Patient Derived Xenograft Models ---Clinical Applications

Chong-xian Pan, MD, PhD, MS

Professor of Medicine and Urology Co-Leader of Cancer Therapeutic Program University of California Davis School of Medicine UC Davis Comprehensive Cancer Center Sacramento, CA, USA

Staff Physician VA Northern California Health Care System Mather, CA

A Comprehensive Cancer Center Designated by the National Cancer Institute

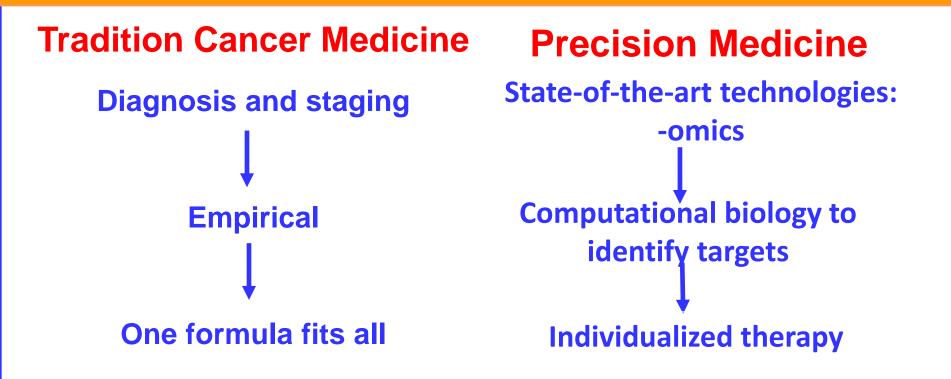
DISCLOSURE:

I have financial interest/arrangement or affiliation with

Name of Organization

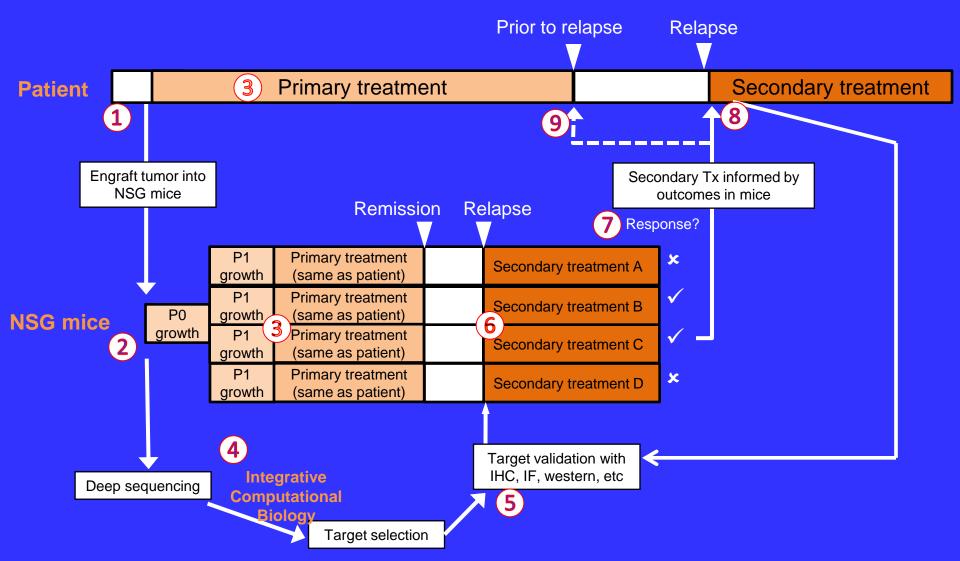
Accelerated Medical Diagnostics Inc LP Therapeutics Inc Pandomedx Inc

Relationship


Co-founder and shareholder Co-founder and shareholder Co-founder and shareholder

Four patents

- 1. Bladder cancer-specific ligand cQDGRMGFc for imaging detection, immunotherapy and targeted therapy of bladder cancer (filed. Inventors: <u>Chong-xian Pan</u>, Hongyong Zhang, Kit Lam and Olulanu Aina). US Patent application No. 61/245,492.
- 2. Leukemia stem cell-targeting ligand and methods of use. Ligands containing the LR(S/T) amino acid motif for targeted therapy and detection of acute myeloid leukemia. (filed. Inventors: <u>Chong-xian Pan</u> and Hongyong Zhang). Patent application No. 14/130,909.
- 3. Porphyrin-based cancer-targeting nanometer-scale micelles for photodynamic diagnosis and therapy (Inventors: Yuanpei Li, Kit S. Lam, <u>Chong-xian Pan</u>, Tzu-yin Lin). US Provisional patent Application No. 61/736,067.
- 4. Treatment of Drug Resistant Metastatic Prostate Cancer Using Niclosamide. (Inventors: Allen Gao, Chengfei Liu, Wei Luo and <u>Chong-xian Pan</u>). U.S. Patent Application No. 15/134,228



Tsimberidou et al: RR 12% with matched targeted therapy vs. 5% with unmatched therapy (Clin Cancer Res. 2014; 20:4827) Andre et al. RR 9% plus 21% stable disease with matched targeted therapy in breast cancer (Lancet Oncology, 2014; 15:267) Slides are the property of the author. Permission required for reuse.

Patient-derived models of cancer (PDMCs) for precision medicine

Slides are the property of the author. Permission required for reuse.

UCDAVIS

COMPREHENSIVE

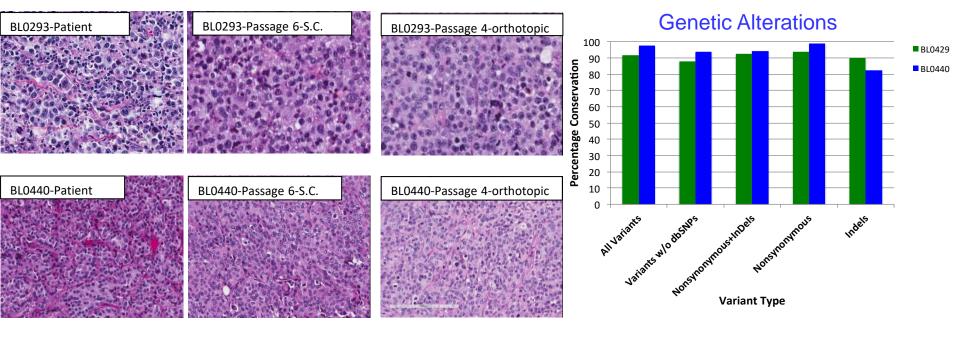
CANCER CENTER

PDXs for precision medicine *Features and applications of PDXs*

Special features:

- PDXs are directly derived from unselected uncultured clinical specimens
- PDXs are patient-specific
- PDXs and patient cancers have the same genetic background
- Many identical PDXs can be generated for repeated studies
- Frequent biopsies can be done to study resistance mechanisms

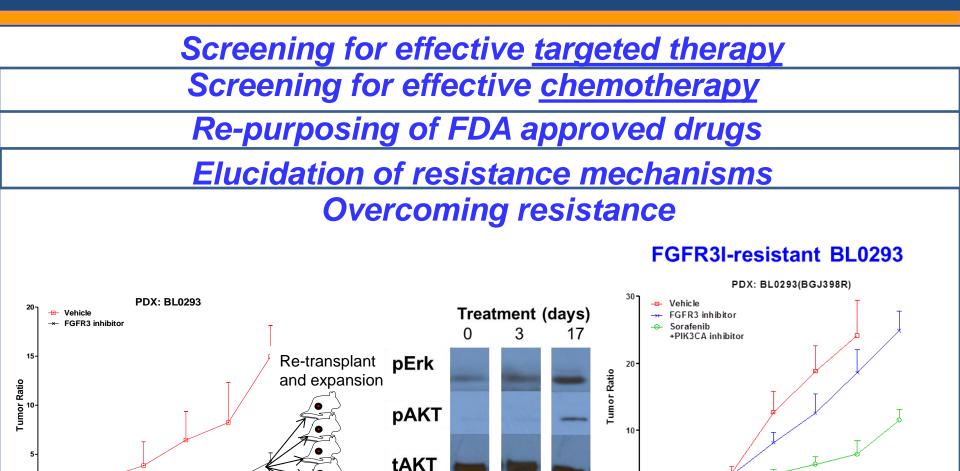
36 bladder cancer PDXs



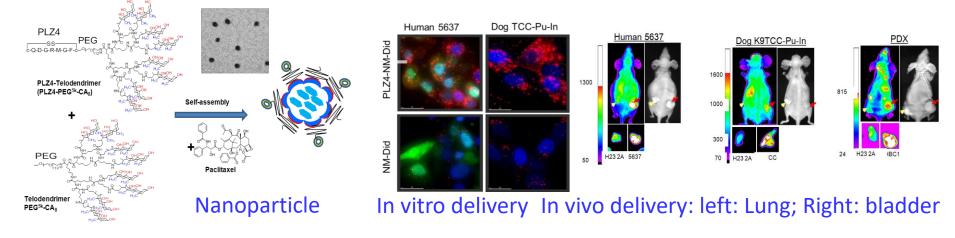
Clinical Charac	Clinical Characteristics of the donor patients								
Stages	Tumor ID	Age (yrs)	Stage	Surgery	Prior chemo				
	BL0269F	58	pT4 N0 Mx	Cystectomy	No				
	BL0293F	77	pT2a N2 Mx	Cystectomy	No				
	BL0307F	78	pT3b N2 Mx	Cystectomy	No				
	BL0382F	82	pT2 Nx Mx	TURBT	No				
	BL0428F	70	pT2 Nx Mx	TURBT	No				
	BL0429F	60	pT4a N3 M1	Cystectomy	No				
Myoinvasive	BL0479F	78	pT2b Nx Mx	Cystectomy	YES (carbo/gem/PTX)				
bladder	BL0440F	71	pT4a N2 Mx	Cystectomy	YES (gem/cis)				
cancer	BL0515F	78	pT3bN0Mx	Cystectomy	YES (Gem/Cis)				
	BL0545F	70	pT2 N0 Mx	Cystectomy	No				
	BL0601F	83	pT3 N0 Mx	Cystectomy	No				
	BL0629F	74	pT3 N0 Mx	Cystectomy	No				
	BL0645F	75	pT4a N2 Mx	Cystectomy	YES (MVAC)#				
	BL0648	71	pT4a N2 Mx	Cystectomy	No. AdenoCa				
	BL0262F	64	pTa High	TURBT	No				
	BL0364F	76	pTa Low	TURBT	No				
Non-myo-	BL0381F *	60	pTa High	TURBT	No				
invasive	BL0398F *	60	pT1 No Mx	Cystectomy	No				
bladder	BL0470F	55	pTa Nx Mx	TURBT	No				
cancer	BL0591F	65	pTis N0 Mx	Cystectomy	No				
	BL0606F	77	pT1Nx Mx	TURBT	No				
es are the property of	BL0622FPerr	nission r &3 ired for r	фTis	cystectomy					

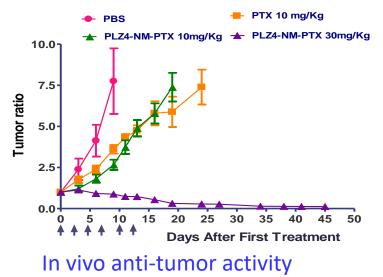
PDXs for precision medicine Characterization of PDXs

Fidelity of morphology


Conservation of genetic aberrations (92-97%)

Drug treatment (Days)


Drug treatment (Days)


Applications of PDMCs -Drug development

Bladder cancer-specific PLZ4-nanoparticles (Kit Lam, MD, PhD)

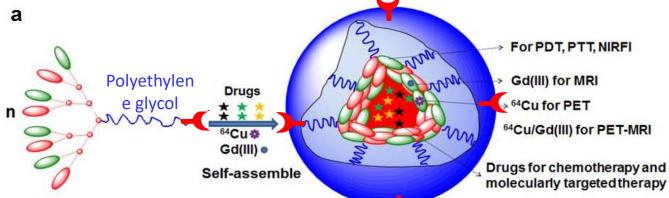
Treatment	<u>OS</u> (days)	<u>WBC</u> (K/ml)
<u>PBS</u>	11	<u>3.96±1.40</u>
PTX 10mg/kg	27	<u>1.16±0.19</u>
PLZ4-NP-PTX 10 mg/kg	24	<u>2.03±0.81*</u>
PLZ4-NP-PTX 30 mg/kg	>70	<u>1.08±0.28</u>

Slides are the property of the author. Permission required for reuse.

IND No: 117868

Applications of PDMCs -Drug development

Pyropheophorbide a

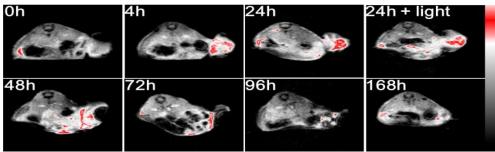

HN

Cholic acid

 CH_3

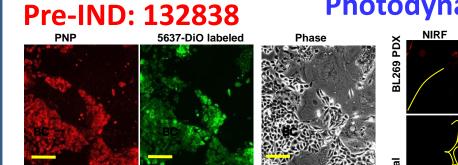
ŇН

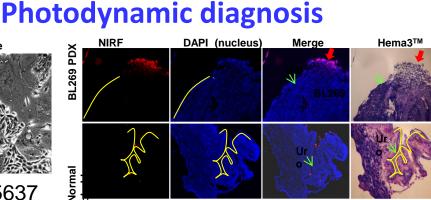
-Smart "9-in-1" PLZ4-nanoporphyrin



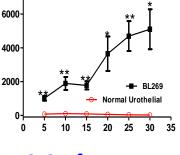
- 1. Photodynamic diagnosis
- 3. Photothermal therapy
- 5. Chelation of ⁶⁴Cu for PET
- 7. Targeted delivery of chemo
- 9. Near infrared imaging

- 2. Photodynamic therapy
- 4. Chelation of Gd(III) for MRI
- 6. Chelation of ⁶⁷Cu for radiation therapy
- 8. Chelation of gallium for sonodynamic Tx
- 10. combination of the above

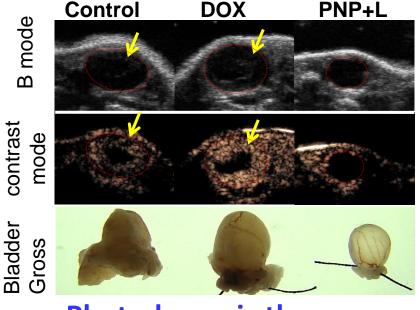

Li et al. Nature Communication. 2014 Lin et al. Biomaterials. 2016



Applications of PDMCs -Drug development

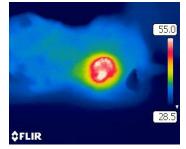


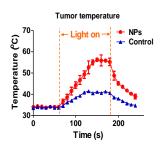
Human bladder cancer cell line 5637

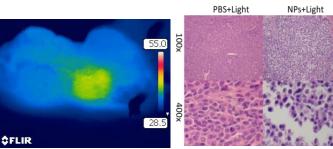


Human patient-derived xenograft 40x

30-40X difference



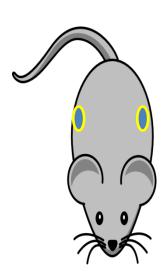

2-3X for 5-ALA

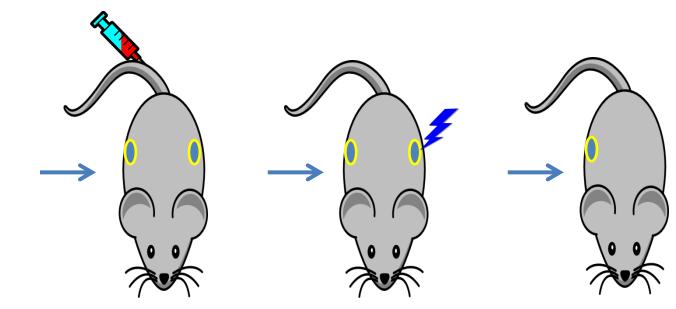


Photodynamic therapy

Slides are the property of the author. Permission required for reuse.

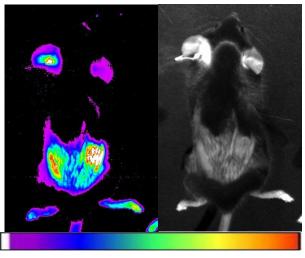
Photothermal therapy





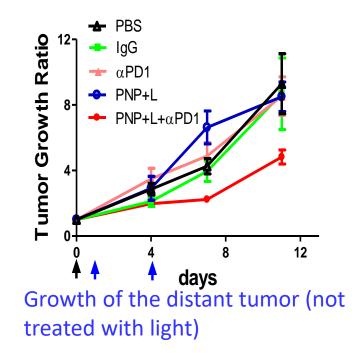
PLZ4-nanoporphrin to potentiate immunotherapy

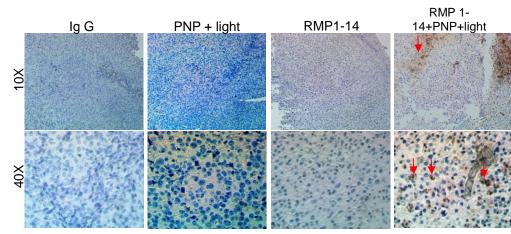
- PLZ4-nanoporphyrin kills cancer cells and <u>release tumor antigens</u>;
- Photodynamic therapy (PDT) produces <u>reactive oxygen species</u> (ROS) which can modify macromolecules, and make them more immunogenic.
- <u>Heat</u> from photothermal therapy (PTT) <u>denatures</u> macromolecules and makes them more immunogenic.
- PDT is more effective than radiation in potentiate immunotherapy.
- PDT has been used in bladder cancer. But the photosensitizer has low efficiency, low potent, nonspecific (Cancer : normal ratio: 2-3 times), and high toxicity.



Creation of bilateral syngrafts: Cells: MB49 Mice: C57BL/6

Intravenous injection of PNP Photodynamic therapy of the <u>left</u> tumor Monitoring growth of the <u>right</u> tumor The Jackson Laboratory


PLZ4-nanotheranostics -Photothermal and targeted chemotherapy

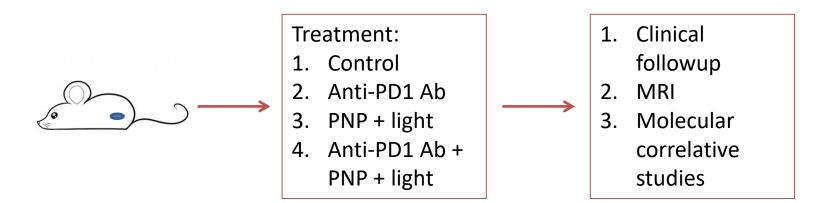


150

1000

Cancer-specific drug delivery

Photodynamic therapy converts "cold" tumor to "hot" tumor


The Jackson Laboratory

PLZ4-nanotheranostics

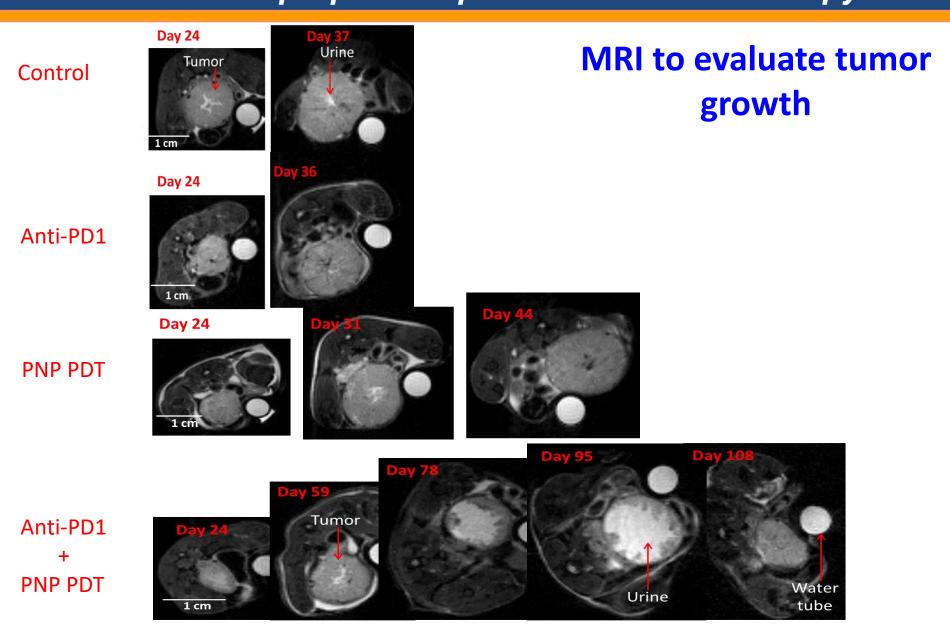
PLZ4-nanoporphrin to potentiate immunotherapy -SV40T/Ras double transgenic mice

20-30 days Palpable mass MRI to confirm

<u>Treatment:</u> PD1: 200 μg/mouse, i.p., weekly PNP: i.v., weekly, plus light (0.2 w, 3 min) <u>Tumor measurement</u>: MRI/T2

Mice were obtained from Xue-Ru Wu at New York University.

PLZ4-nanotheranostics


-PLZ4-nanoporphrin to potentiate immunotherapy

Groups	Ear Tag#	Date of Death	Overall survival	Current Status
Control	#539	01/09/2018	31 days	Dead
	#150	01/10/2018	28 days	Dead
	#1191	02/03/2018	36 days	Dead
	#2032	02/24/2018	23 days	Dead
	#1737	03/22/2018	37 days	Dead
Anti-PD1	#536	01/16/2018	38 days	Dead
antibody	#542	01/16/2018	38 days	Dead
PDT and PTT	#560	01/07/2018	31 days	Dead
	#581	02/08/2018	34 days	Dead
	#582	03/16/2018	55 days	Dead
	#1791	03/21/2018	45 days	Dead
	#1783	04/12/2018	67 days	Dead
Anti-PD1	#1994	Alive	52 days	Study ongoing
antibody +	#535	Alive	<u>150 days</u>	Study ongoing
PDT + PTT	#538	03/08/2018	<u>90 days</u>	Dead

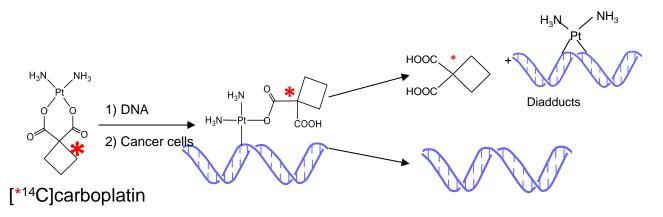
Mice were obtained from Xue-Ru Wu at New York Univ.

The Jackson Laboratory

DNA adducts as a biomarker for chemoresistance to alkylating agents:

- Platinum agents (cisplatin, carboplatin and oxaliplatin) kill cancer cells through induction of DNA damage (adducts)
- Cells with high Pt-DNA adducts will be killed by chemotherapy, and are chemosensitive.
- We developed a microdosing approach to measuring DNA adducts after a non-toxic microdose of 14C-drug

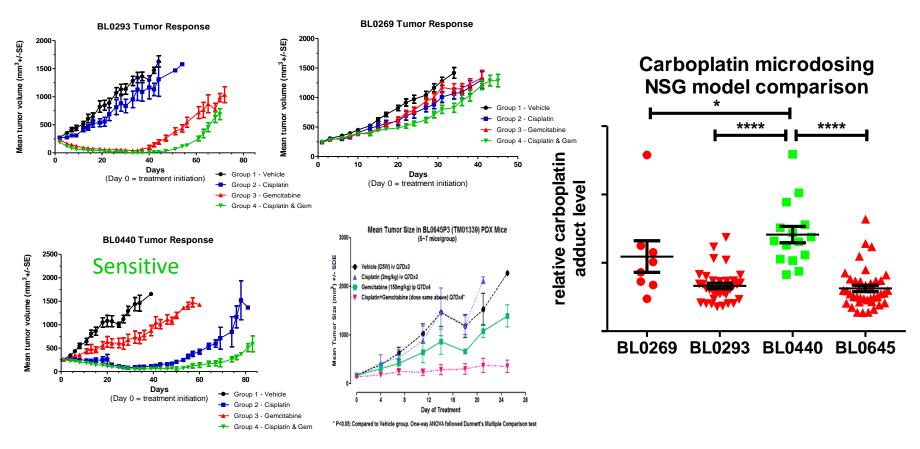
Microdosing



-Accelerator Mass Spectrometry (AMS)

Lawrence Livermore National Laboratory

Accelerator Mass Spectrometry (AMS)


- Carbon-14 dating to determine the age of fossils
- Measure ¹⁴C at 10⁻²¹ mole in mg-size specimens
- ¹⁴C-labeled drug: one drug molecule per cell in 10⁵ cells
- Because of the ultrasensitivity, cells and patients are treated with one non-toxic <u>microdose</u> of ¹⁴C-labeled drug to allow the detection of DNA damage and chemoresistance

Study of chemoresistance -Microdosing technology

Low DNA adduct levels correlate with chemoresistance -Bladder cancer <u>patient-derived xenografts (PDX)</u>

The Jackson Laboratory for temorrow's cures

Lawrence Livermore National Laboratory

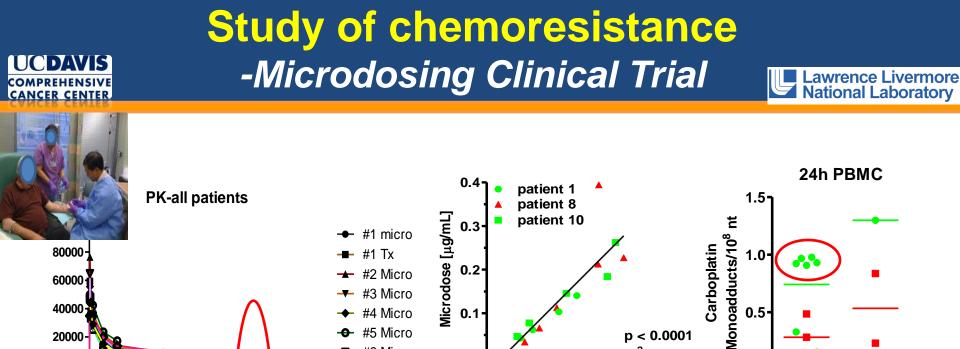
Study of chemoresistance -Microdosing Clinical Trial

A Phase 0 microdosing trial

Bladder cancer and NSCLC

Phase 0 study: One microdose (1/100th) of ¹⁴C-carboplatin:

- 1. PK study (drug metabolism);
- 2. DNA adducts of PBMC.
- 3. Repair of DNA adducts in cultured PBMC.
- 4. DNA adducts in bladder cancer specimens from TURBT


Off-study therapeutic chemo with platinum chemotherapy

1. Evaluate response, and correlate with DNA damage and repair, PK, cell uptake and efflux,.

2. Molecular correlation (such as ERCC and XRCC)

Clinicaltrials.gov: NCT01261299; NCT02077998. Pls: Pan

0.0

10

20

Therapeutic [µg/mL]

#6 Micro

📥 #7 Micro

#8 Tx

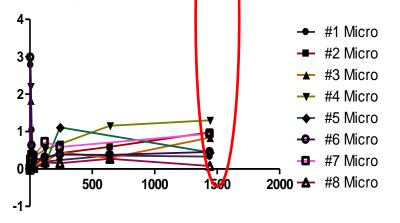
#8 Micro

2000

Δ-

•

DNA Damage in PBMC over 24 hours-all patients


1000

500

20000-

-20000-

0

150

1. 24 hr is the best time for biopsy/sampling **Microdosing predicts PK of therapeutic dosing** 2. High DNA adduct levels correlate to response 3.

40

0.0

Bladder

Responder

Non-Responder

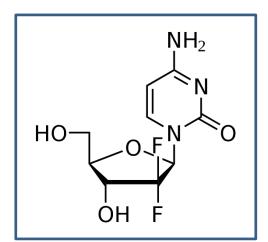
Lung

p < 0.0001

R² 0.8076

30

Why two pts with low DNA adducts responded? Is this because of the chemo partner drug?

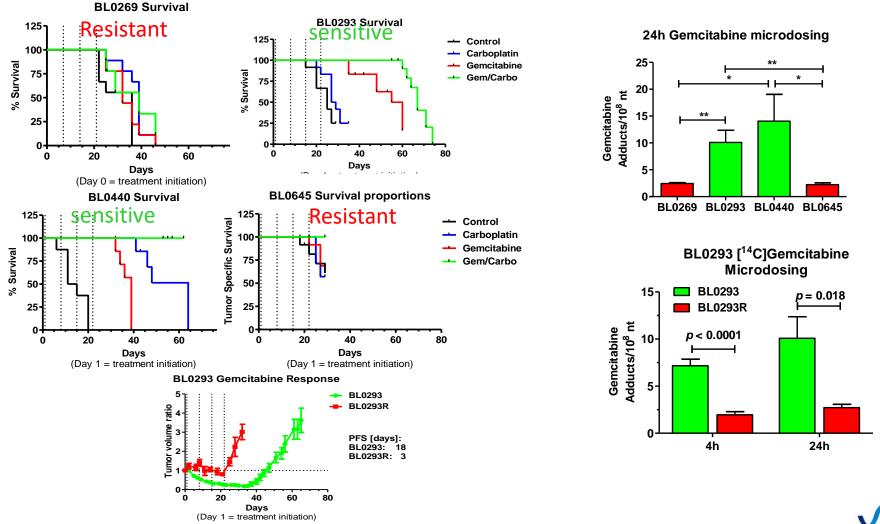


۲

Study of chemoresistance *-Gemcitabine microdosing study*

- Nucleoside analog
- Incorporation into DNA and block DNA replication
- Inhibits ribonucleotide reductase
- Combine with platinum for bladder cancer

- The level of gemcitabine in DNA correlates with cellular sensitivity to gemcitabine
- Using ³H- or ¹⁴C-labeled gemcitabine, the AMS-based microdosing approach may be able to measure the incorporation of gemcitabine into DNA and identify chemoresistance.


Lawrence Livermore National Laboratory

Study of chemoresistance -Microdosing -Gemcitabine

Lawrence Livermore National Laboratory

Low gemcitabine incorporation in DNA correlated with resistance

COMPREHENSIVE CANCER CENTER PDXs for Personalized therapy Calculation Company

- 1. We have established over 30 Bladder cancer PDX models;
- 2. PDXs retain the morphology and genetic aberrations of parental patient cancers;
- 3. Deep sequencing identified multiple druggable targets;
- 4. PDX platform can **<u>potentially</u>** be used for: screening for effective targeted therapy, chemotherapy, drug repurposing, replacing the role of serial biopsies to study secondary drug resistance, facilitating drug development, and developing biomarkers;

Acknowledgements

Lab:

Chong-xian Pan. MD, PhD Paul Henderson, PhD (Co-PI) Ai-hong Ma, MD, PhD Hongyong Zhang, DVM, PhD Tzu-Yin (Cindy) Lin, DVM, PhD Maike Zimmermann, PhD Maike Zimmermann, PhD Tifffany Scharadin, PhD Weiming Yu, MD Wei Shi MD Shuxong Zeng, MD

Former lab members:

Qilai Long, MD Shuai Jiang, MD, PhD Fuli Wang, MD Sisi Wang, MD, PhD Tao Li, PhD Yanchun Wang, PhD Miaoling He, BA

Financial Support: Dr. de Vere White's philanthropic funding, R01, DoD, VA Merit grants and others.

Acknowledgements

UC Davis-others

Ralph de Vere White, MD Christopher Evans, MD Primo Lara MD Marc Dall'Era MD Stanley Yap, MD Richard Valicenti MD Regina Gandour-Edward, MD Clifford Tepper, PhD

Microchamber Project

Alex Revzin Pantea Gheibi

PDX Project

Jackson Laboratory:

Edison Liu MD Susie Airhart Carol Bult, PhD James Keck, PhD

EyePOD PDX

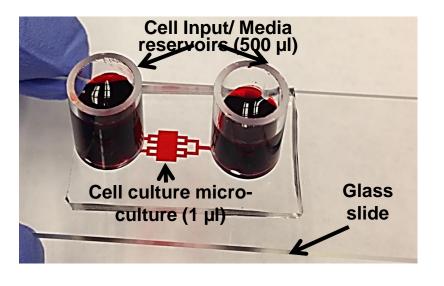
Edward Pugh, PhD Kit S Lam, MD, PHD

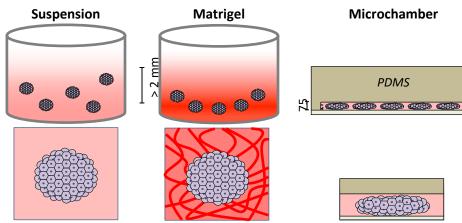
PLZ4 project

Kit S. Lam, MD, PhD: Yuanpei Li, PhD and their labs Thank you very much!!!

Questions?

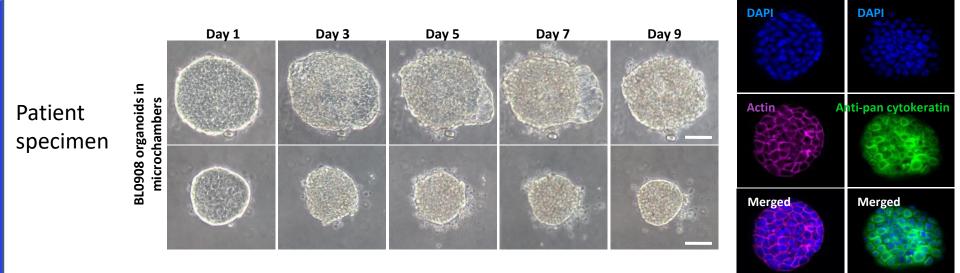
Drawbacks of PDX:

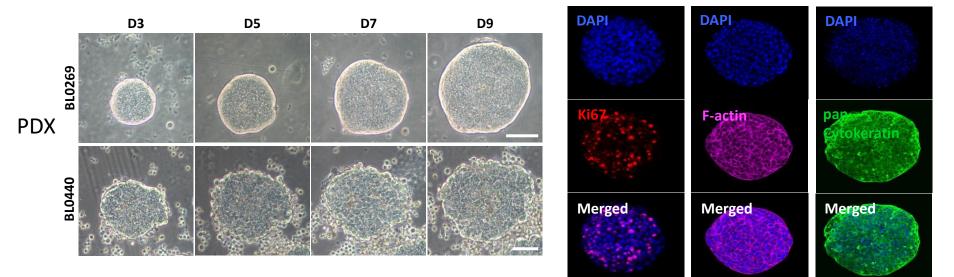

- Long time to develop P0 PDXs (4-6 mo);
- engraftment rate: 40%
- Expensive


Microchamber organoid cultures to complement PDXs

Microchamber culture to complement PDXs

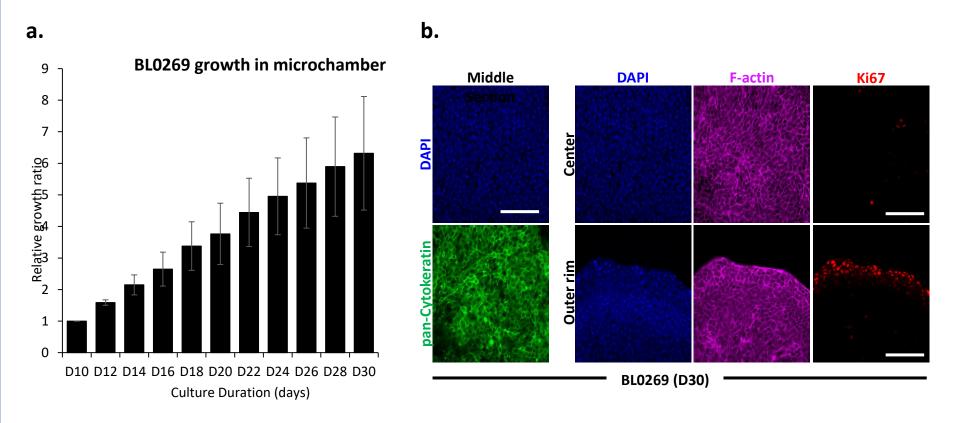
(Originally developed for culture of hepatocytes)




Microchambers (μC, <u>Alex Revzin</u>) :

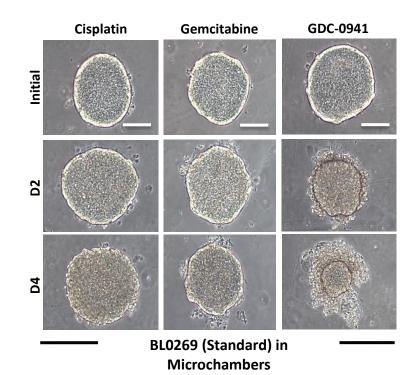
- Biocompatible
- Optically transparent
- Excellent oxygen transport
- Accumulation of endogenous factors
- Enhancement of autocrine and paracrine signals
- Long-term function maintenance of difficult-to-culture cells (ex. Primary hepatocytes and mESC (mouse Embryonic Stem Cells))

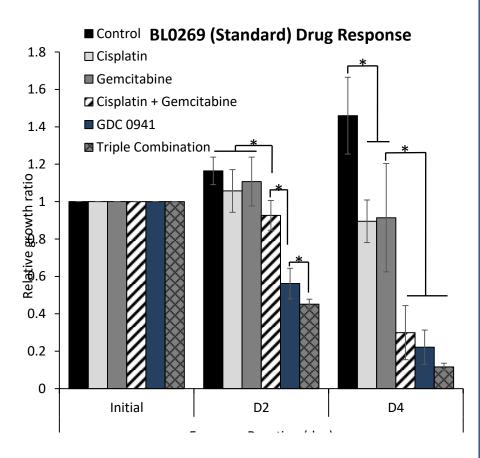
UCDAVIS PDXs for Personalized therapy Microchamber to complement PDXs



BL0908 organoids on day 9

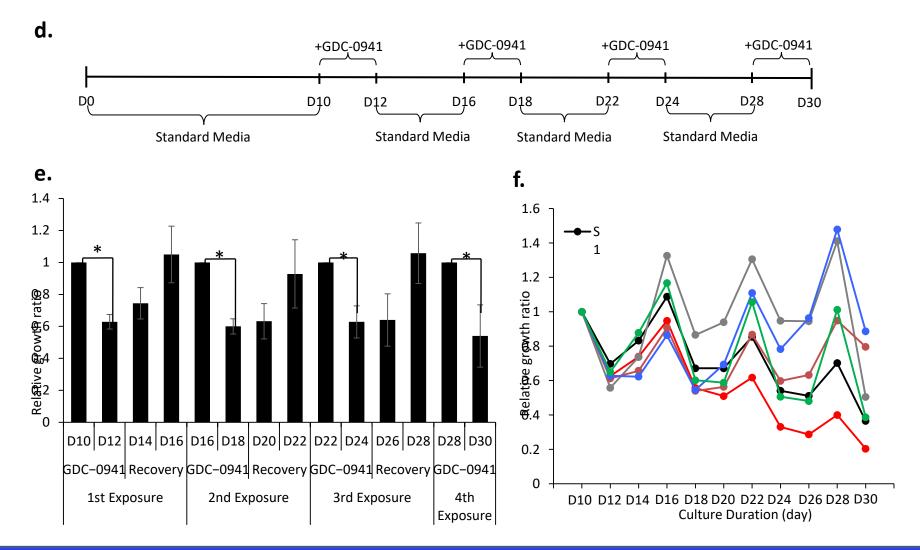
Cell growth is mainly at the edge of cell mass.





Efficacy studies -BL0269 with a PI3K mutation

а.


b.

Tumor heterogeneity

- 1. PLZ4 specifically binds to human and dog bladder cancer cells
- 2. Nanomicelles coated with PLZ4 can specifically deliver the drug load to bladder cancer *in vitro* and *in vivo*.
- 3. Micelle formulation of PTX significantly decreases the toxicity and prolongs the overall survival in mice carrying PDXs.
- 4. PLZ4 nanoporphyrin can be potentially used for PDD, PDT, PET, MRI, photothermal therapy, radiation, targeted chemotherapy and combination of the above.
- 5. Combination of PNP and immunotherapy