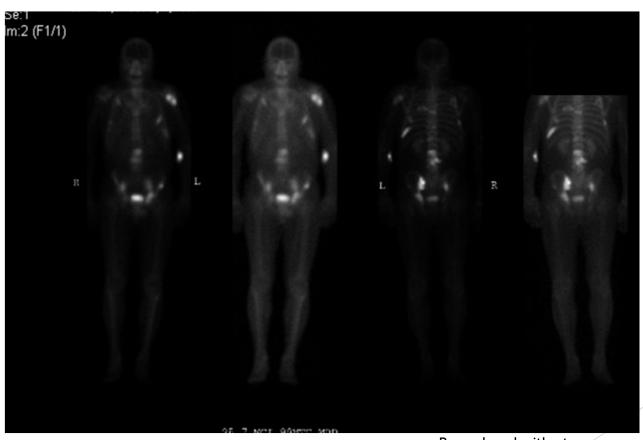
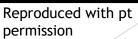
Metastatic Prostate Cancer

February 1, 2020

Alex Niu
Tulane Hem-Onc Fellow IV




Case: Mr. RB

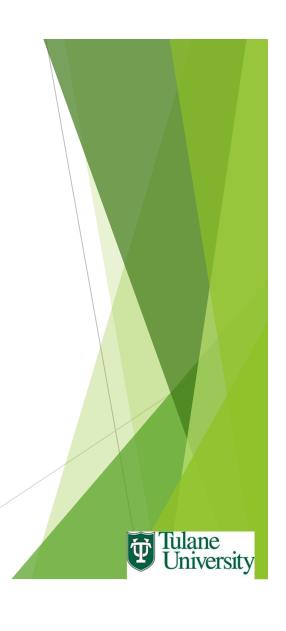
- ▶ 59 yr old male
- ► No significant PMH
- ► Truck-driver
- ▶ July 2017: Lower back pain
- Bone scan: diagnosed with metastatic prostate cancer to bones.
- ► Initial PSA 371; Gl 5+4

Initial Bone Scan (Jul 2017)

Treatment Timeline

- Aug 2017: Orchiectomy and Bicalutamide. Initial response but PSA progression few weeks later. Started XRT to T5 and T8.
- ▶ Nov 2017: Antiandrogen withdrawal. PSA response. Minimal symptoms.
- May 2018: Palliative XRT to left shoulder and started enzalutamide. Bone pain severe.
- ▶ July 2018: No PSA response. Docetaxel started. 6 total cycles given. XRT to ilium.
- ▶ Nov 2018: Palliative XRT to L3. Pain better controlled.
- Dec 2018: rising PSA. 283. VISION trial at Tulane Lu177 + Abiraterone/dexamethasone

► May 2019 - PSA 260. Hospital admission with cord compression (L2-L3)



Reproduced with pt permission

Treatment Timeline

- ▶ July 2019: Surgical decompression.
- Ordered genetic germline and somatic NGS testing

PATIENT

SPECIMEN INFORMATION

ORDERED BY

Case Number: TN18-129442

Diagnosis: Adenocarcinoma, NOS

New Orleans, LA 70112 USA (504) 988-7869

BIOMARKER HIGHLIGHTS (SEE PAGE 2 AND APPENDIX FOR MORE DETAILS)

MSI	NGS	High	Mismatch Repair Status*		Deficient	194.7.20
Tumor Mutational Burden		High 25 Mutations/Mb	MLH1 IHC		Positive 2+, 65%	
ATM	NGS	Mutation Not Detected	MSH2	IHC	Negative 0, 100%	
BRCA1	NGS	Mutation Not Detected	MSH6	IHC	Negative 0, 100%	
BRCA2	NGS	Mutation Not Detected	PMS2	IHC	Positive 1+, 85%	
FANCA	NGS	Mutation Not Detected	PD-L1	IHC	Negative 0, 100%	
PALB2 PTEN	NGS NGS	Mutation Not Detected	ASXL1	NGS	Mutated, Pathogenic	
		Mutated, Variant of Unknown Significance			Exon 12 p.G646fs	
			BMPR1A	NGS	Mutated, Pathogenic	
		Exon 6 p.P190L			Exon 4 p.L59fs	
AR	IHC.	Positive 2+, 95%	PIK3R1	NG5	Mutated, Pathogenic	
	NGS	Mutation Not Detected			Exon 9 p.R348*	
			SETD2	NGS	Mutated, Pathogenic	
					Exon 14 p.R2040*	
			TP53	NGS	Mutated, Pathogenic	
					Exon 5 p.R175H	

^{*} Mismatch repair status is determined by the presence or absence of the repair proteins MLH1, MSH2, MSH6 and PMS2 by IHC. If any of these IHC's are negative, mismatch repair status is considered deficient.

THERAPIES WITH POTENTIAL BENEFIT

pembrolizumab*

Mismatch Repair Deficient, MSI

Drug/biomarker association(s) supported by the highest level of clinical evidence.

I HAND HONCERTAIN BENEFIT

carboplatin, cisplatin

ATM, BRCA1, BRCA2

Drugs are placed in the Uncertain benefit category when a result suggests only a decreased likelihood of response (vs. little to no likelihood of response) or if there is insufficient evidence to associate the drug with either benefit or lack of benefit.

PATIENT

SPECIMEN INFORMATION

ORDERED BY

Case Number: TN18-129442

Diagnosis: Adenocarcinoma, NOS

New Orleans, LA 70112 USA (504) 988-7869

BIOMARKER HIGHLIGHTS (SEE PAGE 2 AND APPENDIX FOR MORE DETAILS)

MSI	NGS	High	Mismatch Repair Status*		Deficient
Tumor Mutational Burden		High 25 Mutations/Mb	MLH1	IHC	Positive 2+, 65%
ATM	NGS	Mutation Not Detected	MSH2	IHC	Negative 0, 100%
BRCA1	NGS	Mutation Not Detected	MSH6	IHC	Negative 0, 100%
BRCA2	NGS	Mutation Not Detected	PMS2	IHC	Positive 1+, 85%
FANCA	NGS	Mutation Not Detected	PD-L1	IHC	Negative 0, 100%
PALB2	NGS	Mutation Not Detected	ASXL1	NGS	Mutated, Pathogenic
PTEN	NGS	Mutated, Variant of Unknown Significance			Exon 12 p.G646fs
			BMPR1A	NGS	Mutated, Pathogenic
		Exon 6 p.P190L			Exon 4 p.L59fs
AR	IHC.	Positive 2+, 95%	PIK3R1	NGS	Mutated, Pathogenic
	NGS	Mutation Not Detected			Exon 9 p.R348*
			SETD2	NGS	Mutated, Pathogenic
					Exon 14 p.R2040*

^{*} Mismatch repair status is determined by the presence or absence of the repair proteins MLH1, MSH2, MSH6 and PMS2 by IHC. If any of these IHC's are negative, mismatch repair status is considered deficient.

THERAPIES WITH POTENTIAL BENEFIT

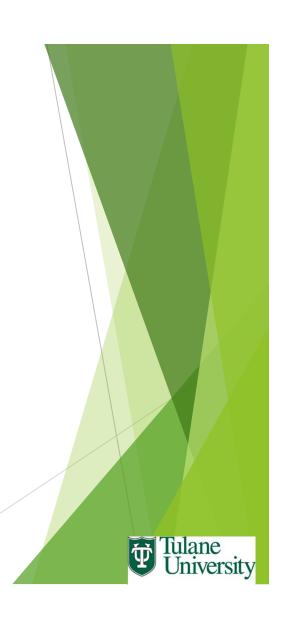
pembrolizumab*

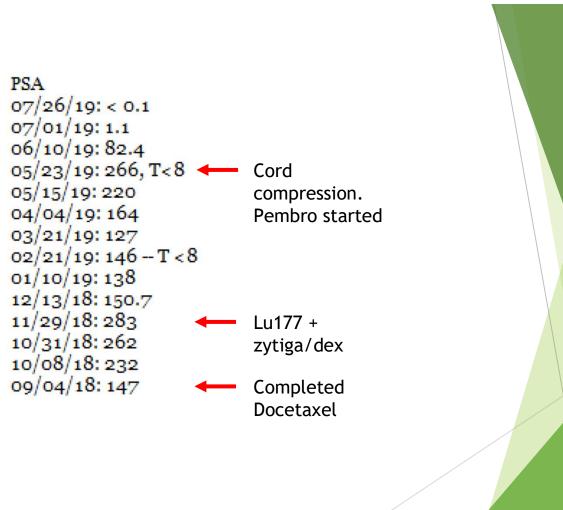
Mismatch Repair Deficient, MSI

Drug/biomarker association(s) supported by the highest level of clinical evidence.

I HAND HONCERTAIN BENEFIT

carboplatin, cisplatin


ATM, BRCA1, BRCA2


Drugs are placed in the Uncertain benefit category when a result suggests only a decreased likelihood of response (vs. little to no likelihood of response) or if there is insufficient evidence to associate the drug with either benefit or lack of benefit.

Treatment continues

- ▶ June 2019: Pembrolizumab started.
- ► PSA in September 2019 undetectable
- ► Still on Pembro today. Minimal side effects.

ORIGINAL ARTICLE

Pembrolizumab for MSI-H Tumors

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

FDA Approves

(pembrolizumab) for Adult and

Pediatric Patients with Unresectable or Metastatic, Microsatellite Instability-High (MSI-H) or Mismatch Repair Deficient Cancer

May 23, 2017

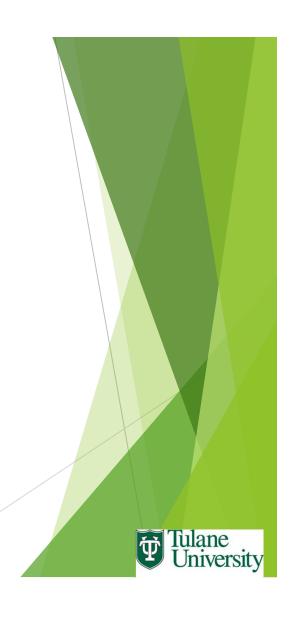
- ▶ Pembrolizumab for Microsatellite Instability-High (MSI-H) Cancer
- "Treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair (MMR)-deficient:
 - Solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
 - Colorectal cancer that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan"

D le et al, NEJM 2015

MSI-H in Prostate Cancer

"Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade." Abida W et al.

December 27, 2018


Summary

- Worth ordering genetic germline and somatic NGS testing on patients with prostate cancer
- MSI-H/dMMR is uncommon in prostate cancer.
- ► However, MSI-H can be meaningful target in prostate cancer.
- Need more evaluation into utilization of MSI-H/dMMR and PD1/PDL1 in prostate cancer

Thanks!!

Special thanks to Dr. Barata!

