One Versus Two Plate Management of Subcondylar Mandible Fractures In Oral & Maxillofacial Surgery University of Miami / Jackson Memorial Hospital Paul Lee DMD

Disclosure

Paul Lee DMD

The following potential conflict of interest relationships are germane to my presentation.

Equipment: None Speakers Bureau: None Stock Shareholder: None Grant/Research Support: None Consultant: None

Status of FDA devices used for the material being presented **NA/Non-Clinical**

Status of off-label use of devices, drugs or other materials that constitute the subject of this presentation **NA/Non-Clinical**

Objectives

- 1. Background of Condylar Fractures
- 2. Treat Open vs Closed
- 3. Types of Fixation for Open Treatment
- 4. Literature Review of Single vs Double Plates
- 5. Miami Method
- 6. Discussion
- 7. Conclusion

Subcondylar Fractures

- Condylar fractures are involved in 29-52% of all mandibular fractures in adults
- Condylar fractures make up 11-16% facial fractures
- Condylar head and neck fractures are involved in approximately 48% of mandible fractures in children and decrease with increasing age

Etiology

- Assault
- MVC
- Sports Injury
- Fall

Clinical Findings

Ipsilateral to injured condyle

- Deviation of mandible on opening
- Shortening of ramus
- Deviation of mandibular midline
- Contralateral to injured condyle
 - Posterior open bite

Classification of Fractures

Subcondylar fractures are classified by the displacement/dislocation of the condyle and the location of the fracture

Popular Classification systems:

- Spiesll and Schroll
- Wassmund's Classification
- Lindhals classification

Open vs Close Trend

- CN VII injury
- Facial Scar
- Functional occlusion after treating closed
- Recent metanalysis showed that open treatment of subcondylar fracturs result in better functional outcomes

Absolute Indications for Surgery

1. Fractures into middle cranial fossa

- 2. Foreign body within joint capsule
- 3. Lateral extracapsular dislocation of the condylar head
- 4. Fracture dislocation in which mechanical stop is present on opening
- 5. Inability to place patient into occlusion for closed reduction

Relative Indications

- 1. Bilateral condylar fractures with midface fractures
- 2. IMF not possible due to medical reasons
- 3. Bilateral fractures with unclear occlusion

 \mathbf{M}

0

S

Types of Fixation

One Plate Fixation

One Plate Fixation

Two Plate Fixation

Geometric Plates

OMS

Single Plate vs Double Plates

Literature Review

All articles regarding subcondylar fractures and the modality used for treatment of the fracture were reviewed between January 2000 and July 2018.

- Research was completed using mandible models
 - Polyurethate
- 3 dimensional finite-element analysis
 - With force vectors associated with muscles of mastication
- Cadaver mandible

Hardware Failure

- Mean hardware failure in all subcondylar fractures was 6.5%
- Hardware failure in cases for single miniplate were greater than 6.5%
- Double plate/rhomboid plate/strut plate : <6.5% of hardware failure

Screw Loosening

- Mean Screw loosening in all subcondylar fractures was 5.6%
- Screw loosening single miniplate and delta plate >5.6%
- Screw loosening two mini plates, compression plate, strut plate <5.6%

Malocclusion

- Mean malocclusion after subcondylar fractures was 11.7%
- Malocclusion: single plate >11.7%
- Malocclusion: compression mini plate, two mini plates, delta plate <11.7%

Literature supports two plates are superior to one plate

Current Statistics at JMH

Number of cases completed at JMH from July 2013 to March 2019 with single plate fixation: Transient Facial Nerve Weakness: Permanent Facial Nerve Weakness: Malocclusion: Failed Hardware: **1*(1.28%)** Loose Screws: Salivary fistula: **2(2.56%)** Infection:

Case Selection in Patients with Malocclusion

Proximal Segment is >20mm

Location of Proximal Segment in Relation to Fossa

Miami Method

- 1. Place Erich Arch Bars/IMF screws on patient
- 2. Expose fracture
 - 1. Transparotid retromandibular approach
- 3. Reduce fracture
 - 1. Distraction of the mandible often required to recapture the proximal segment into anatomical location
- 4. Place patient into maxillomandibular fixation
- 5. Fixate the fracture with one 4 hole mandible fracture plate along the posterior border of the mandible
- 6. Assess occlusion
- 7. Remove maxillomandibular fixation*
- 8. Soft diet for 6 weeks following surgery

Discussion

Miniplate vs Fracture Plate

Load Sharing vs Load Bearing plates

Maximum Bite Force

- Maximum bite force of adult male age independent is 285N(~64lb of force) at first molar region_[
- Average bite force in women is 30% lower then men
- Bite force in anterior is less than posterior dentition
- Maximum bite force reduced to 60% for 6 weeks following injury
- Expect 161-169.5N (~38.44lb) at first molar region

Biomechanics of Mandibular Condyle

• Occlusion on the contralateral side will result in forces being exerted on the injured condyle

Biomechanics of Mandibular Condyle

- Occlusion on ipsilateral posterior dentition results in maximum forces on uninjured condyle
- Minimal loading of the injured condyle on ipsilateral loading

4 Reasons for 1 plate vs 2 plates

- Less exposure
- Less retraction
- Less surgical time
- Less hardware

SO YOU'RE TELLING ME

Conclusion

- Open treatment of subcondylar fractures result in better functional outcomes than closed treatment
- Case selection is important
- Current literature would support the use of two mini plates over one for subcondylar fracture repair
- Our program has found that a single mandible fracture plate has been sufficient for fracture repair of subcondylar fractures
- We will continue long term follow up to assess long term results.

References

- 1. Talwar RM, Ellis E, Throckmorton GS: Adaptations of the mas- ticatory system after bilateral fractures of the mandibular con- dylar process. J Oral Maxillofac Surg 56:430, 1998
- 2. Ellis E III, Throckmorton GS: Treatment of mandibular condylar process fractures: Biological Considerations. J Oral Maxillofac Surg 63:115,2005
- 3. Torre D, Burtscher D, Widmann G, et al. Surgical treatment of mandibular condyle fractures using the retromandibular anterior transparotid approach and a triangular positioned double miniplate osteosynthesis technique: A clinical and radiographic evaluation of 124 fractures.
- 4. Choi BH, Kim KN, Kim HJ, Kim MK. Evaluation of condylar neck fracture plating techniques. J Craniomaxillofac Surg. 1999;27(2):109-12.
- 5. Singh V, Bhagol A, Goel M, Kumar I, Verma A. Outcomes of open versus closed treatment of mandibular subcondylar fractures: a prospective randomized study. J Oral Maxillofac Surg. 2010;68(6):1304-9.
- 6. Ellis III E, Throckmorton GS. Treatment of mandibular condylar process fractures: biological considerations. J Oral Maxillofac Surg. 2005;63(1):115-34.
- 7. Ellis E III, Thorckmorton GS. Bite forces after open or closed treatment of mandibular condylar process fractures. 2001;59:389-395.
- 8. Powers DB. Classification of Mandibular Condylar Fractures. Atlas Oral Maxillofacial Surg Clin N Am. 2017(25):1-10.
- 9. Ellis E: Discussion re: "A biomechanical evaluation of mandibular condyle fracture plating techniques" by Haug RH, Peterson GP, Goltz M. J Oral Maxillofac Surg 60: 80–81, 2002
- 10. Ellis E, Throckmorton GS, Palmieri C: Open treatment of condylar process fractures: assessment of adequacy of repositioning and maintenance of stability. J Oral Maxillofac Surg 58: 27–34; discussion 35, 2000
- 11. van Eijden TM. Three-dimensional analyses of human bite-force magnitude and moment. Arch Oral Biol 1991;36:535-9.
- 12. Varga S, Spalj S, Lapter Varga M, Anic Milosevic S, Mestrovic S, Slaj M. Maximum voluntary molar bite force in subjects with normal occlusion. Eur J Orthod 2011;33(4):427–433

References

- 1- Chrcanovic B R: open versus closed reduction diacapitular fractures of mandibular condyle. Oral Maxillofac Surg. 2012 Sep; 16(3):257-65
- 2- Zhou HH, Liu Q, Ceng G, Li ZB: Aetiology, pattern and treatment of mandibular condyler fractures in 549 patients: a 22 year retrospective study. J Craniomaxillofac Surg. 2013 Jan; 41(1):34-41

Spiessl and Schroll Classification

System is based on the location of the fracture and the deviation of the segments

Type I: condylar neck fracture without deviation/ displacement (Fig. 2) Type II: low condylar neck fracture with deviation/ displacement (Fig. 3) Type III: high condylar neck fracture with deviation/ displacement (Fig. 4) IIIa: ventral IIIb: medial IIIc: lateral IIId: dorsal Type IV: low condylar neck fracture with dislocation Type V: high condylar neck fracture with dislocation Type VI: intracapsular fracture of the condylar head

Current literature

- January 2000-July 2018 articles reviewed
- Double plate/rhomboid plate/strut plate : <6.5% of hardware failure
- Single plate and compression plate : >6.5% hardware failure
- Screw loosening single plate and delta plate >5.6%
- Screw loosening two mini plates, compression plate, strut plate <5.6%
- Malocclusion: compression mini plate, two minim plates, delta plate <11.7%
- Malocclusion: single plate >11.7%

Type 1 fracture

Risks vs Benefits considerations

- Do you have at least 20mm of bone in the proximal segment of bone?
- Is the condyle in the fossa?
- Soft tissue thickness of face
- Minimally displaced?
- Change in occlusion noted
- Bruxism?
- Above max bite force

Condylar Fracture Decision Tree with change in occlusion

Proximal Segment is a minimum of 20mm

Location of proximal segment in relation to fossa

Issues with the studies

- In vitro studies
 - The amount of forces placed on the joints ranged from 200-500***
 - Actual maximum bite force of an adult male is 284N_[3]
 - Bite force after injury to subcondylar region is at 60% for 6 weeks following injury
 - Force vectors used to test non-physiological
 - Use of mini plates as opposed to fracture plates**
 - Finite analysis models showed no contact of the bone

Physiology of mandibular condyle

- Forces on the condyle are decreased when bite force is placed on ipsilateral side due to joint opening
- Force on contralateral condyle with maximum force on biting
- Joints bilaterally have maximum load when the bite force is placed on the anterior dentition
- Tension zone during mastication is along the anterior border of the condylar neck and **MEDIAL SURFACE
- Neuromuscular changes to decrease forces on the condyle.

- Tension Zone would be predominately along the medial aspect of the mandible
- By placing the plate along the posterior border of the mandible the plate can help mitigate forces

Why is it successful?

Immediate restablishment of vertical height of mandible

- With decreased exposure we strip less of the blood supply
- More coritical bone along the posterior border of mandible
- Patient selection
- Amount of forces on the subcondylar region following injury is decreased

