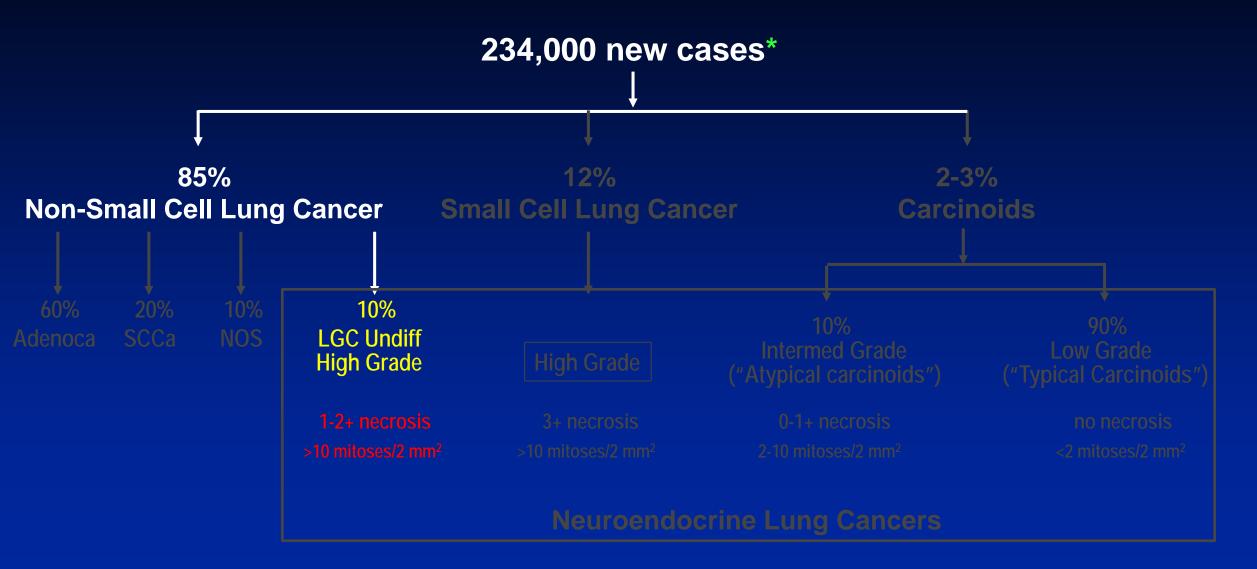
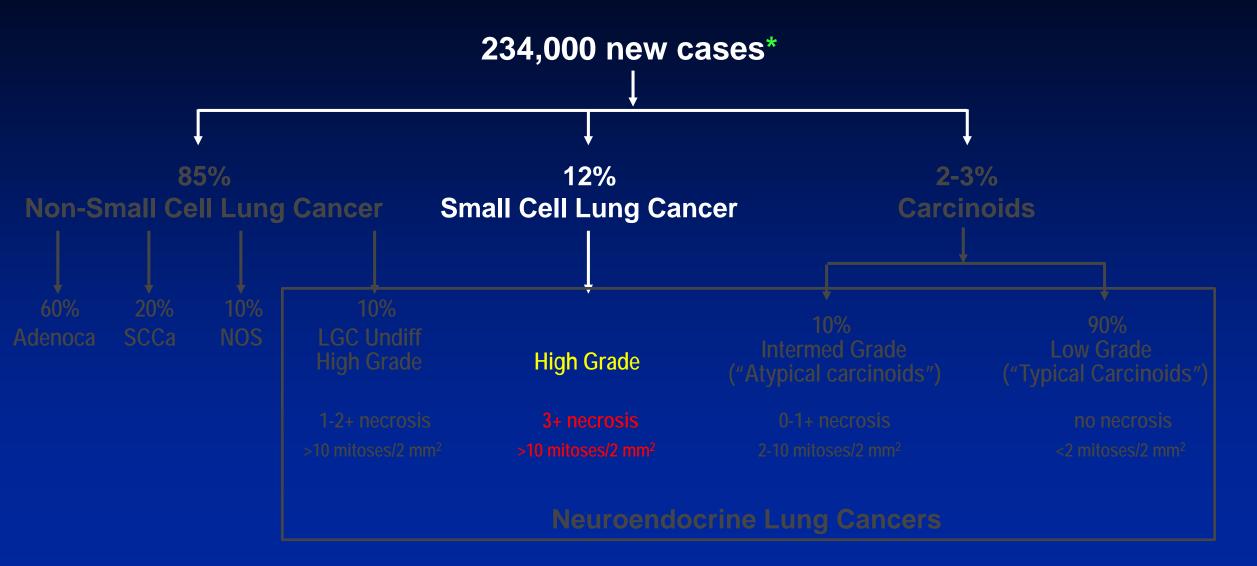

Update on the Treatment of Small Cell Lung Cancer and Neuroendocrine Lung Cancers


> Ronald B. Natale, M.D. Professor of Medicine, Division of Hematology/Oncology Director, Lung Cancer Clinical Research Program Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA

Lung Cancer in the U.S. in 2018


*Noone AM et al. SEER Cancer Statistics Review, 1975-2015, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2015, based on November 2017 SEER data posted to April 2018.

Lung Cancer in the U.S. in 2018

*Noone AM et al. SEER Cancer Statistics Review, 1975-2015, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2015, based on November 2017_SEER data posted to April 2018.

Lung Cancer in the U.S. in 2018

*Noone AM et al. SEER Cancer Statistics Review, 1975-2015, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2015, based on November 2017 SEER data posted to April 2018.

Small Cell Lung Cancer: Staging

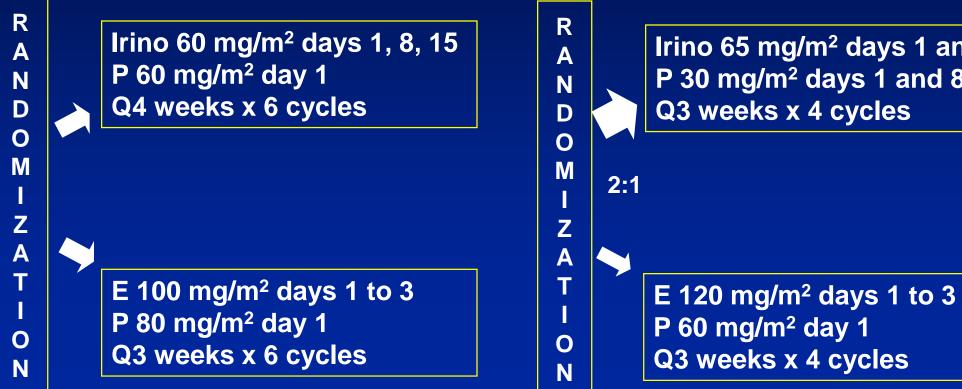
- Limited Disease (30-35% pts)

 Disease confined to primary tumor, regional LNS (intrapulmonary, mediastinal and ipsilateral SCN)
 "Disease can be encompassed in a radiation field"
- Extensive Disease (65-70% pts)
 - Disease metastatic to contralateral lung, nodes or other organs (bones, liver, brain,etc.)
 - Pleural effusion

"Disease can not be encompassed within a radiation field"

SCLC: State of the Art

- 1. Platinum + Etoposide has been the standard 1st line treatment for SCLC for the past 35 years.
- 2. Cisplatin + etoposide / concurrent RT are the standard of care for Limited Stage SCLC.


Cisplatin + Irinotecan Randomized Trials in Patients with E-SCLC

JCOG 9511

Noda et al. NEJM 346:85, 2002

North American/Australian Study

Hanna et al. JCO 24:2038, 2006

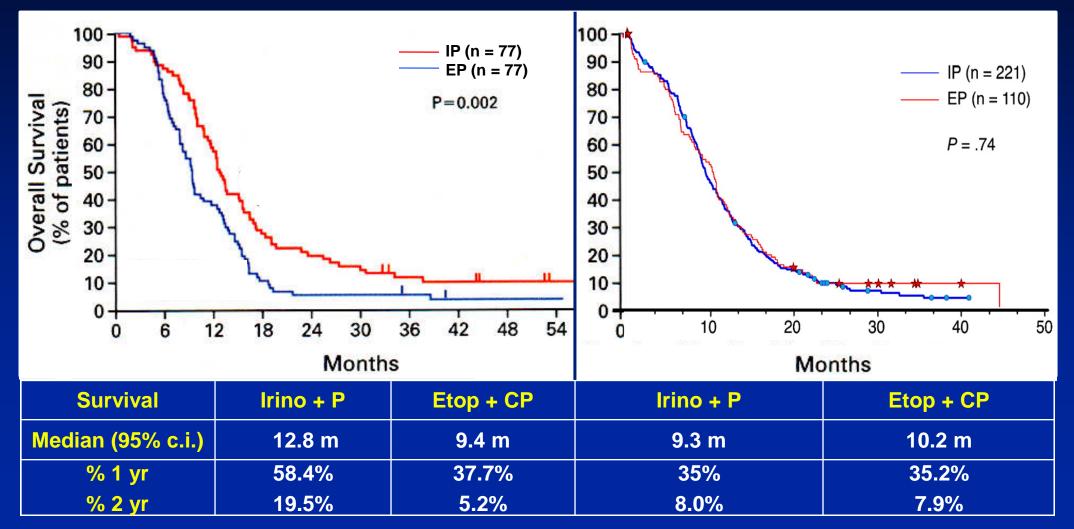
Irino 65 mg/m² days 1 and 8 P 30 mg/m² days 1 and 8 Q3 weeks x 4 cycles

Comparison of Therapeutic Outcomes

	JCOG 9511		N. American/Australian	
Result	IP (n = 77)	EP (n = 77)	IP (n = 221)	EP (n = 110)
Overall RR	84.4% [*] (75-92%)	67.5% [*] (56-78%)	48%	43.6%
Stable	2.6%	20.8%	4.1%	7.3%
Progression	3.9%	11.7%		
NE for Response	9.1%	0	28.1%	29.1%
Median Survival	12.8 mos**	9.4 mos**	9.3 mos	10.2 mos
% 1 Yr Survival	58.4%	37.7%	35%	35.2%
% 2 Yr Survival	19.5%	5.2%	8%	7.9%

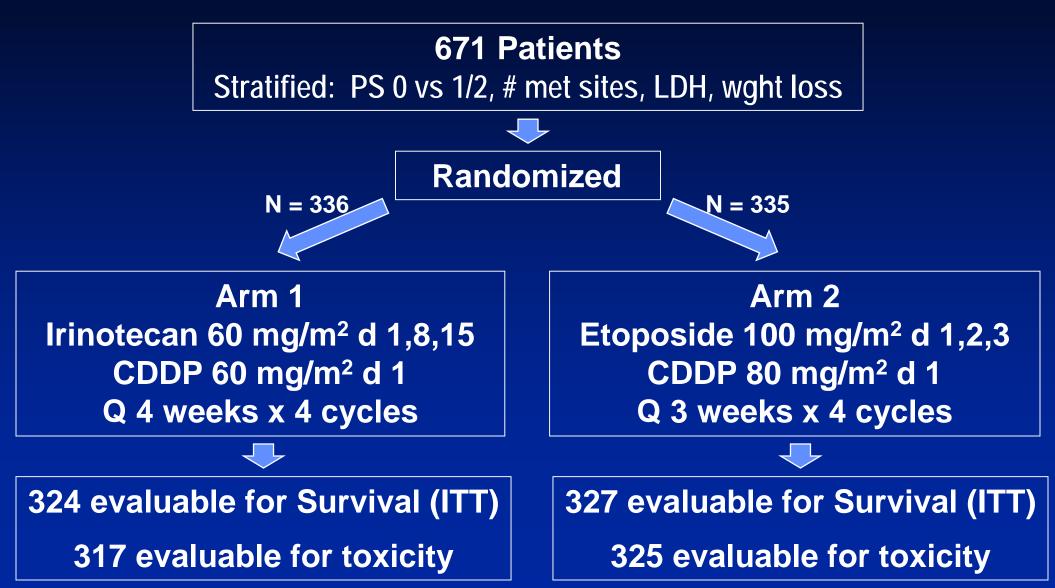
**

p = .02


*

p = .002

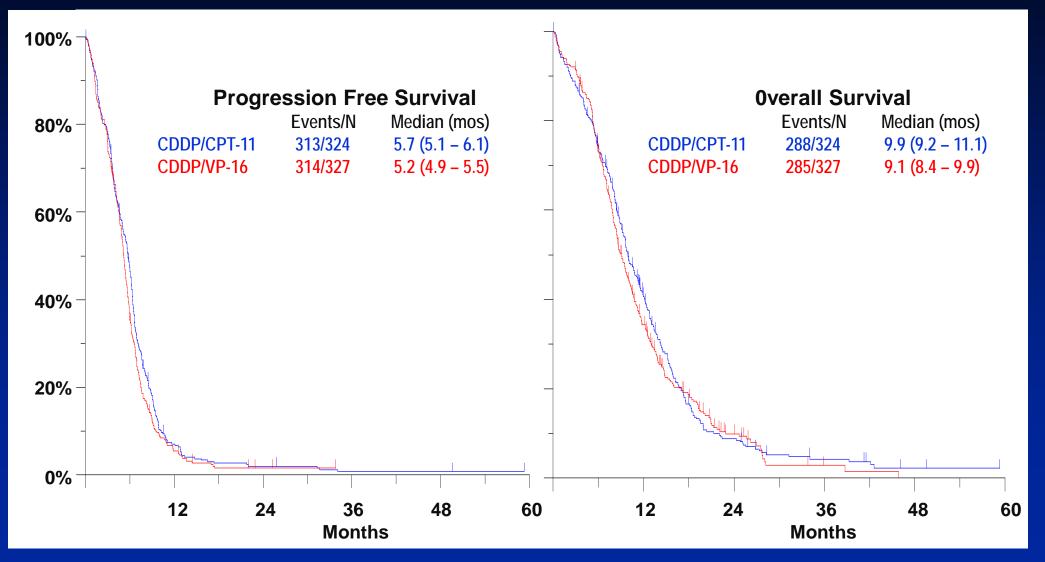
Comparison of Survival Outcomes


JCOG 9511

N Amer / Aus

S0124: IP vs EP in E-SCLC

<u>R.B. Natale</u>, P.N. Lara, K.Chansky, J.Crowley, J.R Jett, J.E. Carlton, J.P. Kuebler, H. Lenz, P. Mack, D.G. Gandara, SWOG, NCCTG, CALGB. *Proc ASCO*, 2008



S0124: IP vs EP in E-SCLC Toxicity

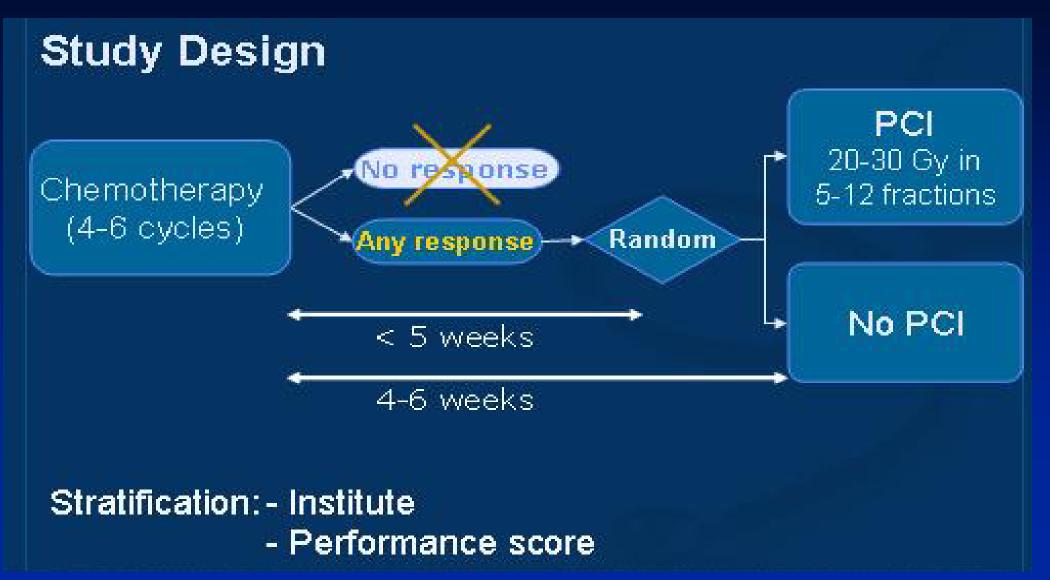
Toxicity Type	IP (n = 317)	EP (n = 324)
% Gr 3 / 4 ANC	19% / 15%	20% / 48%
% Gr 3 / 4 Thrombocytopenia	3.5% / <1%	12% / 3%
% Gr 3 / 4 Anemia	5% / <1%	11% / 1%
% Gr 3 / 4 Vomiting	10% / 0	9% / <1%
% Gr 3 / 4 Diarrhea	18% / 1%	3% / 0%
% Gr 3 / 4 Dehydration	15% / 1%	8% / 0
% Gr 3 / 4 Any Toxicity	42% / 22%	29% / 53%
% Treatment-Related Deaths	4.1%	4.6%

Natae RB, Lara PN, Chansky K et al. Proc ASCO, 2008.

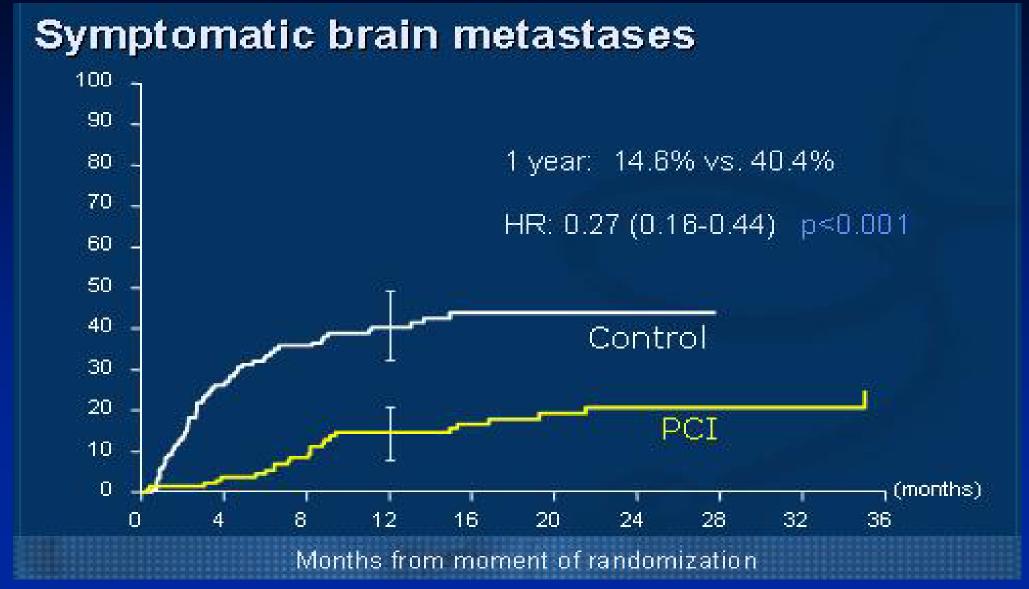
S0124: IP vs EP in E-SCLC Survival Outcome

Natae RB, Lara PN, Chansky K et al. Proc ASCO, 2008.

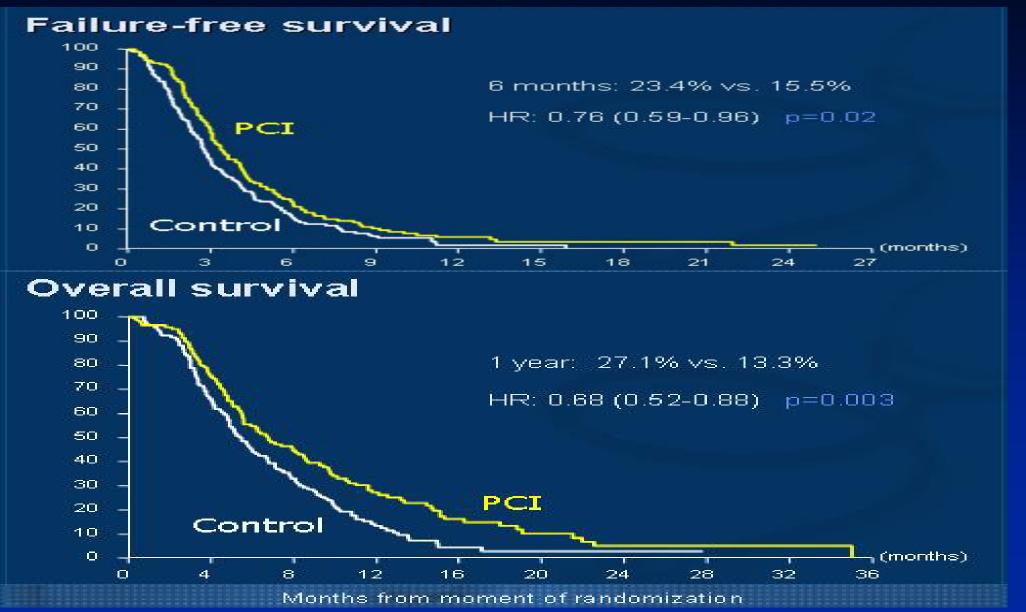
SCLC: State of the Art


- 1. Platinum + Etoposide has been the standard 1st line treatment for SCLC for the past 20 years.
- 2. Cisplatin + etoposide / concurrent RT are the standard of care for Limited Stage SCLC.
- 3. PCI is the standard of care in responding SCLC pts.

META-ANALYSIS OF PCI IN SCLC


(Arriagada R et al, Proc ASCO, 1998)

- 7 Randomized trials
 - 987 pts in CR (1977 to 1995)
 - PCI doses = 24 40 Gy in 8 20 fractions
 - Median follow-up = 5.9 yrs
- Results
 - Hazard ratio for death(PCI:Control) = 0.84
 - (16% reduction in mortality)
 - Overall survival @ 3 yrs = 20.7% vs 15.3%
 - Benefit (decrease in brain mets) was dose-dependent



SCLC: State of the Art

- 1. Platinum + Etoposide has been the standard 1st line treatment for SCLC for the past 20 years.
- 2. Cisplatin + etoposide / concurrent RT are the standard of care for Limited Stage SCLC.
- 3. PCI is the standard of care in responding SCLC pts.
- 4. No convincing evidence supports the substitution or addition of another cytotoxic agent, dose intensification or the addition of a biological agent (yet).

SCLC: State of the Art

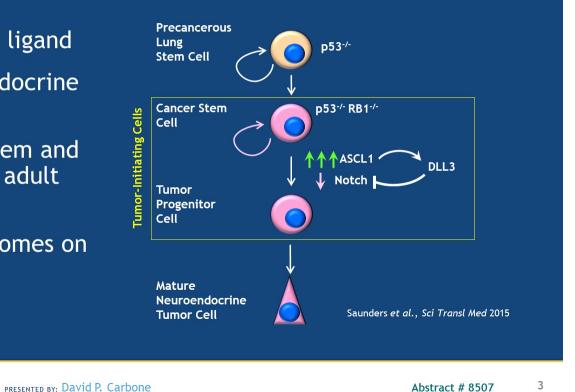
- 1. Platinum + Etoposide has been the standard 1st line treatment for SCLC for the past 20 years.
- 2. Cisplatin + etoposide / concurrent RT are the standard of care for Limited Stage SCLC.
- 3. PCI is the standard of care in responding SCLC pts.
- 4. No convincing evidence supports the substitution or addition of another cytotoxic agent, dose intensification or the addition of a biological agent (yet).
- 5. Topotecan is the reference standard for 2nd line treatment.

New Treatments in Development

Rovalpituzumab tesirine
Immunotherapy

Delta-like Protein 3 (DLL3): A Novel Target in Neuroendocrine Tumors

- An atypical inhibitory Notch ligand
- Induced by the key neuroendocrine transcription factor, ASCL1
- Expressed on both cancer stem and tumor cells, but not normal adult tissues
- Not prognostic of SCLC outcomes on standard therapy


#ASCO18

Slides are the property of the author, permission required for reuse.

• >85% of SCLC express DLL3

2018 AS

PRESENTED AT:

TRINITY: 2, Single-Arm Study of Rovalpituzumab tesirine in DLL3-Expressing, Relapsed/Refractory SCLC

N = 339

Rovalpituzumab

tesirine

0.3 mg/kg IV

Q6W x 2

Key Eligibility Criteria

- DLL3-positive* SCLC
- Relapsed or refractory disease
- ≥ 2 previous regimens
- ≥ 1 platinum-based regimen
- ECOG Performance Status 0-1
- Stable CNS metastases allowed

Primary Endpoints

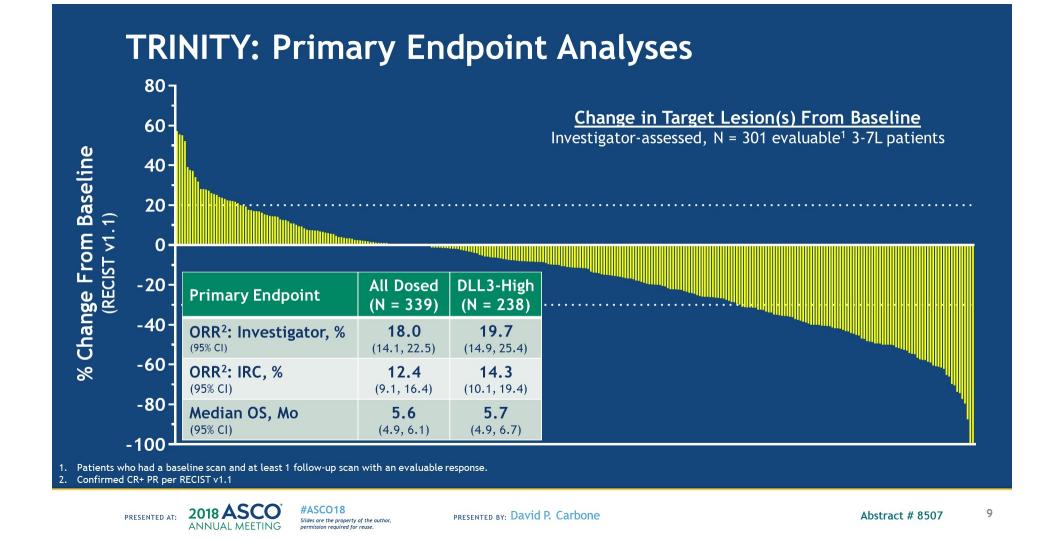
- Objective response rate (ORR)
- Overall survival (OS)

Secondary Endpoints

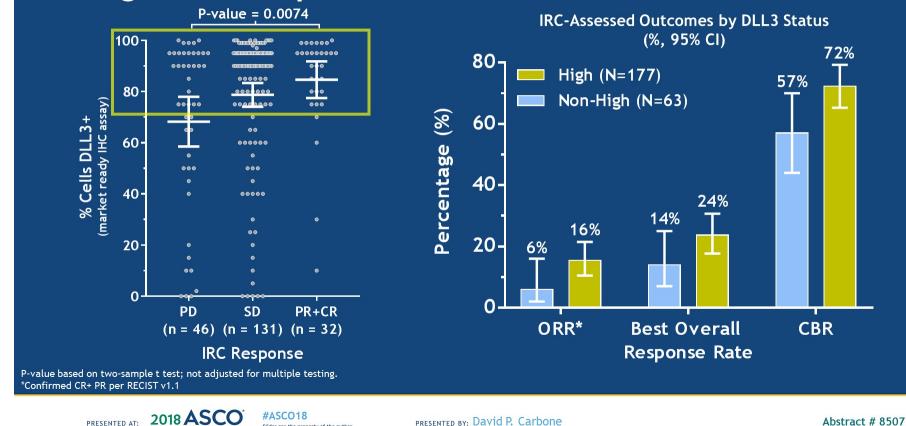
- Duration of response (DOR)
- Clinical benefit rate (CBR)
- Progression-free survival (PFS)
- Re-treatment was permitted at progression
- Study was powered to detect a 25% best overall response rate in DLL3-high Pts with a Simon's two-stage design
- Study size was increased to ensure adequate enrollment of 3L Pts

*Clinical trial mouse antibody-based immunohistochemistry assay.

CNS, central nervous system; ECOG, Eastern Cooperative Oncology Group; IHC, immunohistochemistry; IV, intravenous; q6w, every 6 weeks.


PRESENTED AT: 2018 ASC ANNUAL MEET

PRESENTED BY: David P. Carbone

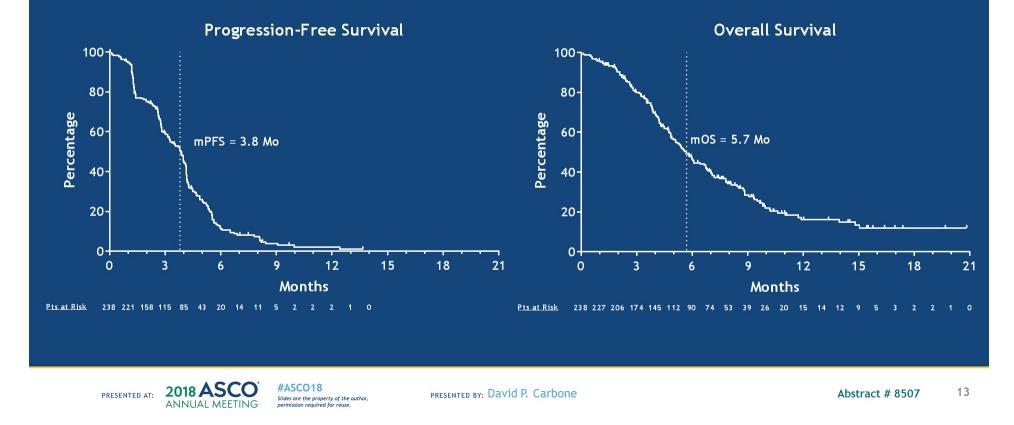

Abstract # 8507 6

Presented By David Carbone at 2018 ASCO Annual Meeting

Presented By David Carbone at 2018 ASCO Annual Meeting

Responses are Enriched Among 3L Patients with High DLL3 Expression

Slides are the property of the author,


permission required for reuse.

ANNUAL MEETING

Presented By David Carbone at 2018 ASCO Annual Meeting

11

IRC-Assessed PFS & OS Among DLL3-High Patients, All Lines

Presented By David Carbone at 2018 ASCO Annual Meeting

Summary of TEAEs

	All Patients, N = 339		
TEAEs, Any Grade ≥ 15% Patients	Any n (%)	Drug-Related n (%)	
Fatigue	130 (38%)	96 (28%)	
Photosensitivity reaction	123 (36%)	120 (35%)	
Pleural effusion	109 (32%)	95 (28%)	
Peripheral edema	104 (31%)	89 (26%)	
Decreased appetite	103 (30%)	53 (16%)	
Nausea	88 (26%)	55 (16%)	
Dyspnea	84 (25%)	33 (10%)	
Thrombocytopenia	83 (25%)	74 (22%)	
Constipation	75 (22%)	15 (4%)	
Vomiting	59 (17%)	28 (8%)	
Anemia	58 (17%)	44 (13%)	
Cough	55 (16%)	7 (2%)	
Hypoalbuminemia	53 (16%)	40 (12%)	
Pericardial effusion	50 (15%)	42 (12%)	
Abdominal pain	49 (15%)	18 (5%)	
Asthenia	49 (15%)	40 (12%)	

TEAEs, Grade 3/4	All Patients, N = 339		
≥ 10 Patients	Any n (%)	Drug-Related n (%)	
Thrombocytopenia	38 (11%)	37 (11%)	
Photosensitivity reaction	23 (7%)	23 (7%)	
Anemia	16 (5%)	12 (4%)	
Fatigue	15 (4%)	12 (4%)	
Pleural effusion	15 (4%)	14 (4%)	

- Serosal effusions were managed primarily through standard drainage procedures; steroids, NSAIDs, and colchicine also used
- History of effusions may be identified risk factor for Gr3+ Rova-T-related effusions

PRESENTED AT: 2018 ASC ANNUAL MEE

CO TING #ASC018 Slides are the property of the author, permission required for reuse. PRESENTED BY: David P. Carbone

Abstract # 8507 16

TRINITY: Conclusions

- Rovalpituzumab tesirine is active in 3L+ SCLC, where no current therapies are approved
 - ORR: 18% INV; 12% IRC
- 3L DLL3-High biomarker-selected Pts were most likely to respond and benefit
 - ORR: 20% INV; 16% IRC
 - Best Overall Response Rate: 29% INV; 24% IRC
 - Clinical Benefit Rate: 71% INV; 72% IRC
 - o mOS: 5.6 Mo
- Adverse events were generally manageable
- Important identified risks were pleural/pericardial effusion, edema & photosensitivity
- Rovalpituzumab tesirine is being evaluated in 2 ongoing ph 3 studies (1st line maintenance, MERU; 2L, TAHOE), and Ph 1 studies in combination with chemotherapy (platinum/etoposide), nivolumab, and nivolumab/ipilimumab

O #ASCO18 Slides are the property of the author, permission required for reuse

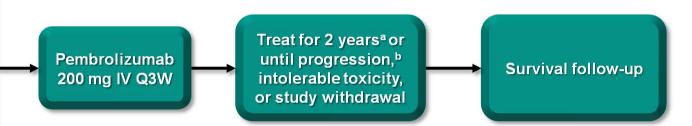
PRESENTED BY: David P. Carbone

Abstract # 8507 17

New Treatments in Development

Rovalpituzumab tesirine
Immunotherapy

Immunotherapy in SCLC


- Pembrolizumab

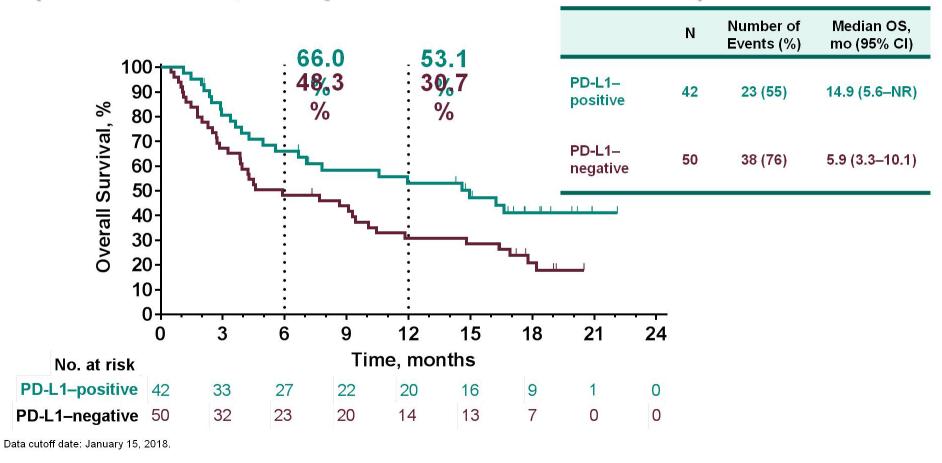
 Keynote 158
- Nivolumab
 - Checkmate 032
- Atezolizumab - Impower 133

KEYNOTE-158 (NCT02628067): Phase 2 Multicohort Study of Pembrolizumab for Advanced Solid Tumors

<u>Patients</u>

- Unresectable and/or metastatic SCLC
- Progression on or intolerance to standard therapy
- ECOG PS 0 or 1
- ≥1 measurable lesion
- Evaluable tumor sample for biomarker assessments
- No autoimmune disease or noninfectious pneumonitis

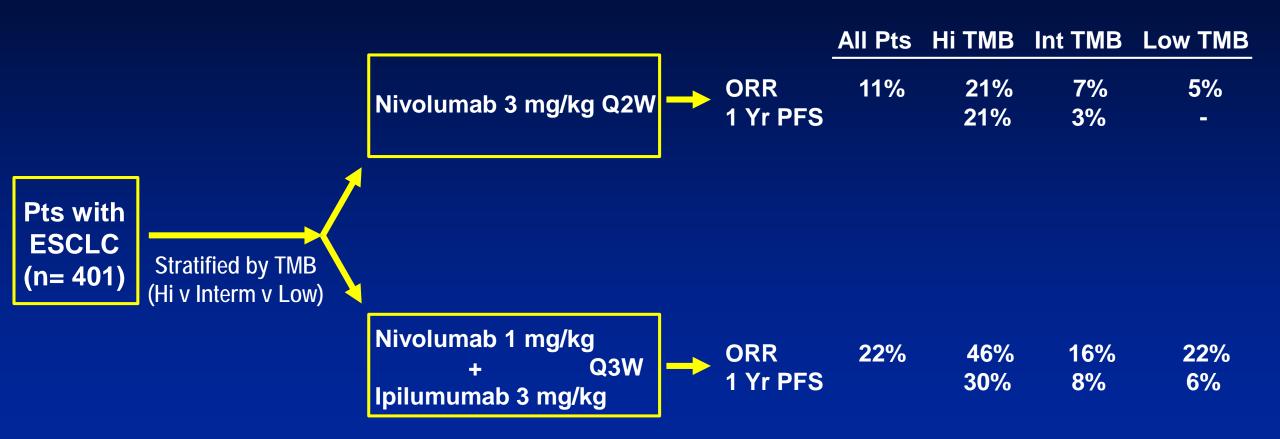
Primary endpoint^c: ORR (RECIST v1.1, central review)
Secondary endpoints: PFS, OS, duration of response, safety
Exploratory endpoints: Efficacy in biomarker subgroups
Response assessed every 9 weeks year 1; every 12 weeks thereafter


^alf SD or better when pembrolizumab discontinued and subsequently ha∨e PD, patients may be eligible to resume pembrolizumab for ≤1 year. ^bIf clinically stable, patients are to remain on pembrolizumab until PD is confirmed on a second scan performed ≥4 weeks later. ^cThe point estimate and exact Clopper-Pearson CI were calculated.

Antitumor Activity by PD-L1 Status (RECIST v1.1, Independent Central Review^a)

	PD-L1– Positive N = 42	PD-L1– Negative N = 50	Overall N = 107
ORR, % (95% CI)	35.7 (21.6–52.0)	6.0 (1.3–16.5)	18.7 (11.8–27.4)
Best overall response, n (%)			
Complete response	2 (5)	1 (2)	3 (3)
Partial response	13 (31)	2 (4)	17 (16)
Stable disease	3 (7)	7 (14)	12 (11)
Progressive disease	22 (52)	29 (58)	62 (58)
Disease control, n (%)	18 (43)	10 (20)	32 (30)

^aOnly confirmed responses are included. Data cutoff date: January 15, 2018.


Overall Survival by Tumor PD-L1 Status (RECIST v1.1, Independent Central Review)

Immunotherapy in SCLC

- Pembrolizumab – Keynote 158
- Nivolumab
 - Checkmate 032
- Atezolizumab
 Impower 133

Checkmate 032

Hellmann et al. WCLC, Yokohama, Japan, 10/2017

Immunotherapy in SCLC

- Pembrolizumab – Keynote 158
- Nivolumab
 Checkmate 032
- Atezolizumab – Impower 133

Atezolizumab in SCLC

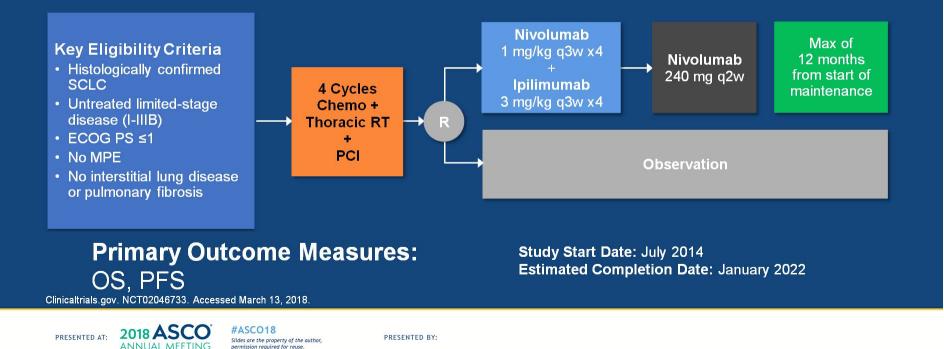
- IMpower 133: Phase III randomized, double-blind, placebo-controlled trial of carboplatin + etoposide +/- atezolizumab in ES-SCLC
- 403 patients, randomized 1:1
- June 25, 2018 Press Release: Study met it's co-primary endpoints of statistically significant improvement in PFS and OS!

Ongoing pivotal studies and emerging strategies

PRESENTED BY:

34

Presented By Taofeek Owonikoko at 2018 ASCO Annual Meeting


NRG-LU005: Phase II/III randomized study of chemoradiation versus chemoradiation plus atezolizumab

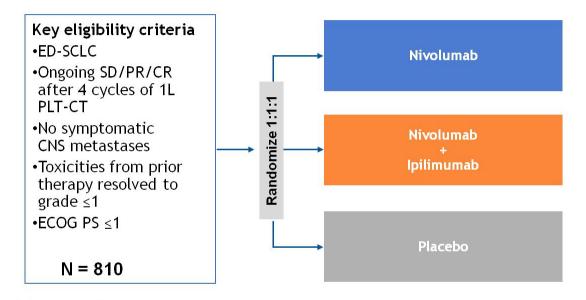
Presented By Taofeek Owonikoko at 2018 ASCO Annual Meeting

CA184-310 (STIMULI): Phase 2 trial of consolidation nivolumab and ipilimumab in limited-stage SCLC after chemo-radiotherapy

N=260

Frontline immunotherapy trials in extensive stage SCLC

Study	Population	Regimen
IMpower133	Treatment naïve SCLC Phase I/III	Carboplatin/Etoposide Vs. Carboplatin/Etoposide/Atezolizumab
KEYNOTE-604	Treatment naïve SCLC Phase I/III	Pembrolizumab/Etoposide/Platinum Vs. Etoposide/Platinum
Caspian Study	Treatment naïve SCLC Phase III	Etoposide/Platinum Vs. Etoposide/Platinum + Durvalumab + Tremelimumab Etoposide/Platinum Vs. Etoposide/Platinum/Durvalumab

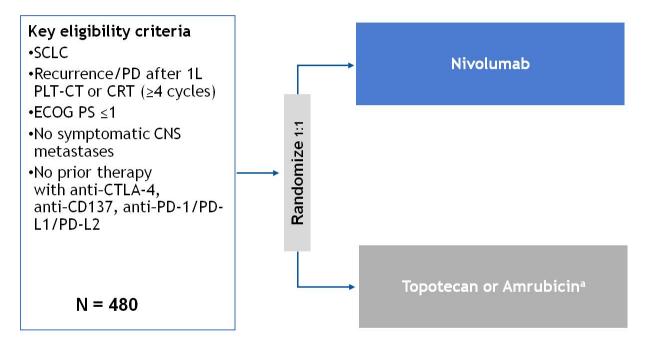


#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY:

Presented By Taofeek Owonikoko at 2018 ASCO Annual Meeting

CheckMate 451: Phase 3 study of maintenance nivolumab ± ipilimumab in SCLC

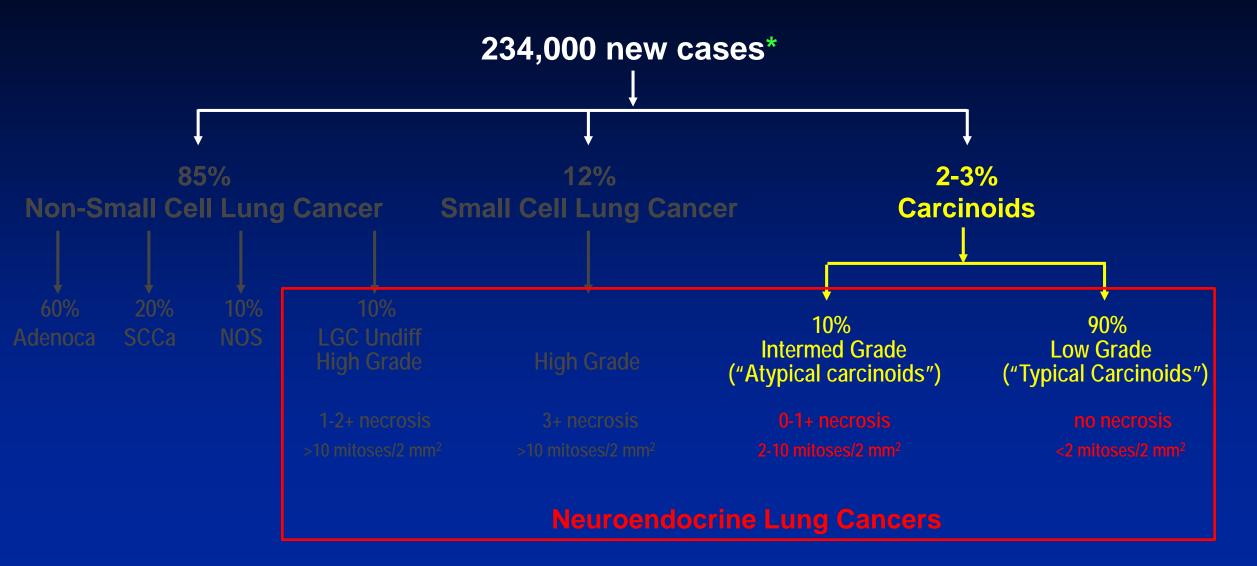


- Primary outcome measures:
 - OS, PFS
- Secondary outcome measures:
 - OS and PFS descriptive analyses: nivolumab vs nivolumab + ipilimumab

1L = first-line; CT = chemotherapy; CRT = chemoradiation therapy; CTLA-4 = cytotoxic T lymphocyte antigen-4; PD-1 = programmed-death 1; PD-L2 = PD ligand 2 PLT = platinum-based; ^aWhere locally approved

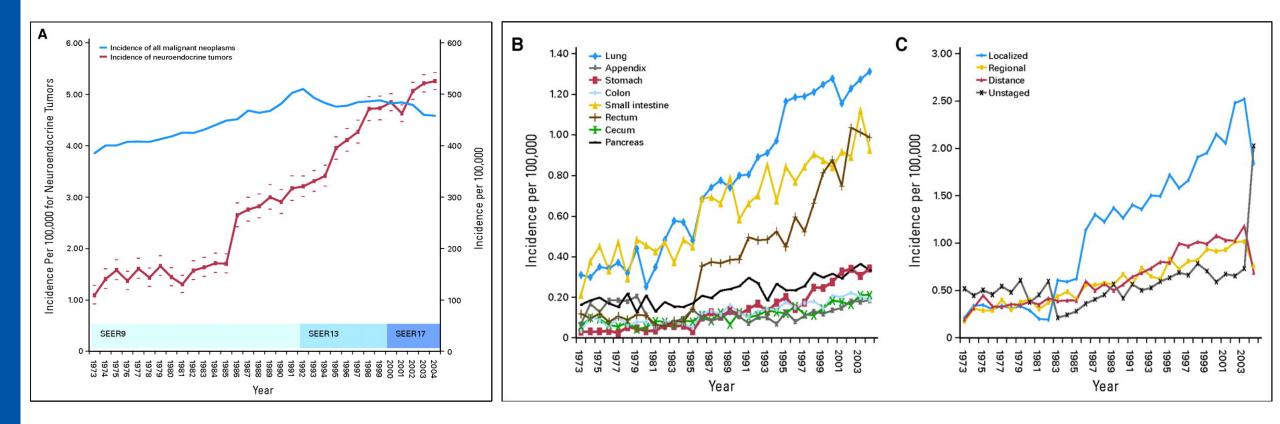
Presented By Taofeek Owonikoko at 2018 ASCO Annual Meeting

CheckMate 331: Phase 3 study of nivolumab versus topotecan/amrubicin in relapsed SCLC



- Primary outcome measures: OS
- Secondary outcome measures: PFS, ORR

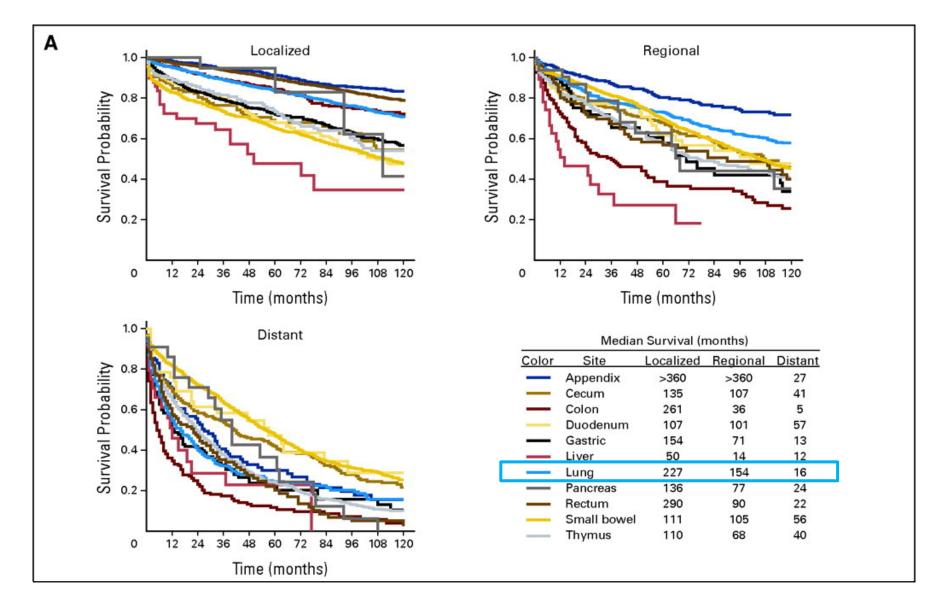
SCLC: Take Home Message


- After 30 years, the SOC for the treatment SCLC is finally about to change, perhaps dramatically
 - Immune checkpoint inhibitors will have an important role to play in ~40% of patients with high PDL-1 or high TMB
 - FDA approval of atezolizumab is imminent; others will likely follow
 - CAR-T therapy can't be much further behind
 - Targeted therapy (targeting DLL-3) is promising
 - Rovalpituzumab tesirine will likely obtain 3L FDA approval

Lung Cancer in the U.S. in 2018

*Noone AM et al. SEER Cancer Statistics Review, 1975-2015, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2015, based on November 2017 SEER data posted to April 2018.

Incidence of NETs over time by site and disease stage


Annual age-adjusted incidence (# cases per 100,000 population), 1973-2004

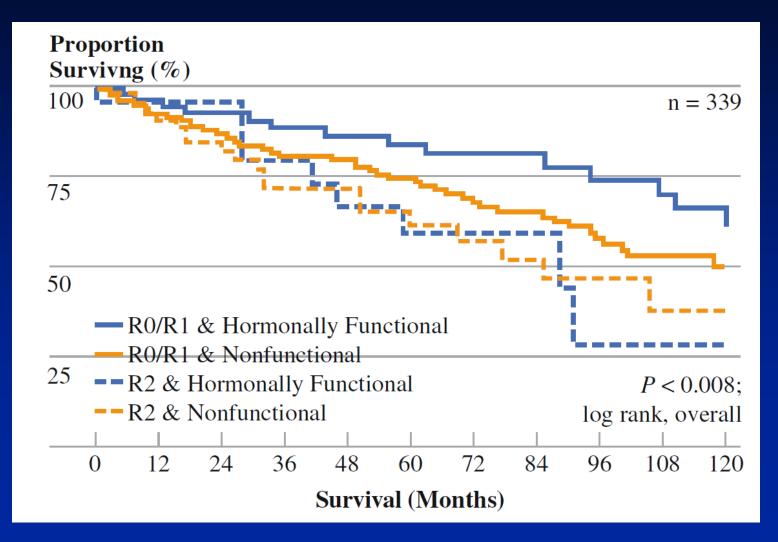
Published in: James C. Yao; Manal Hassan; Alexandria Phan; Cecile Dagohoy; Colleen Leary; Jeannette E. Mares; Eddie K. Abdalla; Jason B. Fleming; Jean-Nicolas Vauthey; Asif Rashid; Douglas B. Evans; JCO 2008, 26, 3063-3072. DOI: 10.1200/JCO.2007.15.4377

Treatment Options

Localized disease: surgery

Patient Survival Dependent on Extent of Disease

Published in: James C. Yao; Manal Hassan; Alexandria Phan; Cecile Dagohoy; Colleen Leary; Jeannette E. Mares; Eddie K. Abdalla; Jason B. Fleming; Jean-Nicolas Vauthey; Asif Rashid; Douglas B. Evans; JCO 2008, 26, 3063-3072 DOI: 10.1200/JCO.2007.15.43


Treatment Options

- Localized disease: surgery
- Locally advanced: ?Adjuvant chemotherapy +/- radiation
 No good evidence supporting routine use

Treatment Options

- Localized disease: surgery
- Locally advanced: ?Adjuvant chemotherapy +/- radiation
 <u>No good evidence supporting routine use</u>
- Metastatic disease:
 - Surgery (for "oligometastases")

Kaplan-Meier Survival following Resection of Liver Metastases (stratified by margin status and hormonal function)

Mayo SC et al. Surgical management of hepatic neuroendocrine tumor metastasis: results from an International Multi-Institutional Analysis. Ann Surg Oncol 2010; 17:3129-3136.

Treatment Options

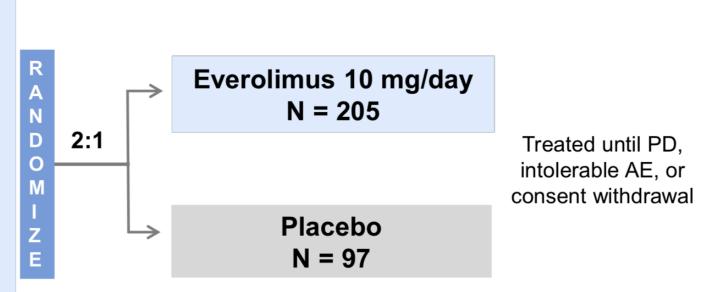
- Localized disease: surgery
- Locally advanced: ?Adjuvant chemotherapy +/- radiation
 No good evidence supporting routine use
- Metastatic disease:
 - Surgery (for "oligometastases")
 - SSAs (octreotide and lanreotide)

SSAs Recommended for:

- All TCs and ACs with 'Carcinoid" symptoms
 - Recommended 1st line option
- 70% of TCs or ACs have + SSRT status (+Octreotide scan)
- Randomized clinical trials in progress

Treatment Options

- Localized disease: surgery
- Locally advanced: ?Adjuvant chemotherapy +/- radiation
 No good evidence supporting routine use
- Metastatic disease:
 - Surgery (for "oligometastases")
 - SSAs (octreotide and lanreotide)
 - Targeted therapy (everolimus sunitinib, bevacizumab)
 - Interferon
 - Chemotherapy (platinum + etoposide, temozolomide)
 - PRRT (for SSTR-expressing NETs)
 - 1/26/18 FDA approved ¹⁷⁷LU-Dotatate for treatement of SSRT+ GEP-NETs

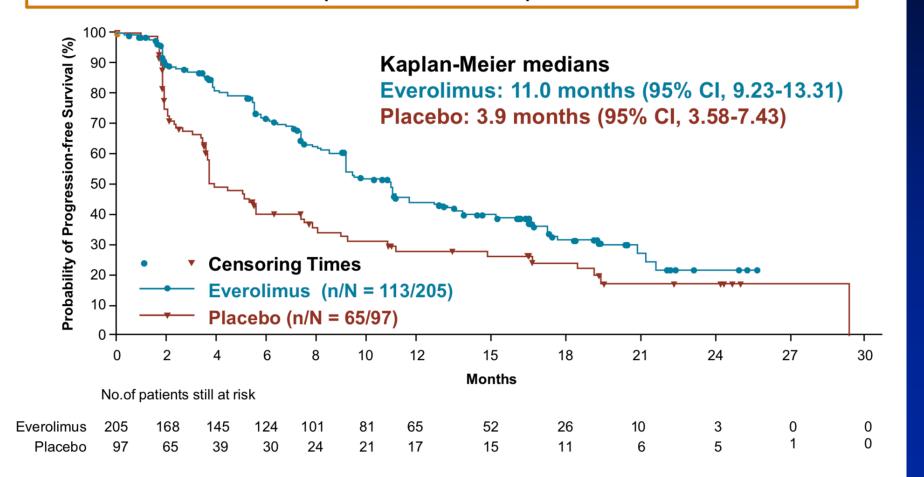

RADIANT 4 Study Design

Patients with welldifferentiated (G1/G2), advanced, progressive, nonfunctional NET of lung or GI origin (N = 302)

- Absence of active or any history of carcinoid syndrome
- Pathologically confirmed advanced disease
- Enrolled within 6 months from radiologic progression

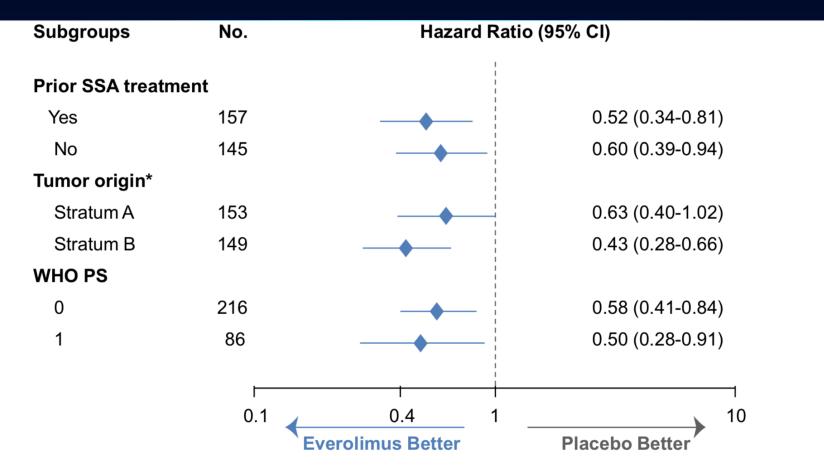
Endpoints:

- **Primary:** PFS (central)
- Key Secondary: OS
- Secondary: ORR, DCR, safety, HRQoL (FACT-G), WHO PS, NSE/CgA, PK



Stratified by:

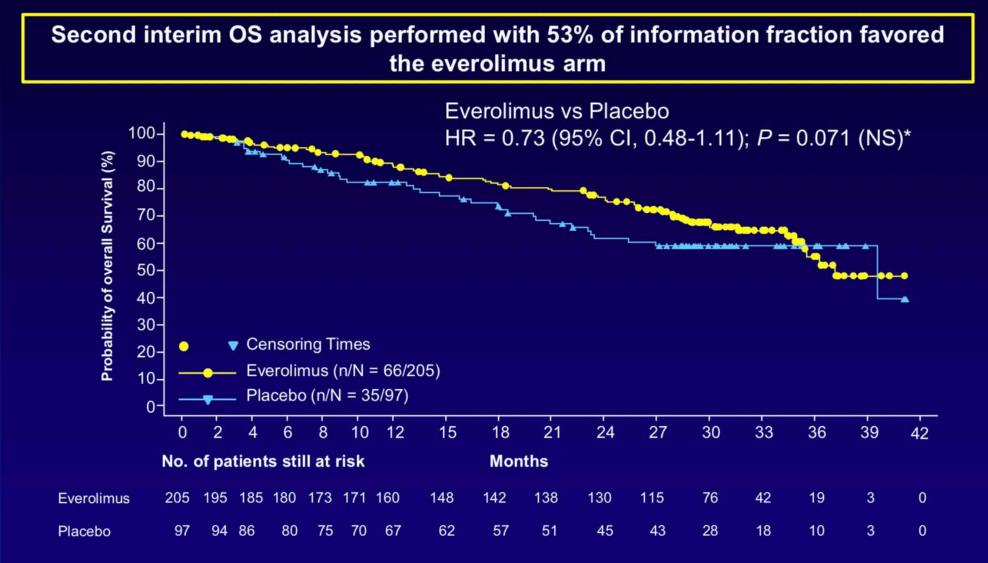
- Prior SSA treatment (yes vs. no)
- Tumor origin (stratum A vs. B)*
- WHO PS (0 vs. 1)


Progression Free Survival

52% reduction in the relative risk of progression or death with everolimus vs placebo HR = 0.48 (95% CI, 0.35-0.67); *P* < 0.00001

P-value is obtained from the stratified one-sided log-rank test; Hazard ratio is obtained from stratified Cox model.

PFS Benefit Across Multiple Patient Subgroups



*Based on prognostic level, grouped as: **Stratum A** (better prognosis) - appendix, caecum, jejunum, ileum, duodenum, and NET of unknown primary). **Stratum B** (worse prognosis) - lung, stomach, rectum, and colon except caecum).

Hazard ratio obtained from unstratified Cox model.

NET, neuroendocrine tumors; SSA, somatostatin analogues; WHO PS, World Health Organization performance status.

Second Interim Overall Survival Analysis

^{*}P-value boundary for significance = 0.0020.

P-value is obtained from the stratified log-rank test; Hazard ratio is obtained from stratified Cox model. Abbreviation: NS, not significant.

ADVERSE EVENTS

	Evero N = 1		Placebo N = 98		
Drug-related adverse events	All grades	Grade 3/4	All grades	Grade 3/4	
Stomatitis*	63%	9%	19%	0	
Diarrhea	31%	7%	16%	2%	
Fatigue	31%	3%	24%	1%	
Infections [†]	29%	7%	4%	0	
Rash	27%	1%	8%	0	
Peripheral edema	26%	2%	4%	1%	
Nausea	17%	1%	10%	0	
Anemia	16%	4%	2%	1%	
Decreased appetite	16%	1%	6%	0	
Asthenia	16%	1%	5%	0	
Non-infectious pneumonitis [‡]	16%	1%	1%	0	
Dysgeusia	15%	1%	4%	0	
Cough	13%	0	3%	0	
Pruritus	13%	1%	4%	0	
Pyrexia	11%	2%	5%	0	
Dyspnea	10%	1%	4%	1%	
Hyperglycemia	10%	3%	2%	0	

Presented are drug-related adverse events in ≥10% of patients (safety set).

*Includes stomatitis, aphthous stomatitis, mouth ulceration, and tongue ulceration.

Treatment of Pulmonary Neuroendocrine Cancers: New Directions

- Mutations in TC and ACs
 - MEN1 (tumor suppressor) muationally inactivated/deleted in 30-40% of cases
 - P53 mutations (exons 5-8) in ~20%
- Immunotherapy
 - PDL-1 expression and tumor mutational burden generally very low
 - MMR deficiencies in ~ 10% may identify a small subset of "responsive" patients
- ROVA-T (a DLL-3 antibody-drug conjugate)
 - Initially promising results in SCLC failed further follow-up primarily due to low efficacy and high toxicity

PNETS: Take Home Message

- Neuroendocrine cancers (including PNETS) are an increasing group of disease entities with an increasing need for medical oncology approaches
- As a group they have interesting differences from the more common medical oncology disease, but the approach is the same
 - Standard staging/diagnostics to define the extent of disease
 - Surgery remains the dominant treatment modality for localized and "oligometastatic" disease
 - Symptom management (flushing, diarrhea, heart disease) has high importance
 - New treatment options will be developed (keep abreast)

Back-up Slides

Dose-Intensity with Cytokine Support

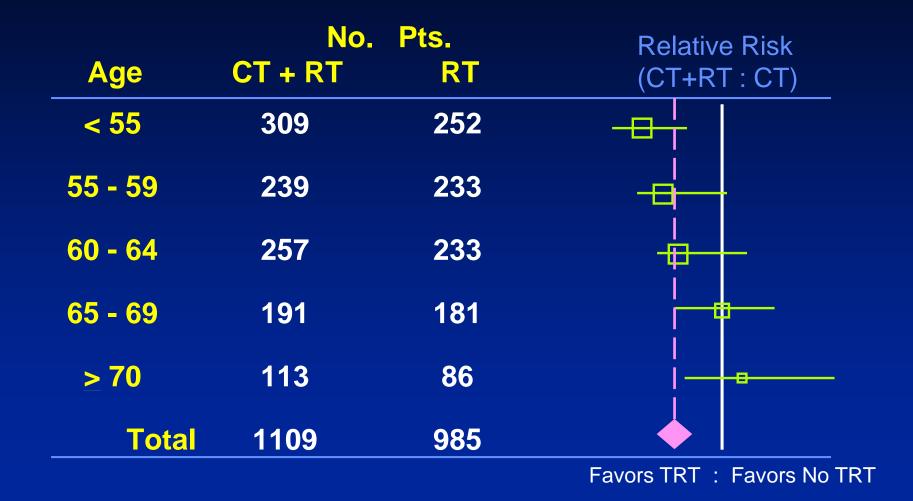
Investigators	Regimen	No. Pts.	RDI	Median Survival
Crawford et al,1991	CAE +/- GCSF	101 110	NR	11.4 12.2
Hamm et al, 1991	CAE +/- GCSF (10 mcg/20mcg)	NR	89% (10) 78% (0)	NS
Fukuoka et al,1992	CODE +/- GCSF	27 26	85% 76%	14.8 _{p<.05} 8.8
Trillet-Lenoir et al, 1993	CDE +/- GCSF	64 66	96% 88%	13.9 12.8
Miles et al, 1994	PE/IA +/- GCSF	23 17	84% 82%	NR
Woll et al, 1995	VICE +/- GCSF	34 31	1.34 1.13	17.2 16.2

Small Cell Lung Cancer Treatment: Limited Disease

Combination chemotherapy

- » EP (etoposide + cisplatin)
- » moderately intensive doses
- » no observed benefit of treatment >4-6 cycles

Radiotherapy


- » increases survival by about 15-20%
- » most effective when given early and concurrently with chemotherapy
- » may increase morbidity/mortality of treatment
- » altered versus standard fractionation?
- » role of PCI?

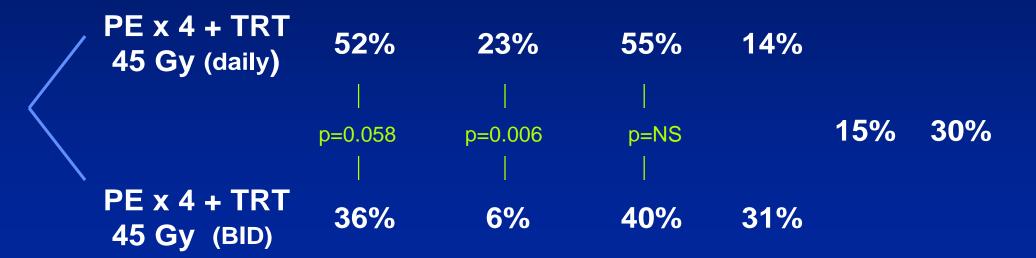
Meta-Analysis of Thoracic Radiotherapy in SCLC

TRIAL	СТ	RT	Timing	Start Day	No.Pts.
Copenhagen	CCMV	40/10,splt	Con	43	145 ¦ ┿━━→
Sydney	CAV	40/20	Seq	63	94
NCI	CMC/VAP	40/15	Con	1-3	97 -
SECSG I	CAV	40/14,splt	Alt	29	295
London	VA/CM	40/20	Seq	85	138 -
SWOG	VME/CAV	48/22,splt	Seq	85	103
SAKK	CAE/PAE	45/25,splt	Seq	127	70
Uppsala	CAVWCCMV	40/20	Seq	77	57
CALGB	CAE/CAV	50/24	Con	1 or 64	426
ECOG	ССМ	50/25	Seq	43	264 unpublished
Okayama	CVMP/AE	40/20	Seq	30	56
SECSG	CAV	45/15,splt	Con	1	322 -
GETCB	CAEC	32/8	Seq	224	$36 \xrightarrow{I}$
Total					2103 🔶 📃

Pignon JP et al, *NEJM* 327:1618, 1992

META-ANALYSIS OF TRT IN SCLC Relationship to Patient Age

Pilot Studies Using Cisplatin/Etoposide + TRT in SCLC


	No.		No. CT		<mark>% Su</mark>	rvival	5 Yr Local
Group	Pts.	Sequence	Pre-TRT	Frctntn	2 Yr	5 Yr	Failure(%)
SWOG	123	С	0	Daily	42	25	36
MSKCC-1	36	С	4	Daily	50	28	27
Penn	28	С	0	BID	54	36	3
ECOG-I	41	С	0	BID	36	-	-
ECOG-II	41	Α	0	BID	40	-	-
NCI/Navy	36	С	0	BID	65	-	-
Мауо	27	С	3	Split/BID	39	-	20
MSKCC-2	29	S	4	BID	19	-	-

Cisplatin + Etoposide (PE) + Concurrent Thoracic Radiotherapy (TRT) [INT-0096] (Daily versus BID)

Treatment	No.	SURVIVAL			
Arm	Pts.	Median	2-yr	5-yr	
PE x 4 + TRT 45 Gy (daily)	206	18.6 mos	40.9%	16%	
		p = 0.	043		
PE x 4 + TRT 45 Gy (BID)	211	22.0 mos	46.1%	26%	

Cisplatin + Etoposide (PE) + Concurrent Thoracic Radiotherapy (TRT) [INT-0096] (Daily versus BID)

META-ANALYSIS OF PCI IN SCLC

(Arriagada R et al, Proc ASCO, 1998)

- 7 Randomized trials
 - 987 pts in CR (1977 to 1995)
 - PCI doses = 24 40 Gy in 8 20 fractions
 - Median follow-up = 5.9 yrs
- Results
 - Hazard ratio for death(PCI:Control) = 0.84
 - (16% reduction in mortality)
 - Overall survival @ 3 yrs = 20.7% vs 15.3%
 - Benefit (decrease in brain mets) was dose-dependent

Small Cell Lung Cancer Treatment: Extensive Disease

- Combination chemotherapy (4-6 cycles)
 » EP (etoposide + cisplatin) or EC (carboplatin)
 » CAV (cyclophosphamide + vincristine + doxorubicin)
- Radiotherapy
 - » no survival benefit
 - » palliative only

Carboplatin + Etoposide versus Cisplatin + Etoposide in Previously Untreated SCLC

Kosmidis et al. (Hellenic Cooperative Oncol Group) Semin Oncol 21:23, 1994

	No. of Pts.			
Treatment Arm	LD *	ED		
Carboplatin 300 mg/m ² IV x d 1 Etoposide 100 mg/m ² IV x d 1-3	41	31		
Cisplatin 50 mg/m ² IV x d 1-2 Etoposide 100 mg/m ² IV x d 1-3	41	30		

* LD pts. received 45 Gy thoracic radiation concurrent with 4th cycle of chemotherapy. LD pts. achieving CR received 25 Gy PCI

Carboplatin + Etoposide versus Cisplatin + Etoposide in Previously Untreated SCLC Efficacy

	% Overall			M	edian	2 Yr	
	No. Pts.	Response	% C R	TTP	Survival	Survival	
Carboplatin Etoposide	72 (41 LD) (31 ED)	76% (86%) (64%)	29% (37%) (16%)	8.6 m	11.8 m	12.5%	
Cisplatin Etoposide	71 (41 LD) (30 ED)	63% (73%) (50%)	30% (44%) (10%)	8.4 m	n 12.5 m	14%	

Carboplatin + Etoposide versus Cisplatin + Etoposide in Previously Untreated SCLC Toxicity

		Leukopenia		Thrombo	N / V		Neuro	
	No. Pts.	Gr 3	Gr 4	Gr 4	Gr 2	Gr 3	Gr 1	Gr 2
Carboplatin Etoposide	72	10.3%	6.8%	6%	25%	0%	18%	0%
		p =	.09		p = .	001	p =	.002
Cisplatin Etoposide	71	37.5%	12.5%	4%	71%	4%	41%	12%