniques and eliminate unnecessary procedures. This would form a basis for optimum treatment.

Copyright @ 2014 Elsevier Ltd. All rights reserved.

KEYWORDS: Dental implants; Functional loading; Immediate loading; Implant failure rate; Marginal bone loss; Meta-analysis; Nonfunctional loading

PMID: 24995809 DOI: 10.1016/j.jdent.2014.06.010

[Indexed for MEDLINE]

J Prosthet Dent., 2018 Apr 24. pii: S0022-3913(18)30002-7. doi: 10.1016/j.prosdent.2017.12.006. [Epub ahead of print]

Immediate versus early loading of single dental implants: A systematic review and meta-analysis.

Pigozzo MN1, Rebelo da Costa T2, Sesma N3, Laganá DC3.

Author information

Abstract

STATEMENT OF PROBLEM: Patients prefer to be rehabilitated as soon as possible if the risk of implant failure is not increased. However, whether immediate loading of single implants is riskier than early loading is not clear.

PURPOSE: This systematic review and meta-analysis investigated whether the immediate loading protocol has more clinical disadvantages than the early loading protocol for single dental implants in terms of the marginal bone loss and survival rate of single implant crowns.

MATERIAL AND METHODS: Two reviewers conducted an advanced electronic database search, with no language or date restriction, in Medline/PubMed, Embase, and the Cochrane Library up to May 2016. Studies were chosen by title and abstract for screening in accordance with the following inclusion criteria: dental implants studies; cohort studies (prospective and retrospective) and randomized controlled trials; samples involving partially edentulous patients; immediate loading implants; early loading implants; and n≥10 participants.

RESULTS: Of the 5710 studies initially identified, 5 fulfilled the inclusion criteria. A meta-analysis yielding risk differences (RD) and mean differences (MD) with a 95% confidence interval (CI) was performed. The trials included showed no significant differences between early and immediate loading protocols in single implant crowns with regard to survival rate at 1 and 3 years (RD, -0.00; 95% CI, -0.04 to 0.04; P=.990 for 1 year and P=.980 for 3 years) or marginal bone loss at 1 year (MD, 0.09; 95% CI, -0.02 to 0.19; P=.110) and 3 years (MD, -0.23; 95% CI, -0.47 to 0.01; P=.060).

CONCLUSIONS: This systematic review showed no significant differences between early and immediate loading protocols in single implant crowns with regard to survival rate or marginal bone loss at 1 or 3 years.

Copyright @ 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

PMID: 29703670 DOI: 10.1016/j.prosdent.2017.12.006

Delayed loading	Limited Primary stability	Loading after bone formation	Loading 6- 12 months Bone of low density Bone grafting Limited PS
Conventional loading	Primary stability	Loading after osteogenesis and woven bone remodeling	Loading 3-6 months Submerged or non submerged
Early loading	Primary stability	Loading after onset of osteogenesis, prior to osseointegration	Loading after 48-72 hours , no later than 3 months
Immediate loading	Enhanced primary stability	No osseointegration	

The immediate loading of dental implants. Compend Contin Educ Dent. 2007

Immediate loading: is a non submerged, one stage surgery where loading of implants with provisional restoration is done at the same appointment or shortly thereafter. IMMEDIATE LOADING IN IMPLANT DENTISTRY, Journal of Oral Implantology, 2004