Innovative Early Phase Clinical Trial Designs

Shivaani Kummar, MD, FACP

Professor of Medicine Director, Phase I Clinical Research Program-Oncology Co-Director, Translational Oncology Program Director, Clinical and Translational Unit Stanford University

August 16, 2019

Stages of Clinical Research-Traditional

Toxicity driven dosing : Hypothetical dose-response and dose-toxicity (DLT) curves

1.0 Response - DLT 0.2 0.0 2 3 5 6 7 1 Dose Level

Dose Escalation to Establish MTD

Rule-based designs:

Assign patients to dose levels according to pre-specified rules based on actual observations of target events (e.g., the dose-limiting toxicity) from the clinical data. (3+3 design; accelerated titration design)

Model-based designs:

Assign patients to dose levels and define the MTD for phase II trials based on the estimation of the target toxicity level by a model depicting the dose-toxicity relationship. (Continuous reassessment method)

Development of molecularly targeted therapies

- Target is important for disease initiation or progression
- Agent modulates the target and this modulation is associated with a desired effect in preclinical models

Designing the first-in-human trial

- 1. Assess target modulation
 - Directly or measure effect on a disease process
 - Possess validated PK and PD assays that accurately and reproducibly measure drug levels and allow evaluation of drug effect
- 2. Dose and schedule
 - Starting dose and schedule based on preclinical data
 - Incrementally increase dose-MTD or OBD?
 - Degree and duration of inhibition
- 3. Patient Selection-select based on presence of target

Three pillars for successful transition from early phase to late phase

Exposure at the target site of action over a desired period of time Target occupancy/binding as expected for its mode of action Functional modulation of target

Exposure confidence	Pillar 1 and 2 Target exposure and target binding concur but no data to show relevant downstream pharmacology effect at site of action. Risk in relying only on exposure and binding; study design & decision-making from clinical endpoint needs to be clear	Pillar 1,2,3 Target exposure shown and concurs with target binding which results in expression of relevant downstream pharmacology effect at site of action. PKPD well established. Maximum confidence in translation of drug exposure and pharmacology & of testing the mechanism	Hi, Hi
	None or partial Pillars Binding to target but no data to show relevant downstream pharmacology effect; exposure only in plasma, not at target site (e.g CNS). PKPD not well established. Serious concerns that mechanism will not be tested & clinical studies unlikely to be definitive	Pillar 2 and 3 Binding to target shown but exposure only in plasma, not at target site (e.g local administration to target); data showing relevant downstream pharmacology effect. Reasonable risk being carried forward if confident that drug reaches target in humans & clinical endpoint relevant to site of action	

Pharmacology confidence

Morgan P, Van der Graaf P. Drug Discovery Today, Numbers 9/10 May 2012

Developing the 'Right' Assay Tools for Early Stage Proof of Mechanism Studies

Multiplex Assays: Correlating Efficacy with MOA

HCT-116 Colon Xenograft

Similar results in HT-29 (colon) and NCI-H522 (lung) xenografts

DNA Damage Panel

Fit-for-Purpose: Parallel Drug and Biomarker Development

Phase I Study Design – Unselected Patients (or molecularly enriched population) in Dose Escalation followed by Specific Expansion Cohorts

Define the degree and duration of target inhibition to establish optimal biologic dose and schedule Dose-PK-PD relationship-important to inform dose and schedule of drug combinations

Simon R. Ann Int Med 2016; 165:270

Vemurafenib approved for certain tumor types carrying the BRAF V600 mutation

Larotrectinib is FDA approved for Patients with Advanced Solid Tumors Harboring an NTRK Gene Fusion (tissue-agnostic indication)

Is tumor histology important?

- Treatment decisions: target driven or histology driven?
- Importance of target may be disease context dependent
- Vemurafenib in BRAF V600E melanoma vs colorectal cancer): BRAF(V600E) inhibition caused feedback activation of EGFR in colon cancer [Prahallad A, et al. Nature 2012; 483(7387):100]
- Depends on the target and agent- larotrectinib versus vemurafenib
- BASKET trials need to have independent cohorts based on histology; data can be pooled depending on clinical observations

Umbrella Trials

B. Multiple-Drug

Copenhagen Prospective Personalized Oncology (**CoPPO**) trial: Clinical Utility of Using Molecular Profiling to Select Patients to Phase I Trials

- 591 enrolled→500 underwent fresh biopsy for WES & RNA sequencing →460 were analyzed→ potentially actionable target identified in 352 (70%)→101 (20%) received matched treatment
- 15 patients achieved a PR {BRAF (n = 7), FGFR1/2 (n = 1), NOTCH (n = 1), BRCA1 (n = 1), ERBB2 (n = 1), ALK (n = 1), PTEN (n = 1), and CCND1 amplification(n = 1).
- Biopsy related complications in 15 patients (hematoma (n = 6), pneumothorax (n = 3), and others (n = 6).
- No patients allocated to treatment based on RNA expression obtained response according to RECIST1.1.

[Tuxen IV, et al. Clin Can Res 2019:25(4)]

Defining Actionability

A genetic aberration or mutation is considered actionable if it is oncogenic and/or differentially expressed in tumor cells, and there is an agent/drug that putatively works against it."

- Is the molecular aberration a 'driver'? Does it have a functional consequence?
- What should be the tumor content of the biopsy? How many biopsies need to be analyzed?
- How many cells need to carry the mutation of interest?
- Single vs multiple aberrations?
- Efficacy of the agent-direct t-inhibitor or downstream?

Seamless Drug Development: FIH protocol for pembrolizumab

Marc R. Theoret et al. Clin Cancer Res 2015;21:4545-4551

©2015 by American Association for Cancer Research

Design of Large First-in-Human Cancer Trials

- Is there a compelling rationale for including multiple expansion cohorts?
- Is the sample-size range consistent with the stated objectives and end points?
- Is there an appropriate statistical analysis plan for all the stated end points?
- Are the eligibility criteria appropriately tailored to the expansion cohorts?
- Is there a defined end to the trial, in terms of both efficacy and futility?
- Is there a system in place to communicate with all investigators in a timely fashion?
- Does the informed consent reflect the current knowledge of safety and efficacy of the investigational drug and other agents in the same class?
- If the trial may be used for regulatory approval, is there an independent oversight committee?
- If the trial may be used for regulatory approval, has there been communication with regulatory agencies?

Shift in the Clinical Trial Paradigm: Seamless Drug Development

- <u>Expansion Cohorts: Use in First-In-Human Clinical Trials to Expedite</u>
 <u>Development of Oncology Drugs and Biologics Guidance for Industry</u>
-the first time a new medicine is tested in humans that compresses the traditional three phases of trials into one continuous trial, called an expansion cohort trial"-Scott Gottlieb, FDA Commissioner
- FIH multiple expansion cohort trial:
 - a single protocol with an initial dose-escalation phase
 - also contains three or more cohorts with cohort-specific objectives:
 - assessment of anti-tumor activity in a specific disease-,
 - safe dose in specific populations
 - alternative doses or schedules,
 - combinations, or
 - establishing predictive value of a potential biomarker.
 - Comparison of activity between cohorts is not planned except where a prespecified randomization and analysis plan are part of the protocol design.

What do we want to achieve at the end of an early phase trial?

• Determine safety, tolerability and define a dose

• Look for antitumor activity (hints of activity to guide agent development; proof of concept)

What do we want to achieve at the end of an early phase trial?

-Determine Dose

- Defining DLTs: Used to be first cycle and then toxicities had to recover to grade 1/baseline prior to re-initiating treatment at the next lower dose
- For immunotherapies:
 - May not occur in the first cycle
 - Take weeks to resolve
 - Not dose related
 - Can we safely continue the patient on

treatment following resolution of toxicity?

- Antitumor activity (hint of activity)

Adverse events associated with IO agents N Engl J Med 378;2 (2018)

Determining Antitumor Activity

- RECIST 1.1, iRECIST, irRECIST, imRECIST
- Pseudoprogression (PP) as an increase in the size of lesions, or the visualization of new lesions, followed by a response, which might be durable. Need for confirmatory scans

24/655 (7%) pts in KEYNOTE-001 melanoma trial of pembrolizumab (*J Clin Oncol 2016 (34)* Other solid tumors: PP 2%. *J Clin Oncol* 34 (15)suppl (May 2016) 6580

Evolution of early phase trials

- Establishment of MTD- Cytotoxic Chemotherapies
- Target modulation; Establishing the 'Optimal Biologic Dose'- Targeted Agents
- "Concept of driver mutations"-Basket/umbrella trials
- "Seamless drug development"- Early phase trials with multiple expansion cohorts: Immunotherapies
- Intersection of target modulation, molecular profiling, immunotherapy in early phase trials

Stages of Clinical Research-Reinvented

Phase I trials sit at the interface of laboratory advances and later stage clinical care; expedite development of new treatments ; basis to prioritize resource allocation

Phase I group

Stanford University, Palo Alto, CA, USA

