Immunotherapy in Heme Malignancies

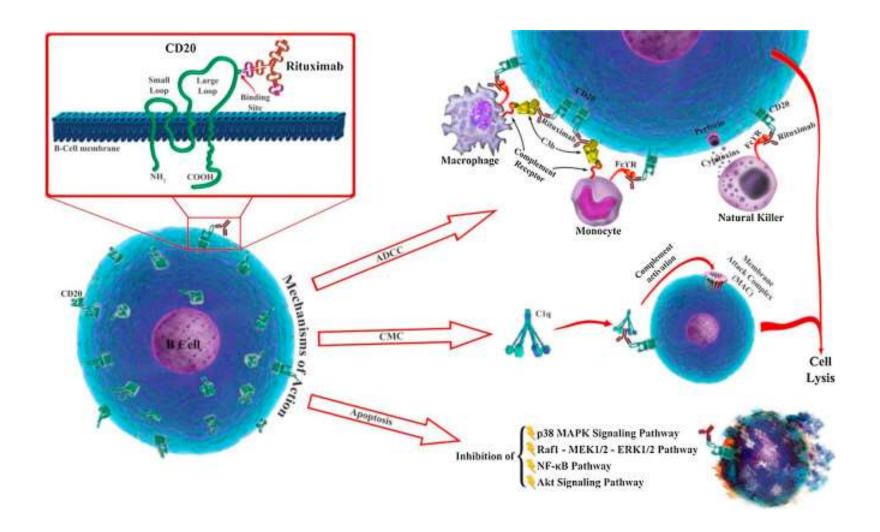
Arta Monir Monjazeb M.D., Ph.D.
Associate Professor
Department of Radiation Oncology
Laboratory of Cancer Immunology
CCSG Staff Investigator for Immunotherapy

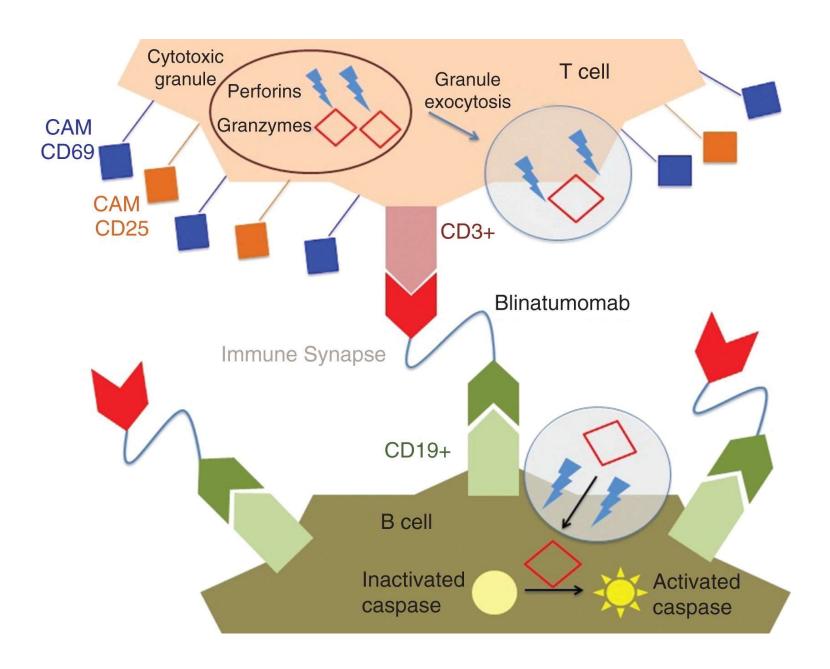
Disclosures

- Research Funding and / or Advisory Boards
 - Genetech
 - BMS
 - Merck
 - Incyte
 - Dynavax
 - Transgene
 - Astra Zeneca

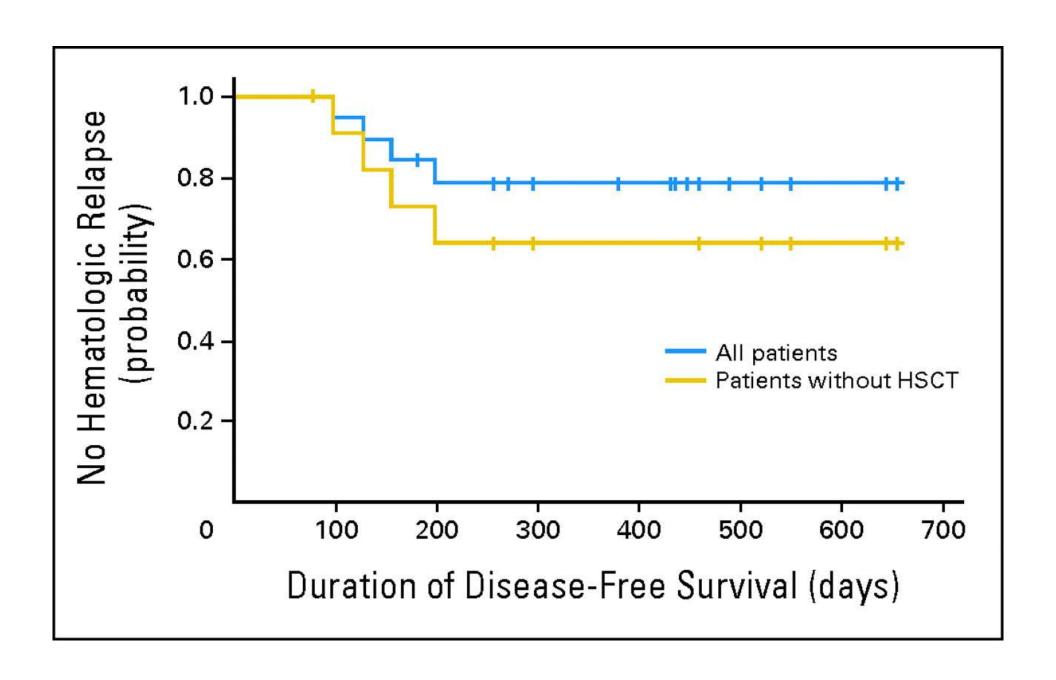
Immunotherapy for Leukemia

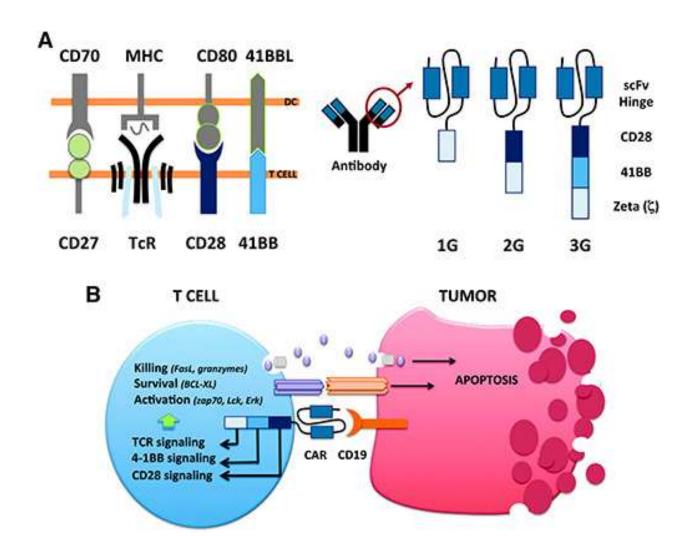
Targeted Antibodies


- Alemtuzumab (Campath®): a monoclonal antibody that targets the CD52 pathway; approved for subsets of patients with chronic lymphocytic leukemia (CLL)
- Blinatumomab (Blincyto®): a bispecific antibody that targets CD19 on tumor cells as well as CD3 on T cells; approved for subsets of patients with acute lymphoblastic leukemia (ALL)
- Gemtuzumab ozogamicin (MyloTarg®): an antibody-drug conjugate
 that targets the CD33 pathway and delivers toxic drugs to cancer cells;
 approved for subsets of adult and pediatric patients with CD33positive acute lymphoblastic leukemia (ALL)
- Inotuzumab ozogamicin (Besponsa®): an antibody-drug conjugate that targets the CD22 pathway and delivers toxic drugs to cancer cells; approved for subsets of patients with advanced acute lymphoblastic leukemia (ALL)
- Obinutuzumab (Gazyva®): a monoclonal antibody that targets the CD20 pathway; approved for subsets of patients with CD20-positive chronic lymphocytic leukemia (CLL), including as a first-line therapy
- Ofatumumab (Arzerra®): a monoclonal antibody that targets the CD20 pathway; approved for subsets of patients with CD20-positive chronic lymphocytic leukemia (CLL), including as a first-line therapy
- Rituximab (Rituxan®): a monoclonal antibody that targets the CD20 pathway; approved for subsets of patients with chronic lymphocytic leukemia (CLL), including as a first-line therapy


Adoptive Cell Therapy

 Tisagenlecleucel (Kymriah®): a CD19-targeting CAR T cell immunotherapy; approved for subsets of children and young adult patients with acute lymphoblastic leukemia (ALL)


Immunomodulators

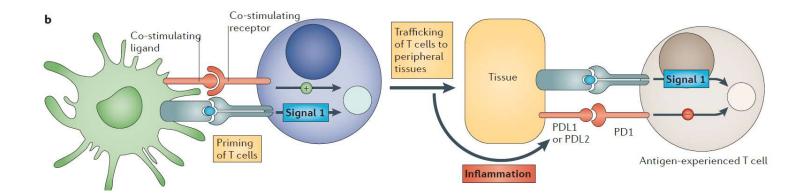

- Interferon alfa-2a (Roferin®-A): a cytokine that targets the IFNAR1/2 pathway; approved for subsets of patients with hairy cell leukemia and Philadelphia chromosome positive chronic myeloid leukemia (CML)
- Interferon alfa-2b (Intron A®): a cytokine that targets the IFNAR1/2
 pathway; approved for subsets of patients with hairy cell leukemia and
 aggressive follicular non-Hodgkin lymphoma

Primary Investigator	Indication	Phase	No. of patients	Treatment regimen	Response	Overall Survival
Goebeler et al. 2016 ²³	Adult R/R B-NHL	I	76	Continuous infusion, escalating doses. MTD 60µg/m²/day given in n = 35	At MTD: ORR FL = 80% MCL = 71% DLBCL = 55% Other = 50%	Not available (Median response duration 404 days)
Viardot et al. 2016 ²⁴	Adult R/R DLBCL	II	25	Continuous infusion with weekly dose escalation, to target 112 µg/ day	ORR 43%	5.0 months
Topp et al. 2011 ²⁵	Adult MRD positive B-ALL	II	21	Continuous infusion 15 µg/m²/day	80% MRD response	Not available (At median follow- up 50.8 months 50% still in remission)
Gökbuget et al. 2017 ²⁸	Adult MRD positive B-ALL	II	116	Continuous infusion 15 µg/m²/day	78% MRD response post cycle 1, 80% MRD response overall	36.4 months
Topp et al. 2014 ²⁹	Adult R/R B-ALL	H	36	5–30 μg/m²/day	69% CR/CRh (88% MRD response post cycle 1)	9.8 months
Topp et al. 2015 ³¹	Adult R/R B-ALL	II	189	9 μg/day for first week cycle 1, 28 μg/day thereafter	43% CR/CRh (82% MRD response)	6.1 months
Martine <mark>l</mark> li et al. 2015 ³⁵	Adult Ph- positive R/R B-ALL	II	45	9 μg/day for first week cycle 1, 28 μg/day thereafter	CR/CRh 36% (86% MRD response)	7.1 months
Kantarjian et al. 2017 ³³	Adult R/R B-ALL	Ш	405 (B: 271, SOC 134)	9 μg/day for first week cycle 1, 28 μg/day thereafter	B: 46% CR/CRh SOC: 28% CR/CRh	B: 7.8 months SOC: 4.0 months
Von Stackelberg et al. 2016 ³⁶	Paediatric R/ R B-ALL	1/11	70 (at recommended dosage)	In phase II: 5 μg/m²/day for first week, 15 μg/m²/day thereafter	38.6% CR	7.5 months

https://www.genengnews.com/insights/car-t-cell-therapy/

Immunotherapy for Lymphoma

Targeted Antibodies

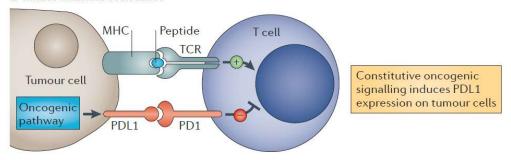

- Brentuximab vedotin (Adcetris®): an antibody-drug conjugate that targets the CD30 pathway and delivers toxic drugs to tumors; approved for subsets of patients with either Hodgkin or non-Hodgkin lymphoma, including as a first-line therapy
- Ibritumomab tiuxetan (Zevalin®): an antibody-drug conjugate that targets the CD20 pathway and delivers toxic drugs to tumors; approved for subsets of patients with non-Hodgkin lymphoma
- Obinutuzumab (Gazyva®): a monoclonal antibody that targets the CD20 pathway; approved for subsets of patients with non-Hodgkin lymphoma, including as a first-line therapy
- Polatuzumab vedotin (PolivyTM): an antibody-drug conjugate that targets the CD79b pathway and delivers toxic drugs to tumors; approved for subsets of patients with non-Hodgkin lymphoma
- Rituximab (Rituxan®): a monoclonal antibody that targets the CD20 pathway; approved for subsets of patients with CD20-positive non-Hodgkin Lymphoma (NHL), including as a first-line therapy

Immunomodulators

- Nivolumab (Opdivo®): a checkpoint inhibitor that targets the PD-1/PD-L1 pathway; approved for subsets of patients with classical Hodgkin lymphoma
- Pembrolizumab (Keytruda®): a checkpoint inhibitor that targets the PD-1/PD-L1 pathway; approved for subsets of patients with classical Hodgkin lymphoma and PMBCL
- Interferon alfa-2b (Intron A®): a cytokine that targets the IFNAR1/2 pathway; approved for subsets of patients with follicular lymphoma

Adoptive Cell Therapy

- Axicabtagene ciloleucel (Yescarta®): a CD19-targeting CAR T cell immunotherapy; approved for subsets of patients with non-Hodgkin lymphoma
- **Tisagenlecleucel (Kyrmriah®):** a CD19-targeting CAR T cell immunotherapy; approved for subsets of children and young adult patients with acute lymphoblastic leukemia (ALL)

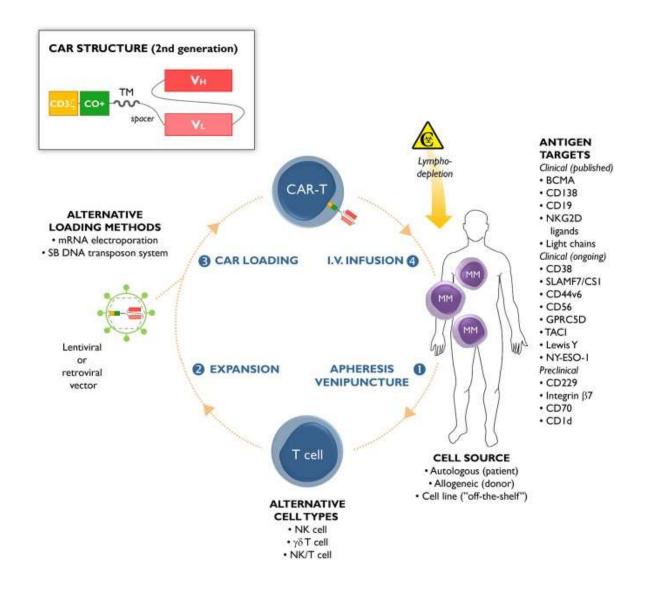


a Innate immune resistance

b Adaptive immune resistance

Tumour

cell

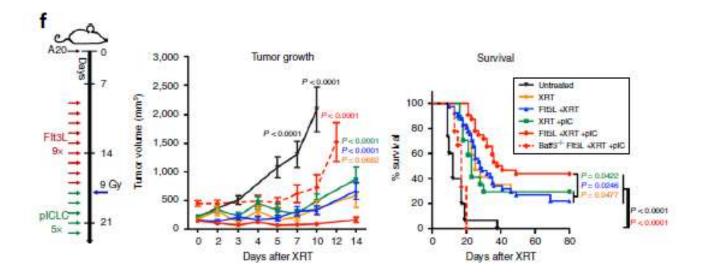


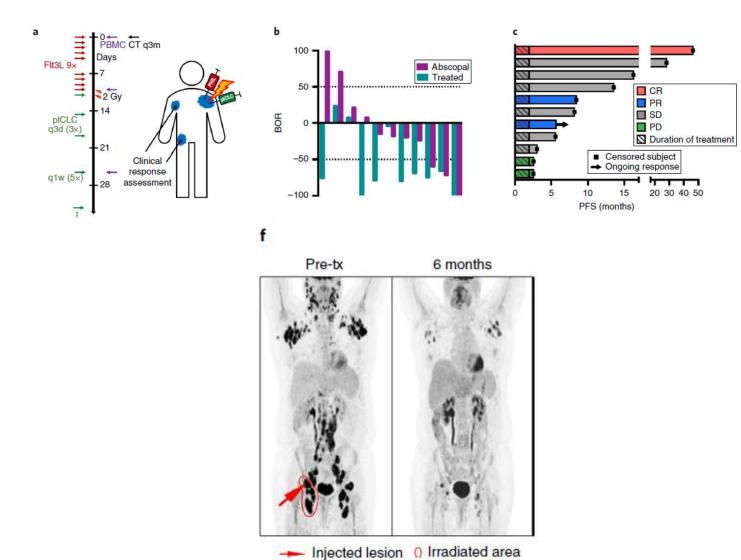
T cell-induced

PD1

PDL1

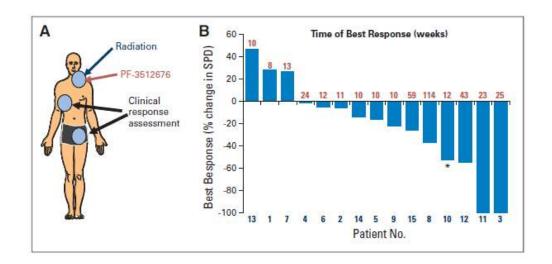
What's Next?

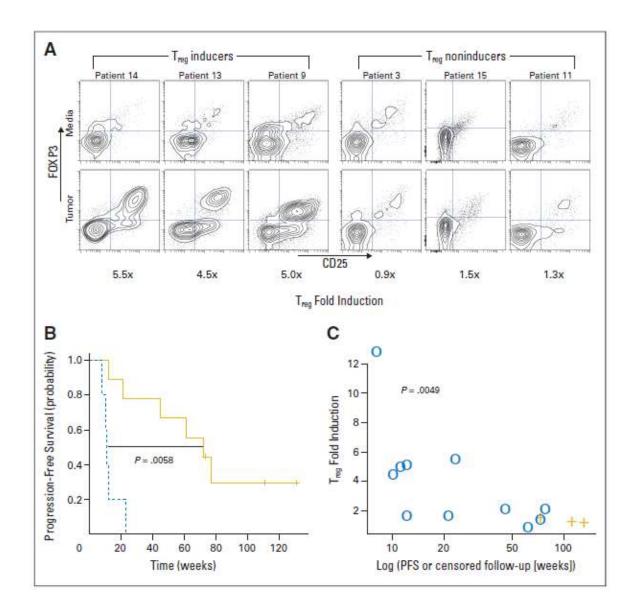



Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination

Linda Hammerich ^{1,2}, Thomas U. Marron^{1,2}, Ranjan Upadhyay^{1,2}, Judit Svensson-Arvelund^{1,2}, Maxime Dhainaut^{2,3}, Shafinaz Hussein⁴, Yougen Zhan⁴, Dana Ostrowski¹, Michael Yellin⁵, Henry Marsh ^{1,2}, Andres M. Salazar⁶, Adeeb H. Rahman², Brian D. Brown^{2,3}, Miriam Merad^{2,7} and Joshua D. Brody ^{1,2*}

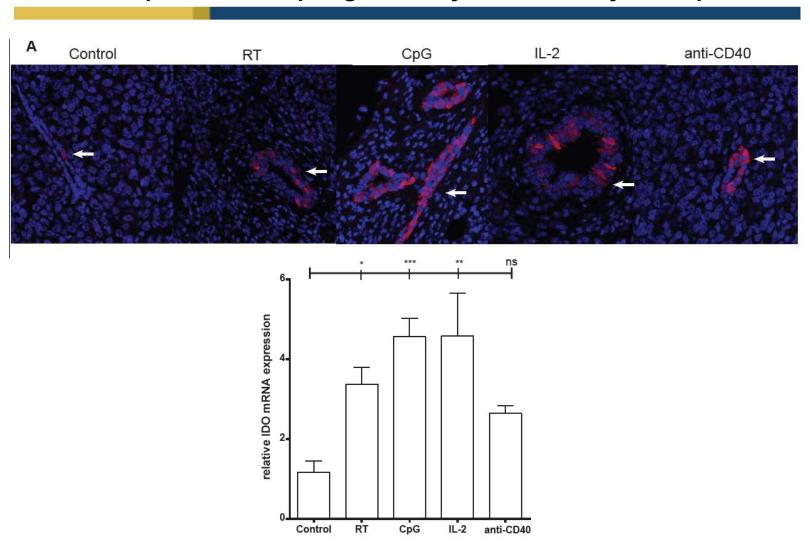
Murphy Lab Journal Club 7/17/2019


In-situ vaccination with Flt3L, RT, and pICLC

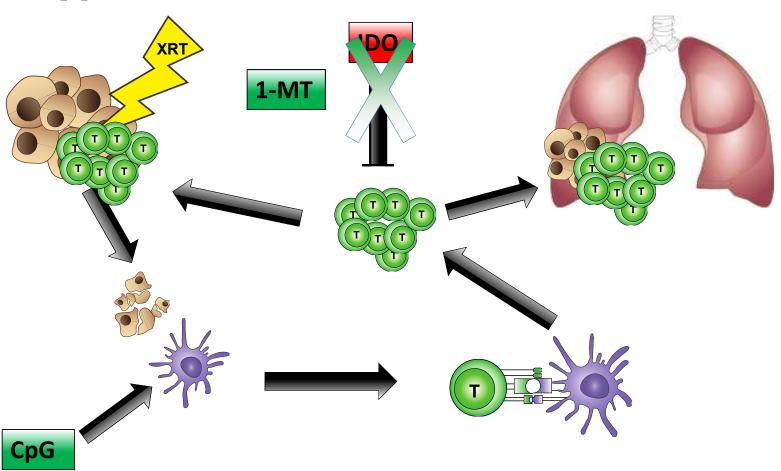


In Situ Vaccination With a TLR9 Agonist Induces Systemic Lymphoma Regression: A Phase I/II Study

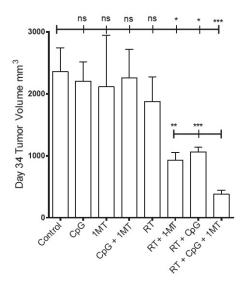
Joshua D. Brody, Weiyun Z. Ai, Debra K. Czerwinski, James A. Torchia, Mia Levy, Ranjana H. Advani, Youn H. Kim, Richard T. Hoppe, Susan J. Knox, Lewis K. Shin, Irene Wapnir, Robert J. Tibshirani, and Ronald Levy

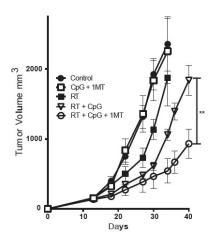


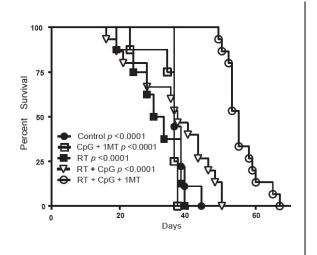
Cancer Therapy: Clinical


Blocking Indolamine-2,3-Dioxygenase Rebound Immune Suppression Boosts Antitumor Effects of Radio-Immunotherapy in Murine Models and Spontaneous Canine Malignancies

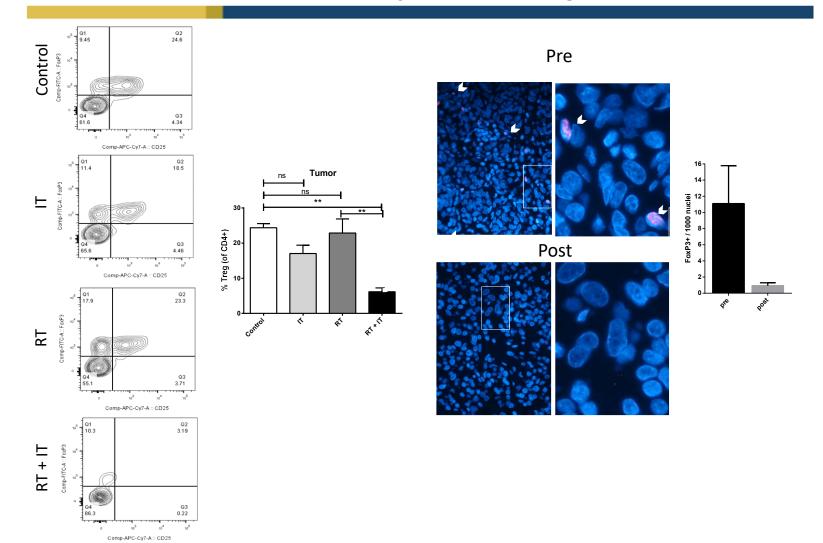
Arta M. Monjazeb¹, Michael S. Kent², Steven K. Grossenbacher³, Christine Mall³, Anthony E. Zamora³, Annie Mirsoian³, Mingyi Chen⁴, Amir Kol⁵, Stephen L. Shiao⁶, Abhinav Reddy¹, Julian R. Perks¹, William T.N. Culp², Ellen E. Sparger², Robert J. Canter⁷, Gail D. Sckisel³, and William J. Murphy^{3,8}

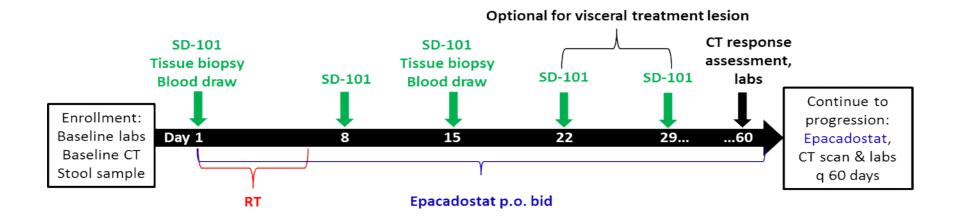

IDO Expression is Up-regulated by Inflammatory Therapies




Hypothesis

IDO Blockade Improves Anti-tumor Effects of RT + CpG




Canine Trial: Abscopal Responses

Triple Therapy Reduces Tregs

UCDCC 271

Concurrent RT (Days 1-5)					
•	Cohort 1 (solid tumors): (8 Gy x 3) or (4 Gy x 5)				
•	Cohort 2 (lymphoma): (8 Gy x 3) or (4 Gy x 5) or (2 Gy x 2)				
	+				
Intralesional SD-101 (Day 1, 8, 15, 22, 29)					
	4 mg injection into RT treatment lesion				
	+				
Epacadostat					
	50-300 mg PO bid				

Phase II Expansion Cohorts					
Simon Two-Stage Design					
Cohort 1:	Solid tumor (16-30 patients) P0=0.05, p1=0.20, r1=1, n1=16, rTot=3, nTot=30, α=0.05, power=0.8				
Cohort 2:	Lymphoma (7-14 patients) P0=0.05, p1=0.3, r1=0, n1=7, rTot=2, nTot=14, α=0.05, power=0.8				

Phase I Dose Finding 3+3 Design: (3-6 patients per dose level, 6-18 patients total)				
Dose level -3:	50 mg PO bid			
Dose level -2:	100 mg PO bid			
Dose level -1:	200 mg PO bid			
Dose level 1:	300 mg PO bid			

Best Response (irRECIST)

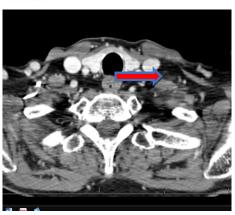
$$OR = 4/15 (2 CR)$$

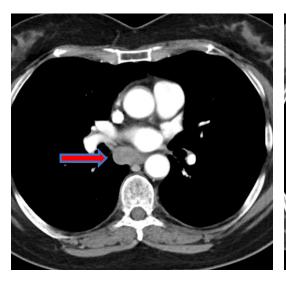
$$SD = 8/15$$

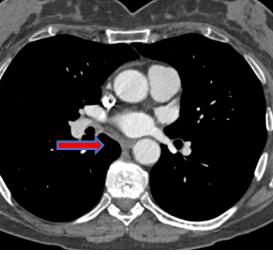
$$PD = 3/15$$

$$DCR = 12/15$$

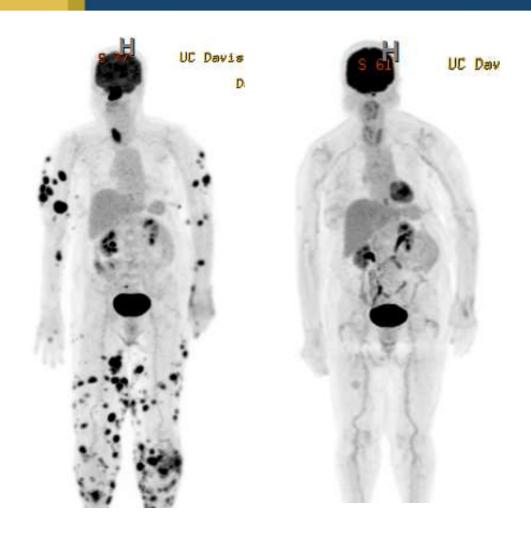
$$OR = 3/7 (2 CR)$$


$$SD = 3/7$$


$$PD = 1/7$$


$$DCR = 6/7$$

Response Pt 3



Response Pt 14

