Update on Chronic Myeloid Leukemia Javier Pinilla-Ibarz MD, PhD Senior Member Malignant Hematology Department H. Lee Moffitt Cancer Center

What is new in CML

- Bosutinib indicated as new front line TKI: 2y follow up.
- Ponatinib, long term follow up: PACE 5 years.
- Treatment free remission get on a TKI label: ENEStop, ENESTfreedom.

CML. The Past and Today

Parameter	Before 2000	Today
•Course	Fatal	Indolent
Prognosis	Poor	Excellent
10-yr survival	10%	84 - 90%
Frontline Rx	Allo SCT;	Imatinib; dasatinib;
	IFN-α	nilotinib;
		bosutinib
Second line Rx	?	Bosutinib, ponatinib
		; allo SCT

Looking for the perfect TKI for CML

- Very efficacious/ early molecular milestones .
- Low rate of transformation to AP/BC.
- Safety profile/Lack of long term side effects.
- Well tolerated: low rate of discontinuation. 30% on current TKIs at 5y
- Lower dose/optimal effects ratio

Factors Influencing Choice of First-Line Treatment

- Patient dependent.
 - Comorbid conditions
 - Risk stratification
 - Personal expectations
 - Education and compliance.
- TKI dependent
 - Efficacy and time to EMR
 - Side effects
 - Long term safety
 - Cost
- Phsysician dependent
 - Personal experience with the use of a certain TKI

BFORE: BOS vs IM in Frontline CML: Study Design

- Ongoing, open-label, phase 3 study
- Expected study duration of 5 years

Phase 3 Frontline clinical trials outcomes

Phase 3 Trial	ENESTND		DASISION		BFORE	
(Prim. Endpoint)	(MMR at 1 yr)		(CCyR by 1 yr)		(MMR at 1 yr)	
	Nilotinib	Imatinib	Dasatinib	Imatinib	Bosutinib	Imatinib
CCyR, by 1yr	80%	65%	77%	66%	77%	66%
EMR (3 mo)	91%	67%	84%	64%	75%	57%
MMR at 1 yr	44%	22%	46%	28%	47%	37%
by 5 yr	77%	60%	76%	64%	2y 62%	2y 53%
MR4.5 by 1 yr	11%	1%	5%	3%	8.1%	3.3%
by 5 yr	54%	31%	42%	33%		
Time to MMR (5 yr)	8.3 mo	14 mo	9.3 mo	15 mo		
Progression, % (n) 1 yr	<1% (2)	4% (11)	1.9% (5)	3.5% (9)	1.6% (4)	2.5% (6)
5 yr	<1% (2)	4% (12)	5% (12)	7% (19)		
OS by 1 yr	99.3%	99.3%	97%	99%	99.6%	97.9%
by 5 yr	93.7%	91.7%	90.9%	89.6%		
OS-CML, 5 yr, % (n)a	97.7% (6)	93.8%	(9)	(17)		
		(16)				
Disc Due to AE: 1 yr	5%	7%	5%	4%	13%	9%
5 yr	10%	12%	16%	7%	2yr 16%	2y 10%

Know Your Tools: Comparing TKI Toxicity in CML

lssue	Imatinib	Nilotinib	Dasatinib	Bosutinib	Ponatinib
Dosing	QD/BID, with food	BID, without food (2h)	QD, w/ or w/o food	QD, with food	QD, w/ or w/o food
Long term safety	Most extensive	Extensive; Emerging toxicity	Extensive; Emerging toxicity	Extensive, No emerging toxicity	More limited but increasing; Emerging toxicity
Heme toxicity	intermediate	least	Most severe; ASA-like effect; lymphocytosis	~dasatinb in 2 nd , 3 rd line; ~nilotinib in 1 st line	↑thrombocytopenia ASA-like effect
Non- Heme toxicity	Edema, GI effects, ∳Phos	↑lipase, ↑bili, ↑chol, ↑glu Black box: QT prolongation; screening req'd	Pleural / pericardial effusions	Diarrhea; transaminitis	↑lipase, pancreatitis; rash; hypertension; Black box: vascular occlusion, heart failure, and hepatotoxicity
Emerging toxicities	early question re: CHF; ?late renal effects	Vascular events (ICVE, IHD, PAD)	PAH (pulmonary arterial hypertension)	? Mild renal effects	Vascular events (ICVE, IHD, PAD, VTE)

CML Molecular Response Milestones

BCR-ABL1 (IS)	3 months	6 months	12 months	> 12 months
> 10%	YELLOW		RED	
1% - 10%	GREEN		YELLOW	RED
0.1% - 1%		GREEN		YELLOW
<u><</u> 0.1%			GREEN	

	Clinical Considerations	Treatment options
RED	Evaluate compliance and drug interactions Mutation testing	Switch to alternate TKI Consider screen for HSCT
YELLOW	Same as above	Consider switch to alternate TKI or continue (may increase dose of imatinib to 800 mg)
GREEN	Monitor response and toxicity	Continue same TKI

NCCN 2017 Guidelines

Algorithm for Frontline TKI Therapy in CML

Treatment History and Salvage Therapy – Likelihood of CCyR

Treatment History and Salvage Therapy – Likelihood of CCyR

PACE 5y: Estimated Duration of MCyR (Achieved by 12 Months) for CP-CML Patients

PACE 5y: Estimated Duration of MMR (Response at any Time) for CP-CML Patients

PACE 5y: Estimated PFS for CP-CML Patients

In patients with advanced phase leukemia:

- AP-CML (n=83): median PFS was 15.2 months (range, 1.4–69.0)
 - BP-CML/Ph+ ALL (n=94): median PFS was 3.0 months (range, 0.1–60.2)

Progression was defined as death, development of accelerated/blast phase– CML, loss of CHR in the absence of CyR, loss of MCyR, or increasing WBC count without CHR. Patients who did not demonstrate progression or loss of response were censored at the last response assessment date

PACE 5y: Estimated OS for CP-CML Patients

- In patients with advanced phase leukemia:
 - AP-CML (n=83): median OS was 55.5 months (range, 4.2–71.3)
 - BP-CML/Ph+ ALL (n=94): median OS was 6.9 months (range, 0.1–66.3)

PACE 5y: Summary of Exposure-Adjusted Incidence Rates for Newly Occurring AOEs^a

CP-CML Patients

All Patients

- Exposure-adjusted incidence of new AOEs did not increase over time
- Of all patients who had an AOE (n=111), 40 (36%) were ongoing at initiation of study closure

^a In the safety population; ^b Later intervals exclude patients with prior events; ongoing patients may have a different risk than those at study start

New TKIs Under Development

ТКІ	Features	Current status
ABL-001	Allosteric inhibitor	 Completed phase 1, single agent and combination Pivotal phase 3 3rd line v bosutinib started
Radotinib	2 nd generation	 Approved in South Korea 1st and 2nd line Pending studies elsewhere
PF-114	Ponatinib analog, not binding VEGFR	 Nearing MTD Starting phase 2
K0706	3 rd generation	 Phase 1 started

Why consider stopping a TKI in CML?

- TKI therapy is associated with reduced QOL
- High cost to patient and society
- Potential for long term toxicity
 - Cardiovascular
 - Pulmonary
 - Thyroid dysfunction
- Children and adolescents:
 - Substantial growth abnormalities
 - Effect on pregnancy/fertility

Long Term Follow Up From STIM

Etienne G. Journal of Clinical Oncology 35, no. 3 (January 2017) 298-305

Cumulative Incidence of Molecular Recurrence on STIM

Outcomes In Patients With Molecular Relapse

Table 2. MR Patient's Disposition, Treatment, and Molecular Status at the Last Date of Follow-Up					
	Patients $(n = 61)$		No. of Molecular Responses at Last Available Evaluation		
Patient Disposition and Treatment	No.	%	$\geq MR^{4.5}$	\geq MMR to $<$ MR ^{4.5}	< MMR
Alive with TKI therapy	43	70.5	34	6	3
Imatinib	31	50.8	28	2	1
Dasatinib	7	11.4	3	3	1
Nilotinib	4	6.5	3	1	0
Bosutinib	1	1.6	0	1	0
Alive without TKI therapy	14	22.9	10	3	1
Second or third TKI discontinuation*	9	14.7	8	1	0
Discontinuation for TKI-related AE	2	3.2	0	1	1
Without any TKI resumption	3	4.9	2	1	0
Death	4†	6.5	2	2	0

Abbreviations: AE, adverse event; MMR, major molecular response; MR, molecular response; MR^{4.5}, molecular response 4.5-log; TKI, tyrosine kinase inhibitor. *Twenty-one patients who had achieved a second sustained undetectable molecular residual disease (UMRD) of at least 1 year had a second treatment discontinuation as previously described.²¹ Of those patients, 13 had MR leading to treatment resumption, and eight were free from MR with a median follow-up of 11.6 months (range, 0.9 to 21.4 months) after second imatinib discontinuation and without TKIs at last follow-up. Among the 13 MR patients, four achieved a third sustained UMRD and one experienced a third treatment discontinuation without molecular recurrence at the last date of follow-up.

†One patient died as a result of pleural mesothelioma while receiving imatinib. The remaining three patients discontinued TKI therapy because of worsening concomitant disease leading to death (one patient case each of cerebral hemorrhage, metastatic gastric adenocarcinoma, and acute renal failure).

- 57/61 relapsed pts restarted TKIs
- 55 achieved second undetectable status median time 4.3 months
- No progression to AP/BP
- 14 now alive and off TKIs 10 in MR4.5
- 4 deaths none CML related

Etienne G. Journal of Clinical Oncology 35, no. 3 (January 2017) 298-305

Multivariate Analysis From STIM

- Two factors predictive of molecular relapse
 - 1. High-risk Sokal score at diagnosis
 - HR 2.22
 - 95% CI 1.11-4.42
 - P=0.024
 - 2. Imatinib duration \geq 58.8 months prior to discontinuation
 - HR 0.54
 - 95% CI 0.32-0.92
 - P=0.024

ENESTfreedom

Enrollment and Inclusion Criteria				
Total enrollment	n=215			
Minimum treatment duration required prior to discontinuation	≥3 years frontline nilotinib			
Minimum response required prior to discontinuation	Sustained MR ^{4.5} for at least 1 year			

 37.9% of nilotinib 300mg BID treated patients on ENESTnd met the inclusion criteria for attempting TFR on ENESTfreedom

Study Design

Primary Endpoint and Treatment-Free Survival

Kaplan-Meier Estimated Treatment-Free Survival^a

- 190 patients entered the TFR phase
- 51.6% of patients (95% CI, 44.1-58.9%) remained in TFR after 48 weeks

^a Defined as the time from the start of TFR until the earliest of any of the following: loss of MMR, reinitiation of nilotinib for any reason, progression to accelerated phase/blast crisis, or death due to any cause.

Hochhaus A. ASCO Annual Meeting 2016. Abstract #7001

EURO-SKI: Study Design

*In primary analysis of 868 preregistered pts.

[†]MR⁴, defined as detectable BCR-ABL \leq 0.01%, or undetectable BCR-ABL in samples with \geq 10,000 ABL or \geq 24,000 GUS transcripts, respectively.

Primary endpoint: molecular recurrence (BCR-ABL > 0.1%, ie, loss of MMR)

- Largest TFR study to date
- Goal was to establish criteria for TKI discontinuation

Sauselle S, et al. ASH 2017. Abstract 313.

EURO-SKI: Patient Population

- N = 821 pts recruited
 - Male: 52%
 - Median age: 60 yrs (range: 19-90)
 - 448 imatinib treated patients
- N = 755 included in MRFS analysis
 - MMR loss after TKI cessation: n = 371 (49%)
 - TKI restarted in MMR: n = 13 pts
 - Death in MMR: n = 4 pts

EURO-SKI: Molecular Recurrence-Free Survival

Month	Pts at Risk, n	MRFS, % (95% CI)
6	457	61 (58-65)
12	396	55 (51-58)
18	333	52 (49-56)
24	219	50 (47-54)
36	31	47 (43-51)

EURO-SKI: Cutoffs for MMR at 6 Months

- Cutoffs for 6-mo probability of MMR loss (minimal *P* value approach)
 - TKI (imatinib) cutoff: 5.8 yrs
 - MMR loss if discontinued at ≤ 5.8 yrs: 57% (95% CI: 48% to 64%)
 - MMR loss if discontinued at > 5.8 yrs: 34% (95% CI: 29% to 39%)
 - MR⁴ cutoff: 3.1 yrs
 - MMR loss if MR⁴ duration ≤ 3.1 yrs: 56% (95% CI: 47% to 64%)
 - MMR loss if MR⁴ duration > 3.1 yrs: 38% (95% CI: 33% to 44%)

EURO-SKI: Conclusions

- Study defined stopping criteria for TKI cessation in CML patients who achieve durable deep MR
- Preferred cutoffs for 6-mo probability of MMR loss
 - TKI duration: 5.8 yrs
 - MR⁴ duration: 3.1 yrs
- Probability of TFR increased almost linearly per each additional year of first-line imatinib and duration of MR⁴

ENESTop Study Design

First year: RQ-PCR every 4 weeks

^a Confirmed loss of MR^{4.5} was defined as *BCR-ABL1*^{IS} > 0.0032%, confirmed in a second assessment within 4 weeks.

^b The end of the study was 264 weeks after the last patient entered the TFR phase.

^c Confirmed loss of MR⁴ was defined as *BCR-ABL1*^{IS} > 0.01%, confirmed in a second assessment within 4 weeks.

Saglio G. ASH Annual Meeting. 2017. Abstract # 1598 Mahon F. ASCO Annual Meeting 2018

Treatment-Free Survival

Kaplan-Meier Estimated TFS^a 100-48-week TFR rate (primary endpoint): 57.9% (73/126)¹ 90-48-week TFS rate: 58.7% (95% CI: 49.6%-66.7%) Treatment-free survival (%) 80-96-week TFS rate: 56.2% (95% CI: 47.1%-64.4%) 70-144-week TFS rate: 52.0% (95% CI: 42.9%-60.4%) 60-50-40-30-20-Patients Events Censored 65 126 10-Censored observations 84 96 108 120 132 144 156 168 180 192 60 72 36 48 24 Time since TFR start (weeks) At risk:events 126:0 107:19 76:49 74:51 73:52 72:53 71:53 69:54 67:55 66:56 65:57 63:59 50:60 31:61 14:61

AP/BC, accelerated phase/blast crisis; CI, confidence interval; TFS, treatment-free survival.

Of 67 patients in TFR at 96 weeks, 6 were no longer in the TFR phase at 144 weeks

- 3 had confirmed loss of MR⁴ at 108, 120, and 144 weeks, respectively
- 2 died (respiratory failure and arthritis bacterial, respectively)
- 1 discontinued the study due to patient decision

A total of 61/126 patients had TFS^a events by the 144-week data cutoff, including 9 reported after the 48-week data cutoff^b

^a Defined as the time from the start of TFR until the earliest of any of the following: loss of MMR, confirmed loss of MR⁴, treatment re-initiation due to any cause, progression to AP/BC, or death due to any cause. ^b At the 48-week data cutoff, all patients had completed \geq 48 weeks of TFR, restarted nilotinib, or discontinued the study. 1. Mahon FX, et al. Ann Intern Med. 2018;168:461-470.

When to Restart?

Trial	Trigger to Restart TKI
STIM1	Loss of MMR or confirmed ≥1- log increase in BCR-ABL
STIM2	Loss of MMR or ≥1-log increase in BCR-ABL
TWISTER	Loss of MMR or two consecutive positive PCR values
A-STIM	Loss of MMR
LAST	Loss of MMR
EURO-SKI	Loss of MMR
KIDS	Confirmed loss of MMR
ENESTfreedom	Loss of MMR

Ross DM, et al. ASH Annual Meeting abstracts 2013. Mahon FX, *et al.* ASH Annual Meeting abstracts 2013 Mahon FX, *et al.* ASH Annual Meeting abstracts 2016 Atallah et al. ESH 2015 Choi SY et al. ASH Annual Meeting abstracts 2013. Rousselot P et al JCO 2013

Rates of regained molecular response

34

Summary of TFR studies

·	Treatment prior	No. of	Depth and duration	Trigger to	Median	Treatment-free
Study	to	patients	of MR required for	resume TKI	duration of	remission (TFR)
	discontinuation		discontinuation	therapy	follow-up	rate
STIM	Imatinib ± interferon	100	MR5.0 for at least 2 yrs	Loss of MR5.0	65 months	41% at 24 months
STIM2	Imatinib	124	MR5.0 for at least 2 yrs	Loss of MR5.0	12 months	61% at 12 months
TWISTER	Imatinib ± interferon	40	MR4.5 for at least 2 yrs	Loss of MR5.0	42 months	47% at 24 months
HOVON	lmatinib + cytarabine	15	MR4.5 for at least 2 yrs	Loss of MR4.5	36 months	33% at 24 months
A-STIM	Imatinib ± interferon	80	MR5.0 for at least 2 yrs	Loss of MMR	31 months	64% at 24 months 61% at 36 months
ISAV	Imatinib	112	CML for at least 18 months	Loss of MMR	22 months	52%
KIDS	Imatinib ± interferon	90	MR4.5 for at least 2 yrs	Loss of MMR	27 months	62% at 12 months 58.5% at 24 months
Stop 2G-TKI	Dasatinib /Nilotinib (1L or 2L)	52	MR4.5 for at least 24 months	Loss of MMR	12 months	61% at 12 months 57% at 24 months
DADI	Dasatinib (2L)	63	MR4.0 for at least 2 yrs	Loss of MR4.0	20 months	49% at 6 months
ENESTFreedom	Nilotinib (1L)	190	MR4.5 for 12 months	Loss of MMR	12 months	52%
ENESTop	Nilotinib (2L)	126	MR4.5 for 12 months	Loss of MR4.0 or Loss of MMR	35 months	52% at 36m
EuroSKI	Imatinib/Dasatinib/ Nilotinib (1L or 2L)	717	MR4.0 for at least 1 yr	Loss of MMR	10 months	53%

Discontinuation criteria for TKI therapy as per NCCN 2018

- Age ≥18 years.
- Chronic phase CML. No prior history of accelerated or blast phase CML.
- On approved TKI therapy (imatinib, dasatinib, nilotinib, bosutinib, or ponatinib) for at least three years.
- Prior evidence of quantifiable *BCR-ABL1* transcript.
- Stable molecular response (MR4; BCR-ABL1 ≤0.01% IS) for ≥2 years, as documented on at least four tests, performed at least three months apart.
- Access to a reliable qPCR test with a sensitivity of detection at least MR4.5 (BCR-ABL1 ≤ 0.0032% IS) and provides results within 2 weeks.
- Monthly molecular monitoring for one year, then every 6 weeks for the second year, and every 12 weeks thereafter (indefinitely) is recommended for patients who remain in MMR (MR3; *BCR-ABL1* ≤0.1% IS) after discontinuation of TKI therapy.
- Prompt resumption of TKI within 4 weeks of a loss of MMR with molecular monitoring every 4 weeks until MMR is re-established, then
 every 12 weeks thereafter is recommended indefinitely for patients who have reinitiated TKI therapy after a loss of MMR. For those who fail
 to achieve MMR after three months of TKI resumption, BCR-ABL1 kinase domain mutation testing should be performed, and monthly
 molecular monitoring should be continued for another six months.
- Consultation with a CML Specialty Center to review the appropriateness for TKI discontinuation and potential risks and benefits of treatment discontinuation, including TKI withdrawal syndrome.
- Reporting of the following to a member of the NCCN CML panel is strongly encouraged:
- Any significant adverse event believed to be related to treatment discontinuation.
- Progression to accelerated or blast phase CML at any time.
- Failure to regain MMR after three months following treatment reinitiation.

TKI Withdrawal Syndrome

– Diffuse musculoskeletal pain and joint pain

– Occurs in approximately 30% of patients after stopping TKIs

– Median duration 6 months

Lee et al. Haematologica. 2016 Jun;101(6):717-23. Richter et al. J Clin Oncol. 2014;**32**(25):2821–2823.

Financial Impact

- By 2050 the prevalence of CML will plateau at 180,000
- Current prevalence \cong 30,000 patients
- Current annual cost of TKIs \cong \$100,000
- Annual cost of drugs in the US \cong \$3,000,000,000
- If 25% of patients can discontinue treatment, this annual cost decreases to \cong \$2,250,000,000
- \$750,000,000 savings per year

Is Stopping TKI Realistic?

50% achieve MR4 or MR 4.5

50% restart TKI

70-80% of newly diagnosed patients with CML will need long term TKI therapy

Conclusions

- Most patients with chronic phase CML will do well with current therapy
- Stopping TKIs is ready for prime time
 - A select group of patients
 - With proper monitoring
- Multi-team approach is a key component to the success and safety of TFR

