
Advances in Immunotherapy

Arta M. Monjazeb, M.D., Ph.D. Associate Professor of Radiation Oncology Laboratory of Cancer Immunology CCSG Staff Investigator for Immunotherapy UC Davis Comprehensive Cancer Center

ARTA MONJAZEB, MD, PHD SYSTEMIC IMMUNOTHERAPY COMBINATIONS

RELEVANT FINANCIAL RELATIONSHIPS IN THE PAST TWELVE MONTHS BY PRESENTER OR SPOUSE/PARTNER.

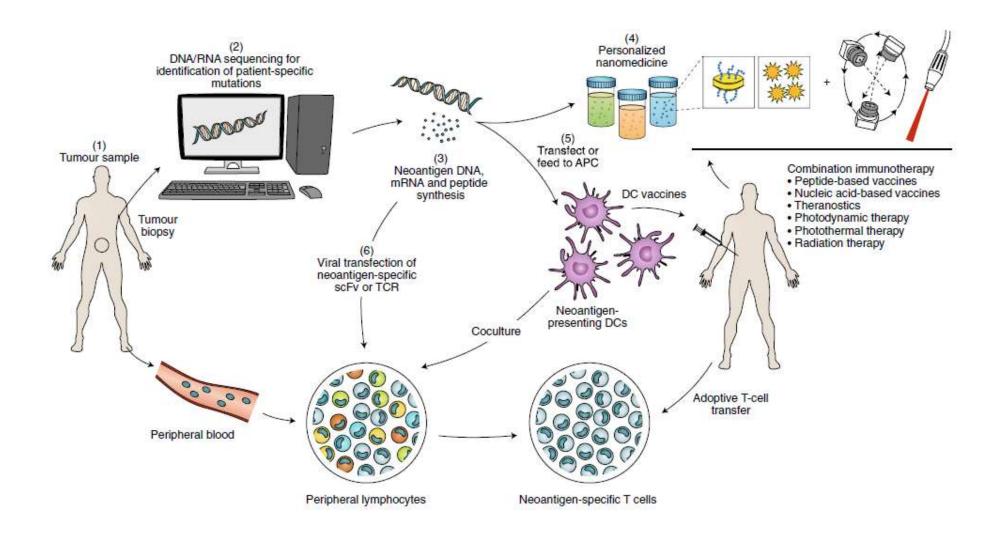
GRANT/RESEARCH SUPPORT: MERCK, TRANSGENE, BMS, INCYTE, DYNAVAX, GENENTECH CONSULTANT: ASTRA-ZENECA, DYNAVAX, INCYTE

THE SPEAKER WILL DIRECTLY DISCLOSURE THE USE OF PRODUCTS FOR WHICH ARE NOT LABELED (E.G., OFF LABEL USE) OR IF THE PRODUCT IS STILL INVESTIGATIONAL.

15th Annual California Cancer Conference Consortium

Advances in Immunotherapy

Cellular Therapies	CAR T cells, CAR NK cells, AT
Vaccines	Personalized Vaccines
Biomarkers	TMB, PD-L1, T cell inflamed
Single Agent IO	New Indications, New Therapies
IO + non-IO	New indications, Early Stage
10 + 10	Dual checkpoint, novel combinations



Advances in Immunotherapy

Cellular Therapies	CAR T cells, CAR NK cells, AT
Vaccines	Personalized Vaccines
Biomarkers	TMB, PD-L1, T cell inflamed
Single Agent IO	New Indications, New Therapies
IO + non-IO	New indications, Early Stage
10 + 10	Dual checkpoint, novel combinations

Personalized Immunotherapy

UCDAVIS

Kruger et al. Journal of Experimental & Clinical Cancer Research https://doi.org/10.1186/s13046-019-1266-0

Journal of Experimental & Clinical Cancer Research

REVIEW

Advances in cancer immunotherapy 2019 – latest trends

Stephan Kruger^{1,3*†}, Matthias Ilmer^{2,6†}, Sebastian Kobold³, Bruno L. Cadilha³, Stefan Endres³, Steffen Ormanns⁴, Gesa Schuebbe¹, Bernhard W. Renz^{2,6}, Jan G. D'Haese², Hans Schloesser⁵, Volker Heinemann^{1,6}, Marion Subklewe^{1,6,8}, Stefan Boeck^{1,6}, Jens Werner² and Michael von Bergwelt-Baildon^{1,6,7,8}

(2019) 38:268

nature biomedical engineering

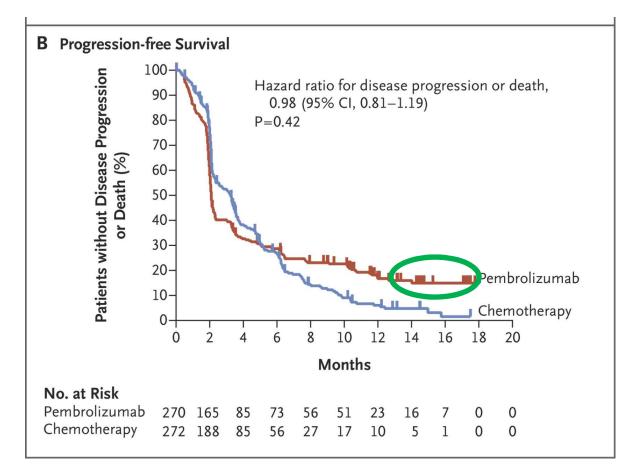
https://doi.org/10.1038/s41551-019-0436-x

PERSPECTIVE

Engineering patient-specific cancer immunotherapies

Lindsay Scheetz^{1,2,7}, Kyung Soo Park^{2,3,7}, Qiao Li⁴, Pedro R. Lowenstein^{5,6}, Maria G. Castro^{5,6}, Anna Schwendeman^{1,2} and James J. Moon^{1,2,3*}

CDAVIS


Open Access

Advances in Immunotherapy

Cellular Therapies	CAR T cells, CAR NK cells, AT
Vaccines	Personalized Vaccines
Biomarkers	TMB, PD-L1, T cell inflamed
Single Agent IO	New Indications, New Therapies
IO + non-IO	New indications, Early Stage
10 + 10	Dual checkpoint, novel combinations

ONLY A MINORITY OF PATIENTS RESPOND TO TREATMENT

WE CAN CURE CANCERS PREVIOUSLY THOUGHT TO BE INCURABLE

Biomarkers

Adv Ther https://doi.org/10.1007/s12325-019-01051-z

REVIEW

Existing and Emerging Biomarkers for Immune Checkpoint Immunotherapy in Solid Tumors

Sanjeevani Arora · Rodion Velichinskii · Randy W. Lesh · Usman Ali · Michal Kubiak · Pranshu Bansal · Hossein Borghaei · Martin J. Edelman · Yanis Boumber

Biomarkers – liquid biopsy

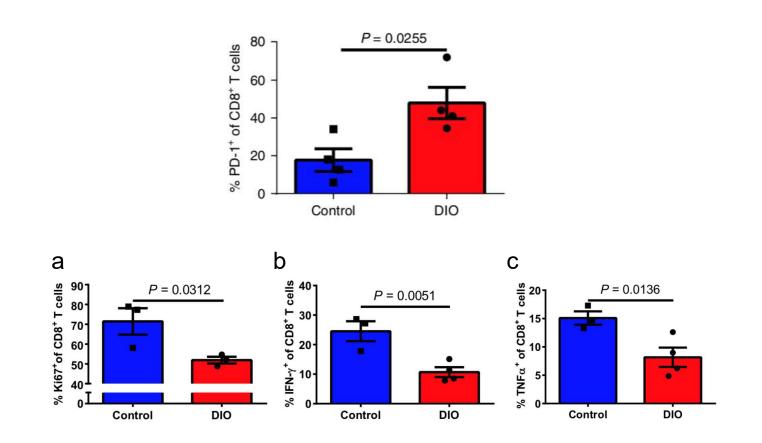
Marker	Drug	Malignancy	End-point results	References
T-cell markers and sPD- L1	Ipilimumab	Melanoma	High CD4(+)CD25(+)FoxP3(+)-Treg better survival	Martens et al.
			P < 0.001	[147]
	Ipilimumab	Melanoma	Increased baseline T-cell receptor diversity associated with improved response, no survival difference	Postow et al. [156]
			P = 0.01	
	Nivolumab	NSCLC	Increased SOX-2 reactive T-cells in periphery better response	Dhodapkaı er al.
			P = 0.04	[157]
	PD-1 and PD- LI	NSCLC	Increased PD-1, Ki-67 + CD8 T-cells 4 weeks into treatment correlated with clinical benefit.	Kamphoisi et al.
	Antibodies		P < 0.0001	[158]
	PD-1 and PD- L1	NSCLC	Baseline elevated PD-L1 as a poor prognostic marker	Boffa et al. [159]
	Antibodies		P = 0.002	
	PD-1 and PD- L1 Antibodies	OSCC	Elevated PD-L1 mRNA expression in peripheral blood could contribute to increased metastatic behavior (higher grade cancer, node positive status)	Weber et a [160]
			P < 0.05	
	Ipilimumab Pembrolizumab	Melanoma	High pretreatment levels of sPD-L1 were associated with increased likelihood of progressive disease	Zhou et al [50]
			P = 0.0015	
B cell-antibody markers	Ipilimumab	Melanoma	NYESO antibody scropositive have better ORR $P = 0.02$	Yuan et al. [161]
	Ipilimumab	Melanoma	Soluble CTLA4 antibody associated with improved response	Leung et a [162]
			P = 0.02	
Soluble CD25	Ipilimumab	Melanoma	Elevated baseline CD25 associated with shorter OS	Hannani et al.
			P = 0.056	[144]

Biomarkers – liquid biopsy

Marker	Drug	Malignancy	End-point results	References
LDH	Ipilimumab	Melanoma	Ekvated baseline LDH = lower	Diem et al.
	Pembrolizumab		ORR	[153]
	Nivolumab		P = 0.0292	Ribas et al.
			Elevated baseline LDH = decreased response rate of 22.3, 95% CI (17.1–28.1) compared to 42.0, 95% CI (36.6–47.5)	[8]
Neutrophil-lymphocyte ratio (NLR)	Nivolumab	NSCLC	Baseline NLR > 3 shorter PFS predictive marker at 2 and 4 weeks	Nakaya et al.
			P = 0.484	[154]
			2 weeks $P = 0.00528$	
			4 weeks P = 0.00515	
	Ipilimumab	Melanoma	Baseline NLR > 5 worse PFS and OS	Ferrucci
			PFS $P = 0.0006$	et al.
			OS P < 0.0001	[155]
Absolute cosinophil	Pembrolizumab	Melanoma	High count-low response rate	Weide et a
count			P < 0.001	[126]
	Ipilimumab	Melanoma	High count-low response rate	Ferrucci
			P < 0.0001	et al. [127]
Monocyte count and	Ipilimumab	Melanoma	Low baseline levels show a favorable response	Martens
myeloid derived suppressor cells (MDSCs)			P < 0.001	et al. [147]

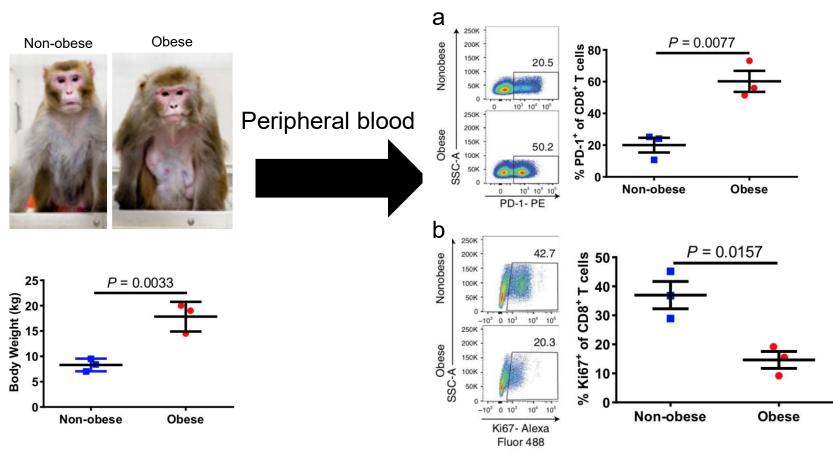
Marker	Drug	Malignancy	End-point results	References
ьтмв	Atezolizumab	NSCLC	bTMB correlated with TMB, bTMB correlated with PFS, bTMB did not associate with high PD-L1 expression	
			bTMB P = 0.035	
			PD-L1 $P = 0.160$	

Immune Health

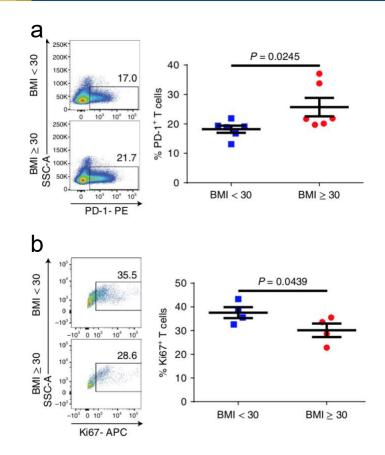

ARTICLES https://doi.org/10.1038/s41591-018-0221-5

Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade

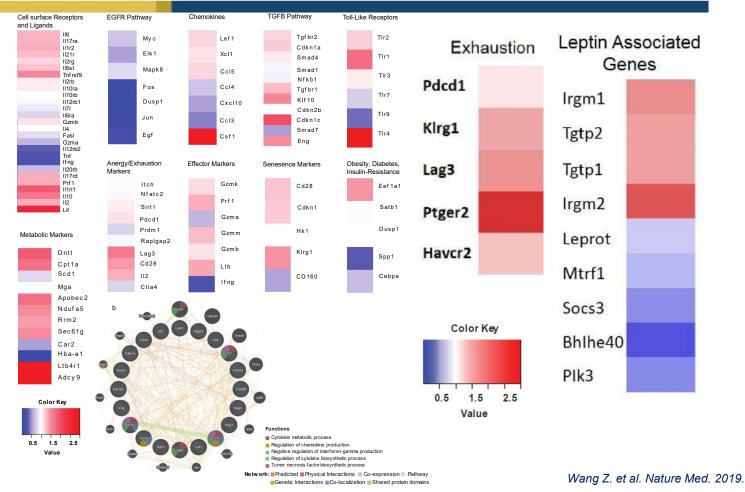
Ziming Wang^{1,20}, Ethan G. Aguilar^{1,20}, Jesus I. Luna¹, Cordelia Dunai ¹, Lam T. Khuat¹, Catherine T. Le¹, Annie Mirsoian¹, Christine M. Minnar¹, Kevin M. Stoffel¹, Ian R. Sturgill¹, Steven K. Grossenbacher¹, Sita S. Withers², Robert B. Rebhun ¹, Dennis J. Hartigan-O'Connor^{3,4,5}, Gema Méndez-Lagares^{4,5}, Alice F. Tarantal^{5,6,7}, R. Rivkah Isseroff^{1,8}, Thomas S. Griffith⁹, Kurt A. Schalper¹⁰, Alexander Merleev^{1,11}, Asim Saha¹², Emanual Maverakis^{1,11}, Karen Kelly¹³, Raid Aljumaily¹⁴, Sami Ibrahimi¹⁴, Sarbajit Mukherjee¹⁴, Michael Machiorlatti¹⁵, Sara K. Vesely¹⁵, Dan L. Longo¹⁶, Bruce R. Blazar¹⁷, Robert J. Canter¹⁸, William J. Murphy ^{1,13,21*} and Arta M. Monjazeb^{19,21}


T Cells in Mouse Model

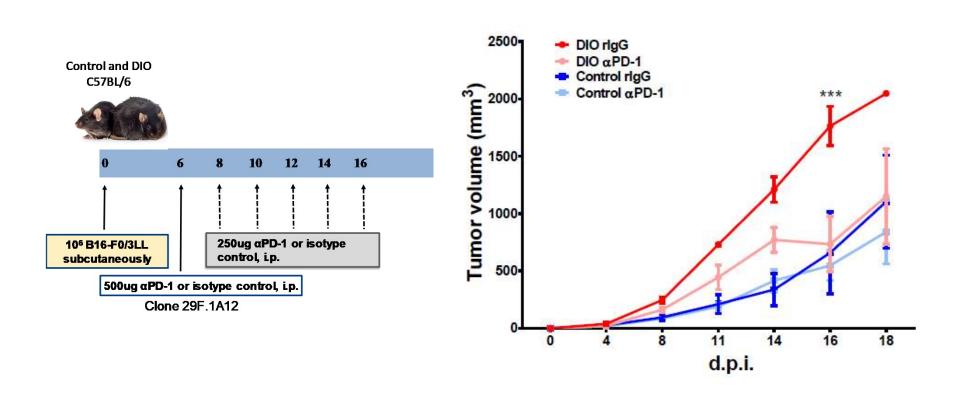
Wang Z. et al. Nature Med. 2019.

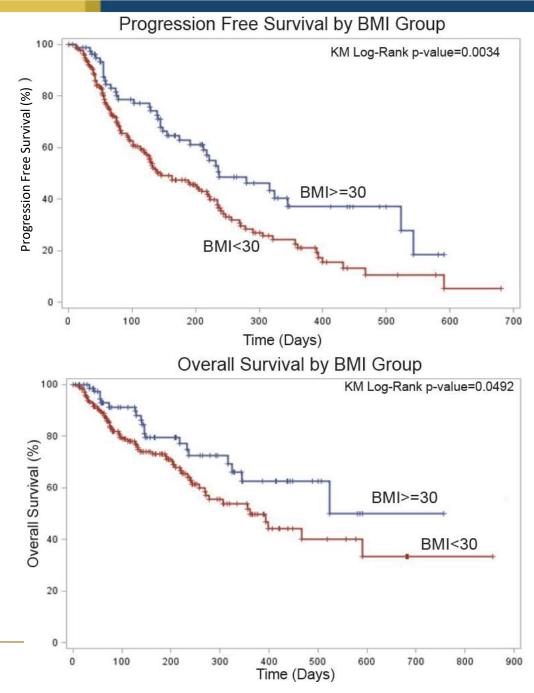

T Cells in Non-human Primate

Wang Z. et al. Nature Med. 2019.


T Cells in Human

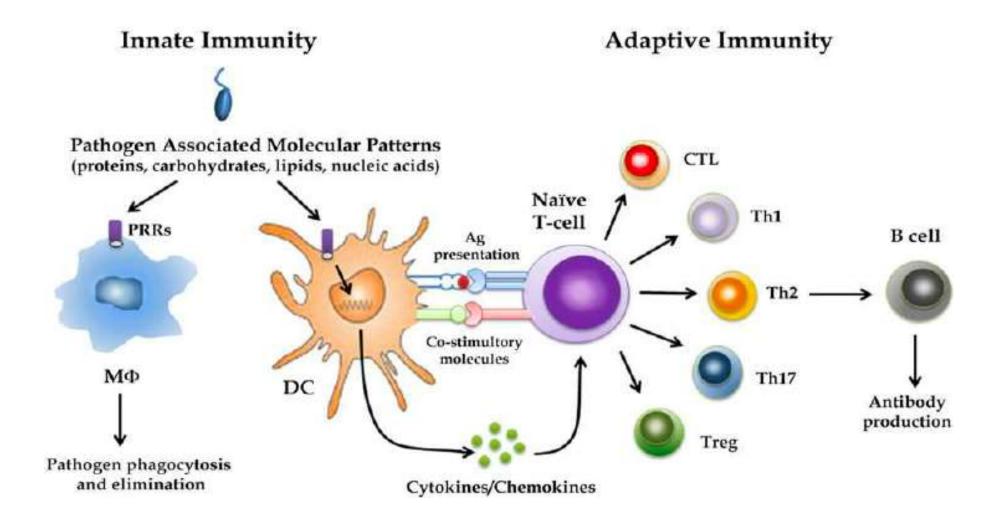
Wang Z. et al. Nature Med. 2019.



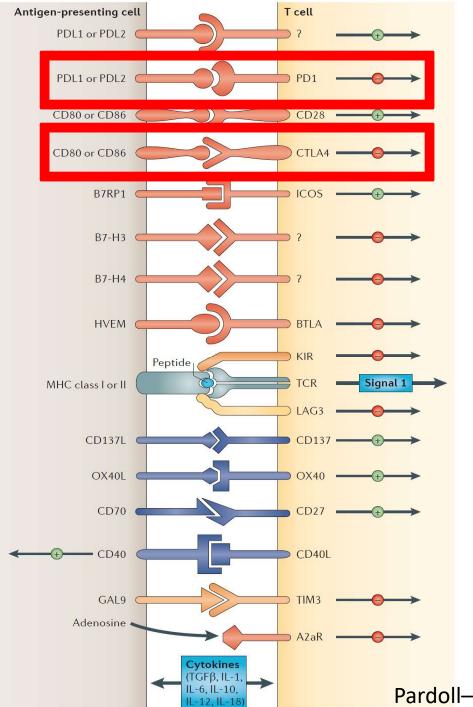

Increased Efficacy of PD-1 Blockade in DIO Mice

Wang Z. et al. Nature Med. 2019.

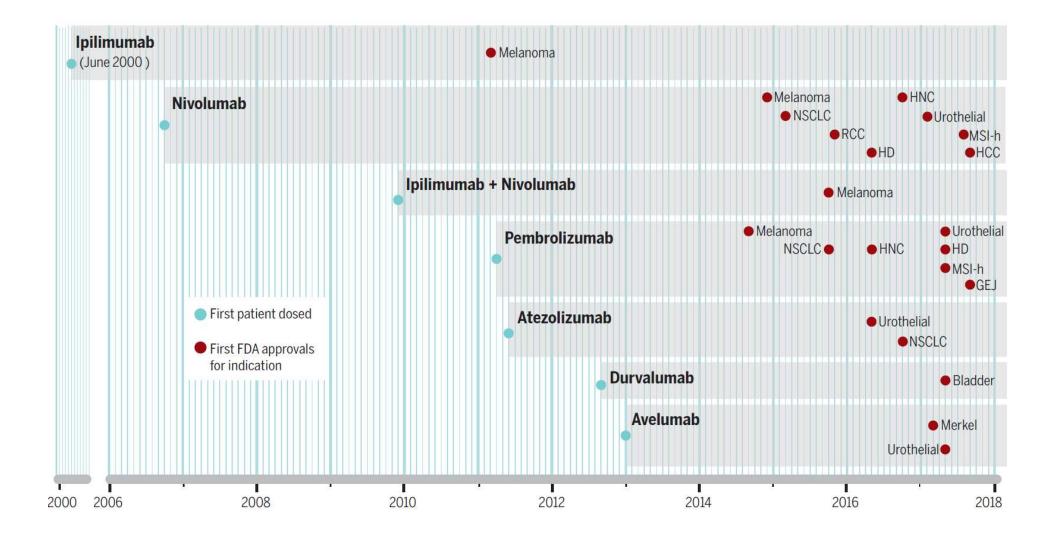
Obesity Impacts the Efficacy of PD-1/PD-L1 Checkpoint Blockade in Cancer Patients


Wang Z. et al. Nature Med. 2019.

Advances in Immunotherapy

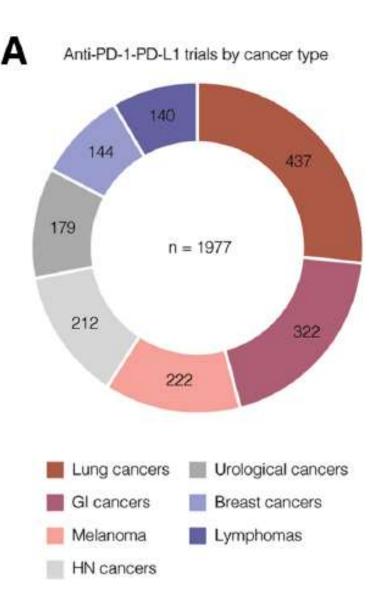

Cellular Therapies	CAR T cells, CAR NK cells, AT	
Vaccines	Personalized Vaccines	
Biomarkers	TMB, PD-L1, T cell inflamed	
Single Agent IO	New Indications, New Therapies	
IO + non-IO	New indications, Early Stage	
10 + 10	Dual checkpoint, novel combinations	

How the Immune System recognizes non self

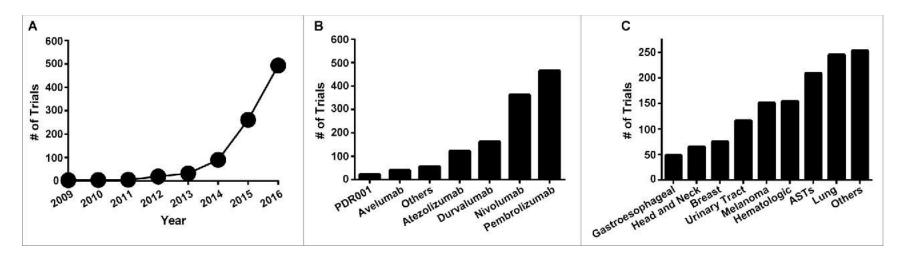


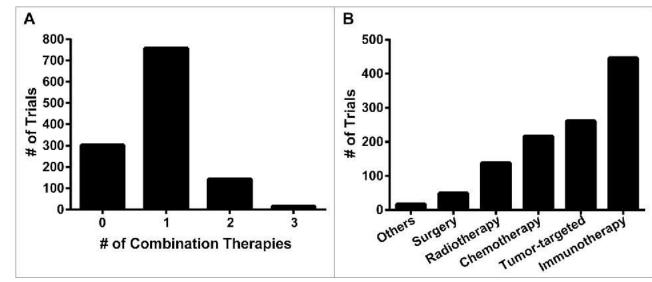
UCDAVIS

Pardoll– Nature Reviews- 2012


UCDAVIS

Ribas-Science-2018


Advances in Immunotherapy


Cellular Therapies	CAR T cells, CAR NK cells, AT	
Vaccines	Personalized Vaccines	
Biomarkers	TMB, PD-L1, T cell inflamed	
Single Agent IO	New Indications, New Therapies	
IO + non-IO	New indications, Early Stage	
10 + 10	Dual checkpoint, novel combinations	

Bryce Johnson et al- Oncoimmunology 2018

There have been 1700+ IO combination trials testing 240 targets (CRI Landscape analysis 2018)

What had worked

- Nivolumab + Ipilimumab (Melanoma; SCLC)
- Anti-PD-1/L1 + Chemotherapy (NSCLC, SCLC, TNBC)
- Anti-PD-1 + VEGF TKI (pembrolizumab and axitinib) (RCC)

* Additive or synergistic? Who needs the combination?

What had "failed" (in phase III trials)

- Pembrolizumab + lenalidomide (MM)
- Pembrolizumab + Epacadostat (IDOi) (melanoma)
- Atezolizumab + cobimetinib (MEKi) (MSS CRC; Melanoma)

Many early, signal-seeking trials can be negative or uninterpretable

The Successes

- PACIFIC
 - Stage III NSCLC ChemoRT +/- Durva
 - Improved OS and PFS
- IMpassion130
 - mTNBC nab-paclitaxel +/- atezo
 - Improved OS and PFS, most pronounced in PD-L1+ subgroup
- Keynote 48
 - 1st line R/M HNSCC Pembro vs Pembro + chemo vs. chemo / cetuximab
 - Pembro/chemo improved outcomes in all patients
 - Pembro improved outcomes in PD-L1+ patients

Study, year	Treatment Arms	Total pts	OS, months or % OS (or PFS)	PD-L1 predicts outcome?
CKI alone 2nd	d line for NSCLC stage IV			
Check Mate 017, 2015	Nivolumab vs. docetaxel	272	9.2 vs. 6.0	No
CheckMate 057, 2015	Nivolumab vs. docetaxel	582	12.2 vs. 9.4	Yes
Keynote 010, 2016	Pembrolizumab vs. docetaxel	1033	10.4 vs. 8.5	Yes
OAK, 2017	Atezolizumab vs. docetaxel	850	13.8 vs. 9.6	Yes
CKI alone 1st	line for NSCLC stage IV			
Keynote 024, 2016	Pembrolizumab vs. PhD	305	30.2 vs. 14.2	Yes
CheckMate 026, 2017	Nivolumab vs. PlrD	541	13.2 vs. 14.4	No
CKI with cher	motherapy and/or bevacizumab for stage	IV NSC	LC in 1st line	
Keynote 189, 2018	Pembrolizumab + PhD vs. PhD	616	69% vs. 49% at 12 months	Yes
Keynote 407, 2018	Pembrolizumab + PhD vs. PhD	559	15.9 vs. 11.3	No
IMpower 131, 2018	Arezolizumab + PltD vs. PltD	1021	12-months PFS 25% vs. 12%	No
IMpower 150, 2018	Atezolizumab + bevacizumab + PltD vs. bevacizumab + PltD	692	Median OS, 19 vs. 15 months	No
CKI after init	ial chemoradiation for NSCLC stage III			
PACIFIC, 2017	chemoXRT, followed by durvalumab × I year vs. observation	709	66% vs. 55% at 24 months	Maybe
CKI after cher	notherapy for metastatic urothelial carcir	ioma		
Phase 2 study, 2016	Atezolizumab after Plt	315	11.4 months in IC2/3; 8.8 months in IC1/2/3; 7.9 in all patients	Yes
CKI alone for	previously treated advanced melanoma			
Keynote- 001, 2016	Pembrolizumab	655	Hazard ratio 0.76 in PD- L1 + melanoma	Yes

Table 2 Recent phase 2/3 NSCLC, urothelial cancer, melanoma studies utilizing PD-L1 as a biomarker

NSCLC non-small cell lung carcinoma, CKI checkpoint inhibitor, Pts patients, PltD platinum doublet chemotherapy

Selected Cancer Immunotherapy Targets/Strategies

- Inhibitory Signals
 - CTLA-4, PD-1/PD-L1, LAG-3, TIM-3, VISTA, BTLA
- Stimulatory Signals
 - ICOS, CD40, OX40, 41BB
- Cytokines
 - IL-2, IL-12, IL-15, TGF-beta blockade
- CARS
- Adoptive Cell Transfer
- Vaccines
 - PANVAC, Provenge, Muc-1 etc.
- Oncolytic Virus
- TLR agonists
- Inhibitory Enzymes
 - IDO, Arginase

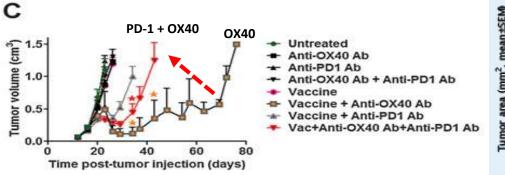
Why the failures

- Wrong or <u>incomplete</u> hypothesis .. mechanisms and molecular context of synergy?
 - Wrong drug? ... no or incomplete target inhibition
 - Wrong dose/schedule? too low, too high, bell-shaped?
 - Wrong patients? ... unknown patient selection bias
 - » Wrong trial design? ... phase 1-2-3 go no go decisions

The case of IDO-1 inhibitor Epacadostat

• Scientific issues

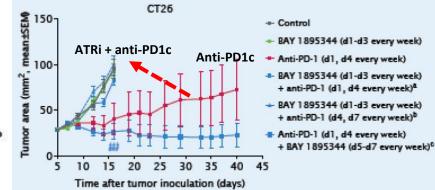
- IDO-1 K/O had incomplete effect. Tumor regrew after initial suppression
- Pathways are redundant. IDO1, TDO and IDO2 all involved in tryptophan to KU metabolism
- Drug and dose issues
 - Serum PD effect (Kynurenine reduction) 50% (plateau at 100-400 mg BID)
 - Tumor PD effects observed across doses, but degree of inhibition variable
 - ? Effect on compensatory pathways
- Trial design Promising single arm results not validated in randomized trials
- No patient selection while IDO is presumably a immune evasion mechanism in "Inflamed tumors"


Dose and schedule matters

Full or low dose or bell-shaped dose effects?

Continuous or intermittent

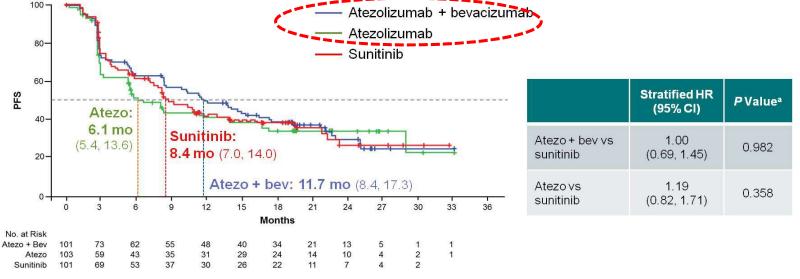
Concurrent or sequential, in what sequence


Concurrent anti-PD1 reduced activity of OX40 (Anti-PD1 enhanced T-effector activation, followed by significant apoptosis)

Shrimali ... Khleif et al, Ca Imm Res September 2017 (Similar findings by Messenheimer.. Fox, CCR Aug 2017)

I IC DAVIS

Concurrent ATR inhibitor + anti-PD-1 was antagonistic (delaying ART I was "synergistic")


Wengner et al, AACR 2019 (Abs 272)

Slide courtesy of Dr. Helen Chen, NCI, CTEP

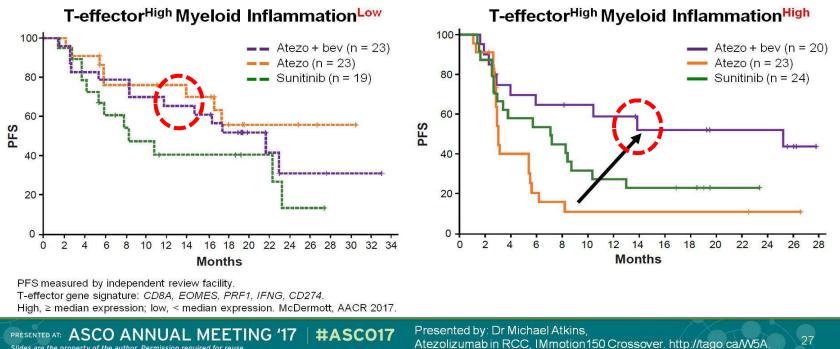
A given combination may only work in a small subset of patients

IMmotion150: A Phase II Trial In Untreated Metastatic Renal Cell Carcinoma Patients of Atezolizumab And Bevacizumab Vs And Following Atezolizumab Or Sunitinib

Atezo, atezolizumab; bev, bevacizumab.

PFS measured by independent review facility.

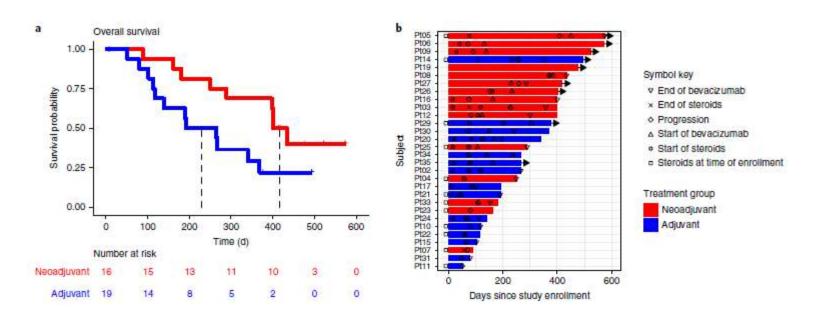
^a *P* values are for descriptive purposes only and not adjusted for multiple comparisons. Clinical cutoff, Oct 17, 2016. Median duration of follow-up, 20.7 mo. McDermott, ASCO GU 2017.


PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author. Permission required for reuse. Presented by: Dr Michael Atkins, Atezolizumab in RCC, IMmotion150 Crossover. http://tago.ca/W5A

Slide courtesy of Dr. Helen Chen, NCI, CTEP

In the subgroup of high myeloid signature, bevacizumab significantly enhance the Atezo activity

Addition of Bevacizumab to Atezolizumab in 1L Was Associated With Improved Benefit in T-Effector^{High} Myeloid Inflammation^{High} Subgroup


Slides are the property of the author. Permission required for reuse

UCDAVIS

Slide courtesy of Dr. Helen Chen, NCI, CTEP

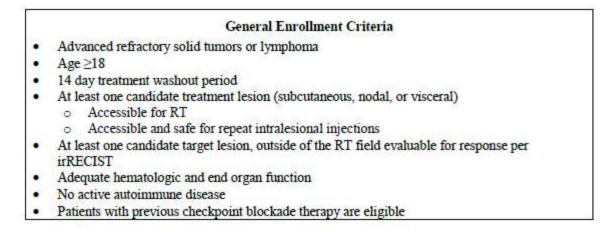
Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma

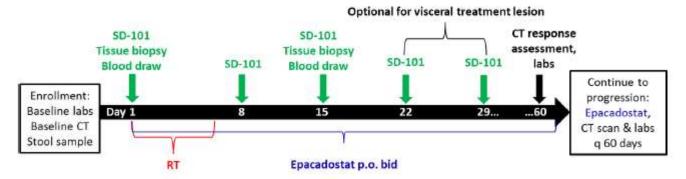
Timothy F. Cloughesy ^{(1,2,3)8*}, Aaron Y. Mochizuki ⁽⁴⁾⁸, Joey R. Orpilla ⁽⁵⁾, Willy Hugo ⁽⁶⁾, Alexander H. Lee ^(2,2), Tom B. Davidson^{3,4}, Anthony C. Wang⁵, Benjamin M. Ellingson^{3,7}, Julie A. Rytlewski ⁽⁶⁾⁸, Catherine M. Sanders⁸, Eric S. Kawaguchi⁹, Lin Du⁹, Gang Li^{3,9}, William H. Yong¹⁰, Sarah C. Gaffey¹¹, Adam L. Cohen ⁽⁶⁾¹², Ingo K. Mellinghoff¹³, Eudocia Q. Lee¹¹, David A. Reardon¹¹, Barbara J. O'Brien¹⁴, Nicholas A. Butowski¹⁵, Phioanh L. Nghiemphu¹, Jennifer L. Clarke¹³, Isabel C. Arrillaga-Romany¹⁶, Howard Colman¹², Thomas J. Kaley¹³, John F. de Groot¹⁴, Linda M. Liau^{3,5}, Patrick Y. Wen^{11,19} and Robert M. Prins ^{(2,3,5,37,9)*}

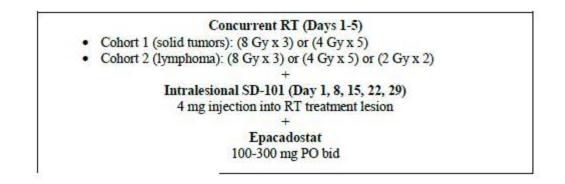
Abstract CT004: A Phase Ib study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine (Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in untreated metastatic ductal pancreatic adenocarcinoma (PDAC) patients

Mark H. O'Hara, Eileen M. O'Reilly, Mick Rosemarie, Gauri Varadhachary, Zev A. Wainberg, Andrew Ko, George A. Fisher, Osama Rahma, Jaclyn P. Lyman, Christopher R. Cabanski, Erica L. Carpenter, Travis Hollmann, Pier Federico Gherardini, Lacey Kitch, Cheryl Selinsky, Theresa LaVallee, Ovid C. Trifan, Ute Dugan, Vanessa M. Hubbard-Lucey, and Robert H. Vonderheide

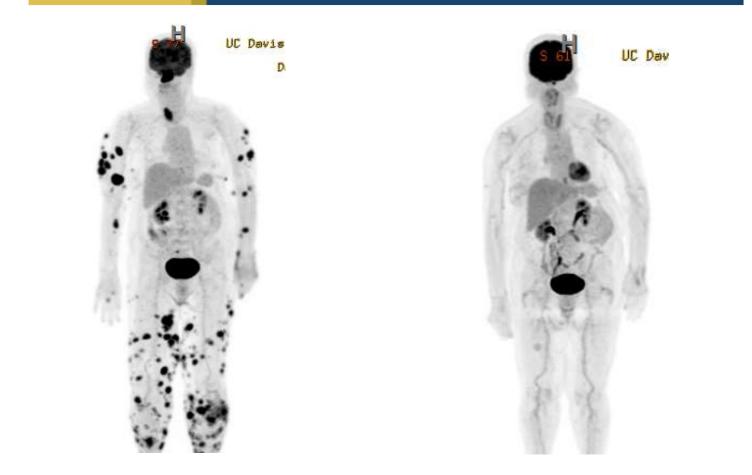
58% PR and 33% SD

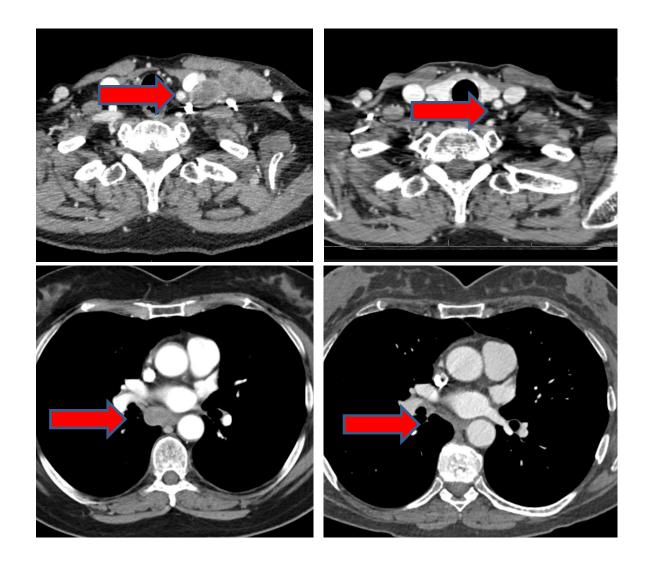

Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination Linda Hammerich, Thomas U. Marron, Ranjan Upadhyay, Judit Svensson-Arvelund, Maxime Dhainaut, Shafinaz Hussein, Yougen Zhan, Dana


Ostrowski, Michael Yellin, Henry Marsh, Andres M. Salazar, Adeeb H. Rahman, Brian D. Brown, Miriam Merad & Joshua D. Brody


Nature Medicinevolume 25, pages814–824 (2019)

SCHEMA





Response Pt 15

Response Pt 4

Acknowledgements

UC DAVIS CANCER CENT

11

- UC Davis Comprehensive Cancer Center
- Michael S Kent, DVM
- Rob Rebhun, DVM, PhD
- William Culp, DVM
- Robert Canter, MD
- Peter Dickinson, BVSc, PhD
- Elizabeth E. Sparger, PhD
- Jenna Burton, DVM, MS
- Karen Kolly MD
- Megan Darped D
- Emanual Maverakis, MD, PhD
- UC Davis Laboratory of Cancer Immunology
 - Robert Canter, MD

