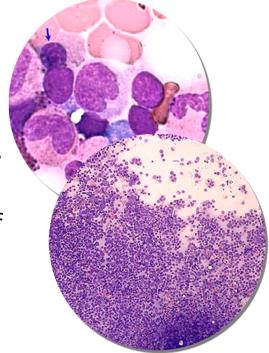
Myelodysplastic Syndromes: Is It Time to Incorporate NGS and What Is New in Terms of Therapy?

Rami Komrokji, MD Senior Member & Professor of Oncologic Sciences Section Head – Leukemia & MDS Vice Chair - Malignant Hematology Department H Lee Moffitt Cancer Center & Research Institute Tampa, Florida

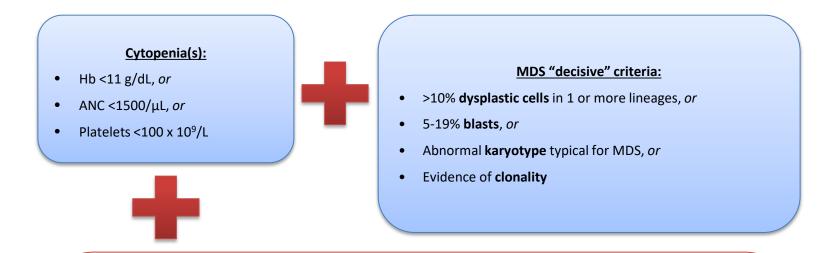
COI


• Relevant financial relationships in the past twelve months by presenter or spouse/partner.

Consultant: Incyte, Celgene Speakers Bureau: Novartis

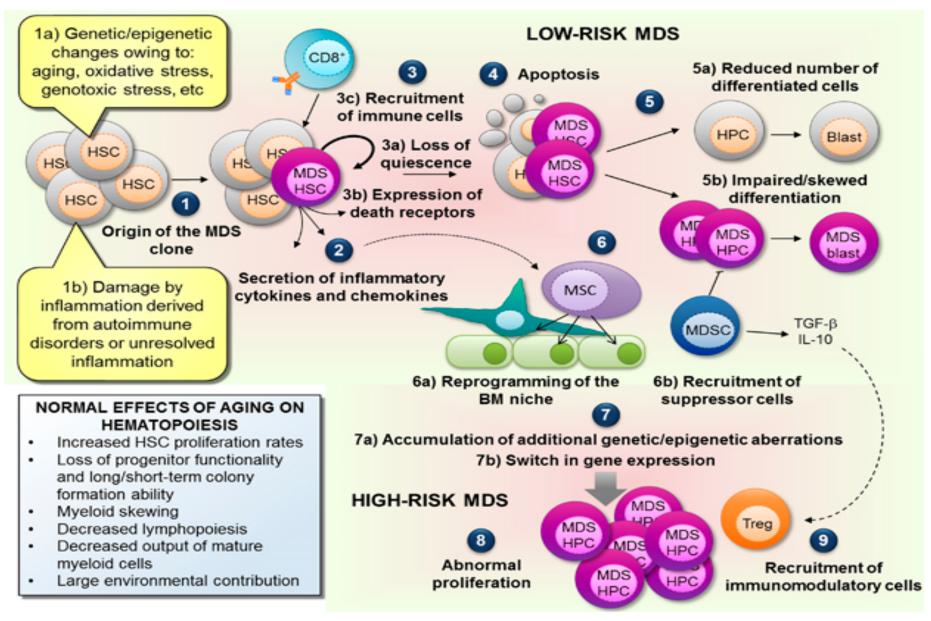
The speaker will directly disclosure the use of products for which are not labeled (e.g., off label use) or if the product is still investigational.

Myelodysplastic Syndromes (MDS)


- A group of malignant hematopoietic neoplasms characterized by¹
 - Bone marrow failure with resultant cytopenia and related complications
 - Evidence of clonality by cytogenetic abnormalities or somatic gene mutations.
 - Dysplastic cytologic morphology is the hallmark of the disease
 - Tendency to progress to AML
- Overall incidence 3.7-4.8/100,000²
 - In US (true estimates ≈37,000-48,000)
- Median age: 70 yrs; incidence: 34-47/100,000 >75 yrs³

AML = acute myeloid leukemia.

^{1.} Bennett J, et al. The myelodysplastic syndromes. In: Abeloff MD, et al, eds. *Clinical Oncology*. New York, NY: Churchill Livingstone; 2004:2849-2881. 2. SEER data. 2000-2009. 3. SEER 18 data. 2000-2009.


Minimal Diagnostic Criteria

EXCLUDE other causes of cytopenias and morphological changes:

- Vitamin B12/folate deficiency
- HIV or other viral infection
- Copper deficiency
- Alcohol abuse
- Medications (esp. methotrexate, azathioprine, recent chemotherapy)
- Autoimmune conditions (ITP, Felty syndrome, SLE etc.)
- Congenital syndromes (Fanconi anemia etc.)
- Other hematological disorders (aplastic anemia, LGL disorders, MPN etc.)

MDS pathogenesis model

Genetic Abnormalities in MDS

Translocations/ Rearrangements	Uniparental Disomy/ Microdeletions	Copy Number Change	Point Mutations
Rare in MDS	Rare – often at sites of point mutations	About 50% of cases	Most common
t(6;9) i(17q) t(1;7) t(3;?) t(11;?) inv(3) idic(X)(q13)	4q - <i>TET2</i> 7q - <i>EZH2</i> 11q - <i>CBL</i> 17p - <i>TP53</i>	del(5q) -7/del(7q) del(20q) del(17p) del(11q) +8 -Y	Likely in all cases ~80% of cases have mutations in a known gene
Karyotype	Array CGH SNP Array	Karyotype/FISH	Genotyping Sequencing

Observed Frequency in MDS

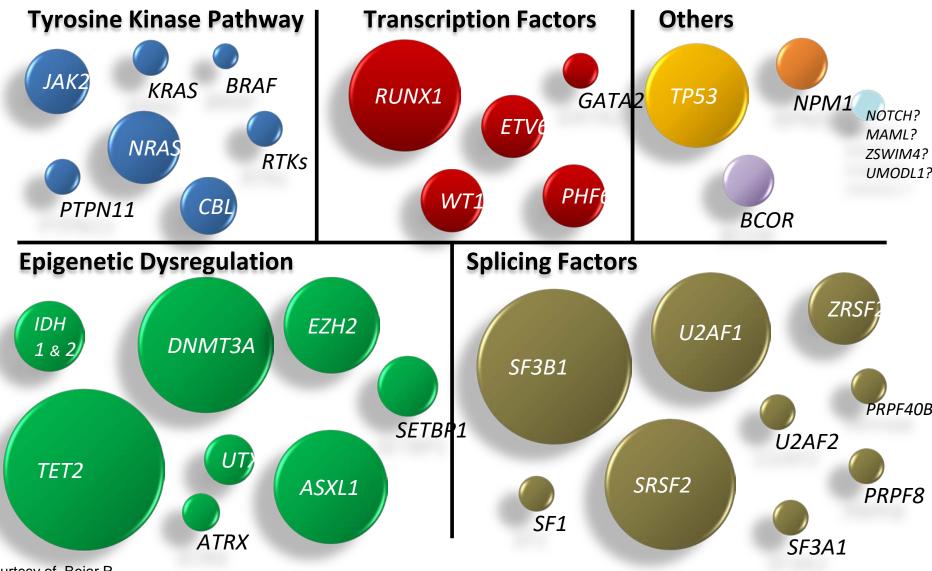
Vardiman, JW, et al. Blood. 2009;114(5): 937-951. Tiu R, et al. Blood. 2011;117(17):4552-4560. Schanz, J, et al. J Clin Oncol. 2011; 29(15):1963-1970. Bejar R, et al. N Engl J Med. 2011;364(26):2496-2506. Bejar R, et al. J Clin Oncol. 2012;30(27):3376-3382.

What is a mutation?

...TTGAGTCG....

...TTGAGTAG....

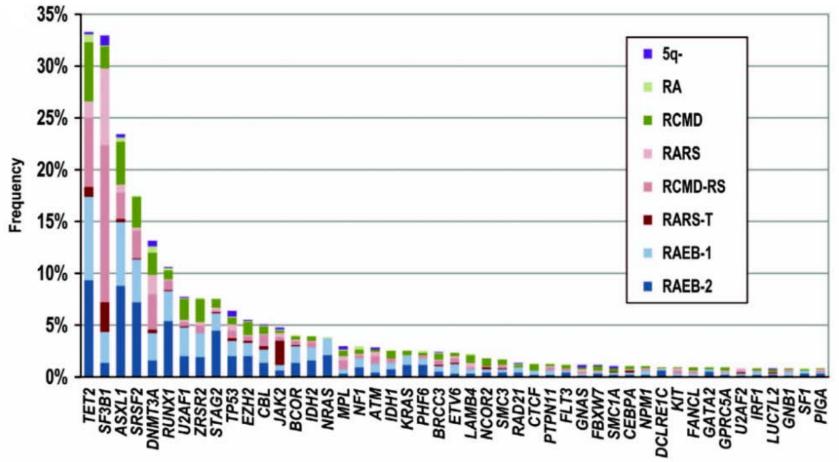
- Germline or somatic
- Synonymous versus non-synonymous


istone H3

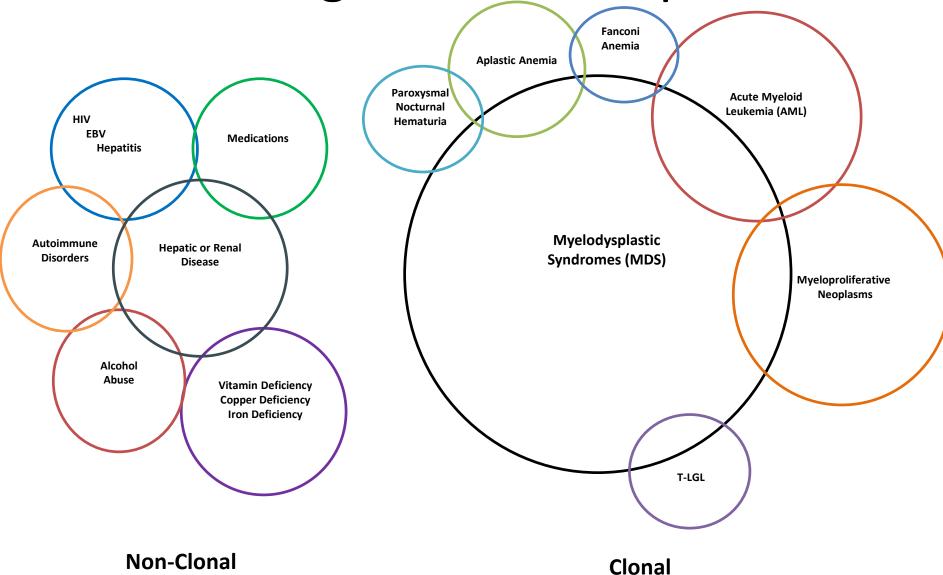
- SNV/polymorphism vs pathological
- Driver vs passenger

Type of mutations

- Missense
- Non-sense
- Insertion
- Deletion
- Frame shift
- duplication

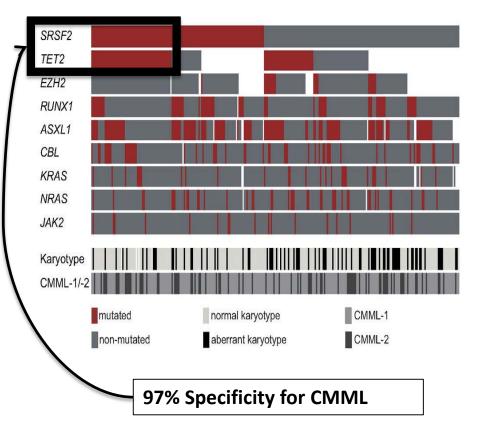

Genes Recurrently Mutated in MDS

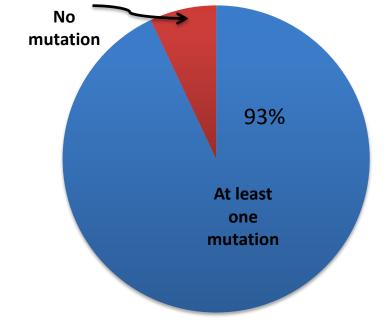
Courtesy of Bejar R.


Recurrent Genetic Mutations in MDS

~89% of patients had a mutation by NGS

MDS DIAGNOSIS

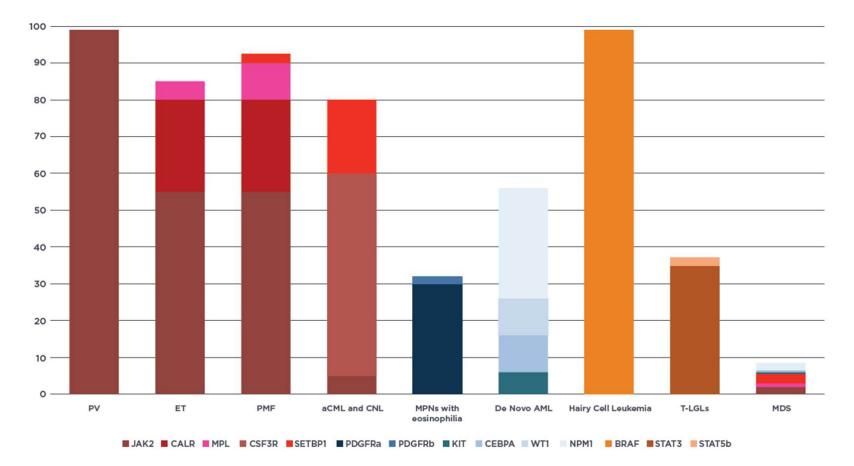

Diagnostic Overlap



Mutations in MDS

- MDS-associated gene mutations can establish the presence of clonal hematopoiesis, which can help exclude benign causes of cytopenias in cases with non-diagnostic morphology
- Mutations may not establish a diagnosis of MDS in the absence of clinical diagnostic criteria
- In the appropriate context (e.g., cytopenias present without AML defining criteria, no evidence of other malignancy), they could aid in the determination of diagnosis

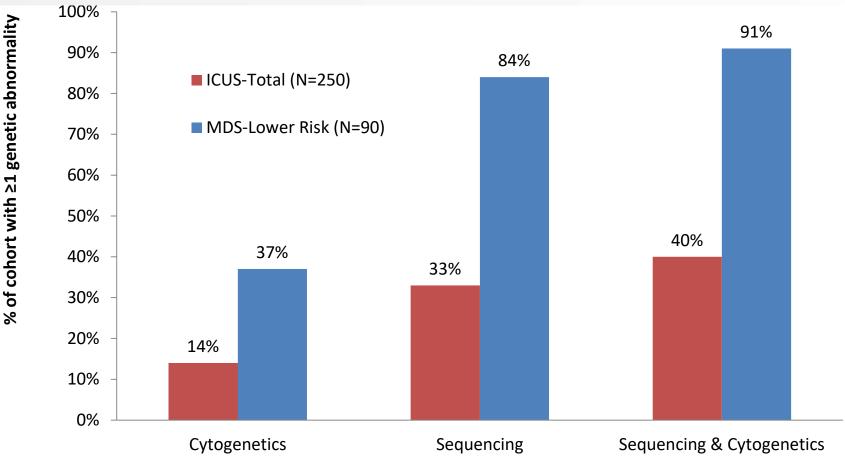
NGS Myeloid Panels can efficiently identify clonality



Malcovati L Blood 2014

Meggendorfer et al Blood 2013

Mutations in certain genes may favor related myeloid neoplasms or possible mimics of MDS


Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. *N Engl J Med.* 2013;369(25):2379-2390.; Kiladjian JJ. The spectrum of JAK2-positive myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program. 2012;2012:561-6.; Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. *Leukemia.* 2010;24:1128-1138.; Damm F, Itzykson R, Kosmider O, et al. SETBP1 mutations in 658 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia and secondary acute myeloid leukemias. *Leukemia.* 2013;27:1401-1403.; Thol F, Suchanek KJ, Koenecke C, et al. SETBP1 mutation analysis in 944 patients with MDS and AML. *Leukemia.* 2013;27:2072-2075.; Tefferi A, Thiele J, Vannucchi AM, et al. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. *Leukemia.* 2014;28:1407-1413.

MDS CLASSIFICATION

SOMATIC MUTATIONS INDICATIVE OF CLONAL HEMATOPOIESIS ARE PRESENT IN A LARGE FRACTION OF CYTOPENIC PATIENTS WHO LACK DIAGNOSTIC EVIDENCE OF MDS

Jeff M Hall¹, Jenan Al Hafidh¹, Emily Balmert¹, Bashar Dabbas¹, Christine Vaupel¹, Carlos El Hader¹, Matthew McGinniss¹, Shareef Nahas¹, Julie Kines¹, Sue Beruti¹, and Rafael Bejar²

¹Genoptix, Inc., a Novartis company; ²UC San Diego, San Diego, CA

ANALYSIS

medicine

17

Age-related mutations associated with clonal hematopoietic expansion and malignancies

Mingchao Xie^{1,2,7}, Charles Lu^{1,7}, Jiayin Wang^{1,2,7}, Michael D McLellan¹, Kimberly J Johnson³, Michael C Wendl^{1,4,5}, Joshua F McMichael¹, Heather K Schmidt¹, Venkata Yellapantula^{1,2}, Christopher A Miller¹, Bradley A Ozenberger^{1,2}, John S Welch^{2,6}, Daniel C Link^{2,6}, Matthew J Walter^{2,6}, Elaine R Mardis^{1,2,4,6}, John F Dipersio^{2,6}, Feng Chen^{2,6}, Richard K Wilson^{1,2,4,6}, Timothy J Ley^{1,2,4,6} & Li Ding^{1,2,4,6}

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

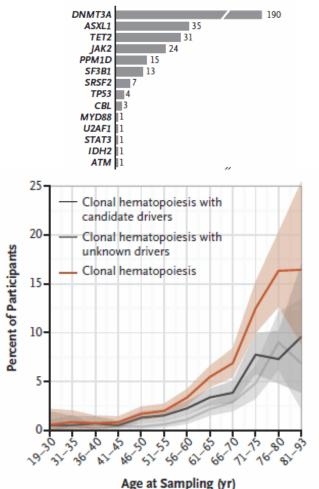
Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence

Giulio Genovese, Ph.D., Anna K. Kähler, Ph.D., Robert E. Handsaker, B.S.,
Johan Lindberg, Ph.D., Samuel A. Rose, B.S., Samuel F. Bakhoum, M.D., Ph.D.,
Kimberly Chambert, M.S., Eran Mick, B.S., Benjamin M. Neale, Ph.D.,
Menachem Fromer, Ph.D., Shaun M. Purcell, Ph.D., Oscar Svantesson, M.S.,
Mikael Landén, Ph.D., Martin Höglund, M.D., Ph.D., Sören Lehmann, M.D., Ph.D.,
Stacey B. Gabriel, Ph.D., Jennifer L. Moran, Ph.D., Eric S. Lander, Ph.D.,
Patrick F. Sullivan, M.D., Pamela Sklar, M.D., Ph.D., Henrik Grönberg, M.D., Ph.D.,
Christina M. Hultman, Ph.D., and Steven A. McCarroll, Ph.D.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

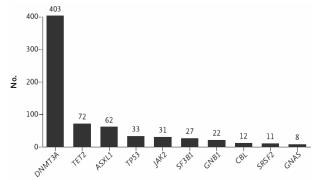
Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes

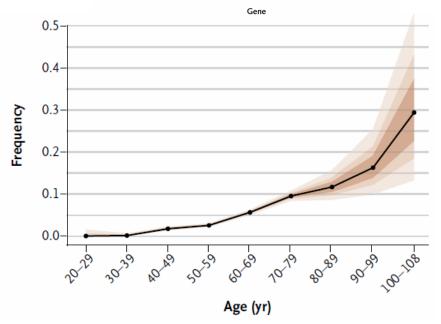

Siddhartha Jaiswal, M.D., Ph.D., Pierre Fontanillas, Ph.D., Jason Flannick, Ph.D., Alisa Manning, Ph.D., Peter V. Grauman, B.A., Brenton G. Mar, M.D., Ph.D., R. Coleman Lindsley, M.D., Ph.D., Craig H. Mermel, M.D., Ph.D., Noel Burtt, B.S., Alejandro Chavez, M.D., Ph.D., John M. Higgins, M.D., Vladislav Moltchanov, Ph.D., Frank C. Kuo, M.D., Ph.D., Michael J. Kluk, M.D., Ph.D., Brian Henderson, M.D., Leena Kinnunen M.Sc., Heikki A. Koistinen, M.D., Ph.D., Claes Ladenvall, Ph.D., Gad Getz, Ph.D., Adolfo Correa, M.D., Ph.D., Benjamin F. Banahan, Ph.D., Stacey Gabriel, Ph.D., Sekar Kathiresan, M.D., Heather M. Stringham, Ph.D., Christopher Haiman, Sc.D., Leif Groop, M.D., Ph.D., Gil Atzmon, Ph.D., James G. Wilson, M.D., Donna Neuberg, Sc.D., David Altshuler, M.D., Ph.D.,* and Benjamin L. Ebert, M.D., Ph.D.;*

Risk of acquiring mutations increases with age

ORIGINAL ARTICLE

Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence


Giulio Genovese, Ph.D., Anna K. Kähler, Ph.D., Robert E. Handsaker, B.S.,



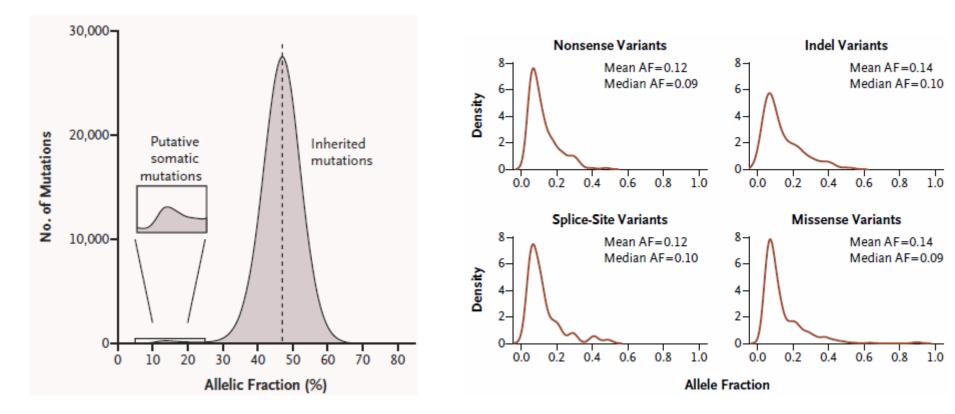
ORIGINAL ARTICLE

Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes

Siddhartha Jaiswal, M.D., Ph.D., Pierre Fontanillas, Ph.D., Jason Flannick, Ph.D.,

Allele frequency is rarely over 20%

ORIGINAL ARTICLE

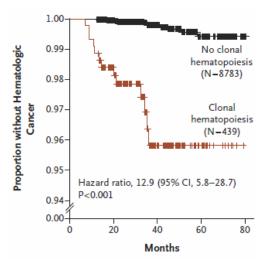

Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence

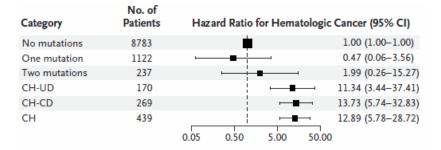
Giulio Genovese, Ph.D., Anna K. Kähler, Ph.D., Robert E. Handsaker, B.S.,

ORIGINAL ARTICLE

Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes

Siddhartha Jaiswal, M.D., Ph.D., Pierre Fontanillas, Ph.D., Jason Flannick, Ph.D.,

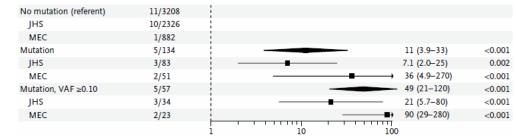



Acquisition of somatic clones is not benign

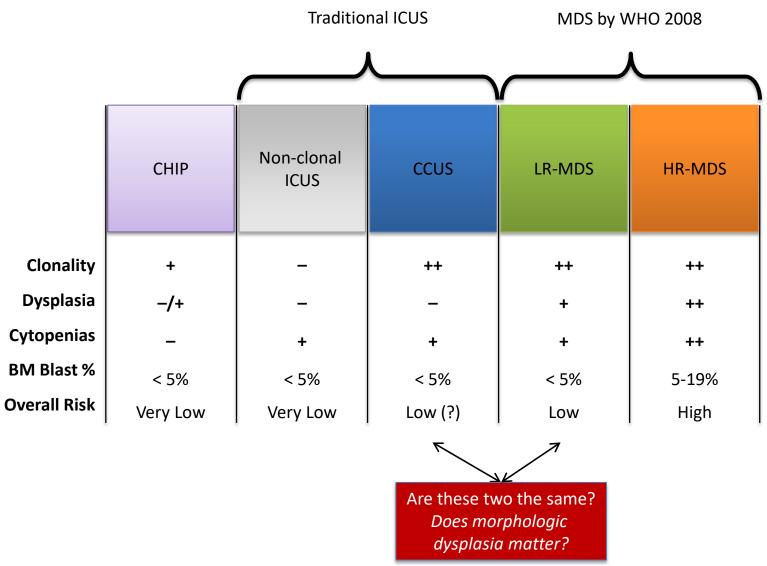
ORIGINAL ARTICLE

Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence

Giulio Genovese, Ph.D., Anna K. Kähler, Ph.D., Robert E. Handsaker, B.S.,



ORIGINAL ARTICLE


Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes

Siddhartha Jaiswal, M.D., Ph.D., Pierre Fontanillas, Ph.D., Jason Flannick, Ph.D.,

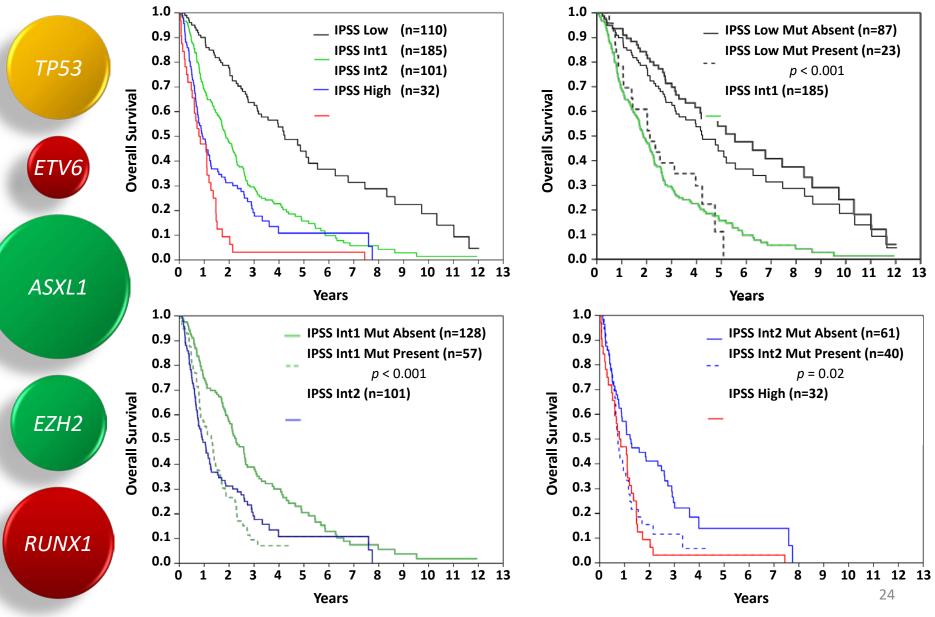
How do we classify these patients?

CCUS = clonal cytopenias of undetermined significance; ICUS = idiopathic cytopenias of undetermined significance; CHIP = clonal hematopoiesis of indeterminate potential; LR = lower risk, HR = higher risk

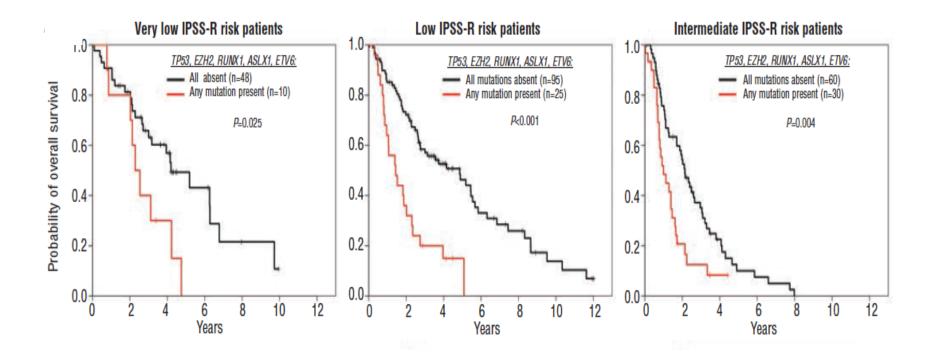
New Proposed WHO classification

Table 1. Proposed nomenclature changes for MDS categories

Proposed Category	Current or prior WHO category				
MDS with single lineage dysplasia (MDS-SLD)	Refractory cytopenia with unilineage dysplasia (RCUD; encompassing refractory anemia, refractory thrombocytopenia, and refractory neutropenia)				
MDS with multilineage dysplasia (MDS-MLD)	Refractory cytopenia with multilineage dysplasia (RCMD)				
MDS with single lineage dysplasia and ring sideroblasts (MD-RSSLD)	Refractory anemia with ring sideroblasts (RARS)				
MDS with multilineage dysplasia and ring sideroblasts (MDS-RSMLD)	Refractory cytopenia with multilineage dysplasia and ring sideroblasts* (RCMD-RS)				
MDS with excess blasts-1 (MDS-EB1)	Refractory anemia with excess blasts-1 (RAEB1)				
MDS with excess blasts-2 (MDS-EB2)	Refractory anemia with excess blasts-2 (RAEB2)				


* RCMD-RS was an entity in the 2001 WHO Classification, but was merged with RCMD in the 2008 Classification.

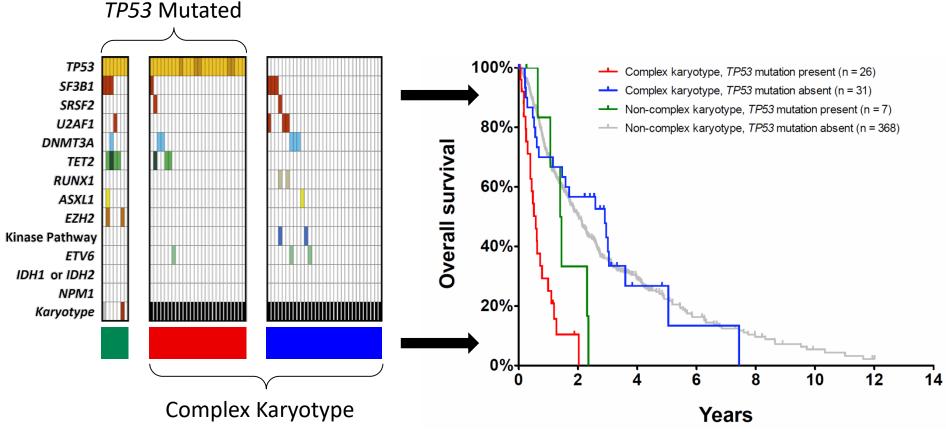
- Eliminate non-erythroid blast count if erythroid cells > 50%
- RS > 5% and SF3B1 mutation MDS-RS-SLD


ASH 2015 Educational book

MDS RISK STRATIFICATION

Impact of Mutations by IPSS Group

Somatic Gene Mutations Improve Precision of the IPSS-R

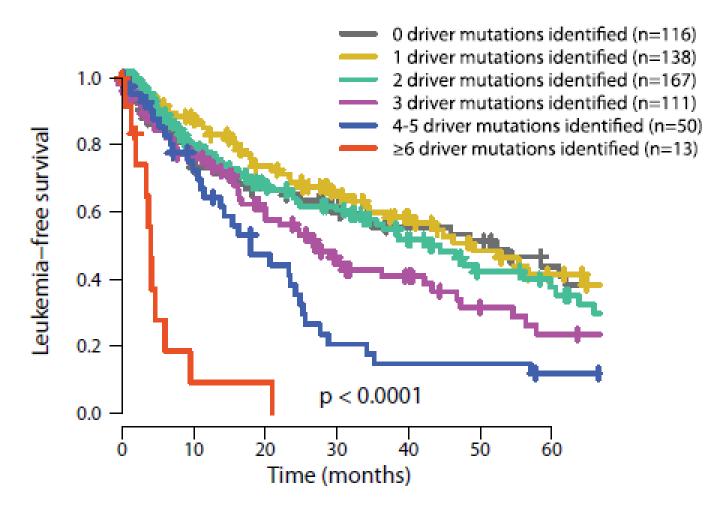


Bejar R. Haematologica 2014; 99: 956.

IWG Molecular analysis

	Hazard Ratio (95% CI)				
	HR	<i>p</i> -value	0.1	1 10	
IPSS-R Risk Groups (vs. Very Low)		-			
Low	1.08	0.542	-	-	
Intermediate	1.97	<0.0001		H-	
High	2.56	<0.0001			
Very High	4.36	<0.0001			
Mutated Genes (vs. Unmutated)					
TP53	2.35	<0.0001			
RUNX1	1.51	0.0002			
EZH2	1.58	0.0006		H	
NRAS	1.44	0.019		Ŧ	
SF3B1	0.82	0.041	*		
CBL	1.35	0.056			
U2AF1	1.22	0.069		-	
ASXL1	1.17	0.090		Ŧ	
TET2	0.88	0.104			
IDH2	1.31	0.111			
KRAS	1.22	0.362	F	*	
NPM1	1.2	0.546		<u>م</u>	

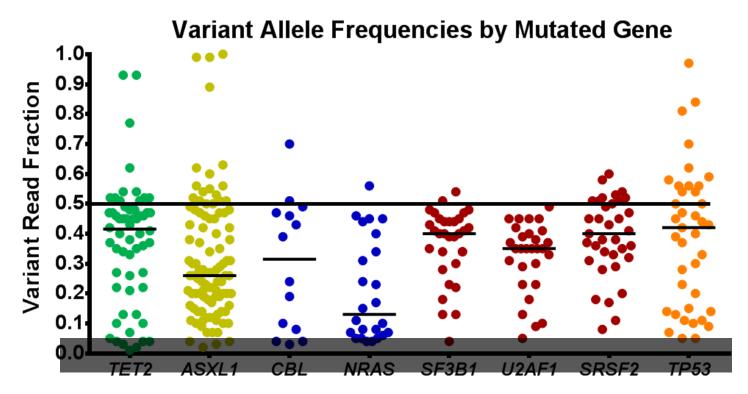
TP53 Mutations and Complex Karyotypes


The adverse prognostic impact of the complex karyotype is entirely driven by its frequent association with mutations of *TP53*

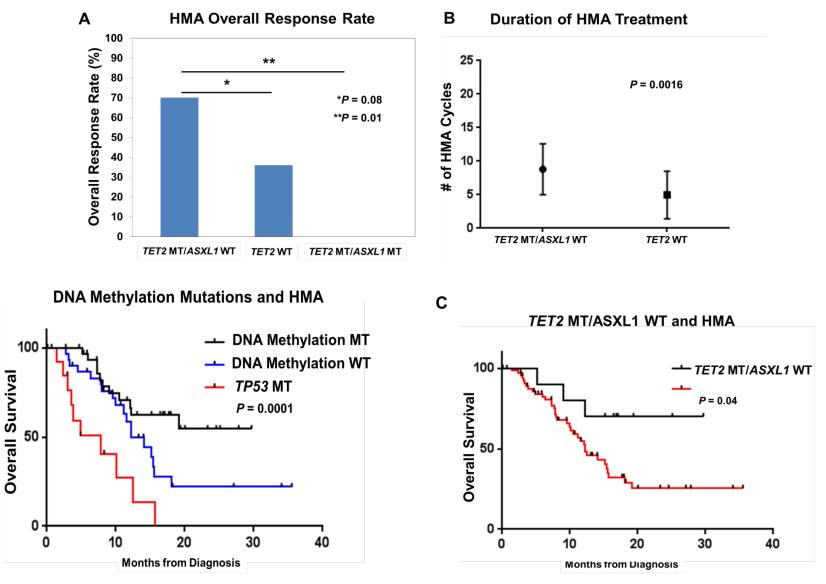
Clonal burden of *TP53* Mutation Predicts for Inferior Survival

b а **TP53 VAF > 40%** 100 100 TP53 Mutant **TP53 VAF < 20% Overall Survival** TP53 Wild-type **Overall Survival** P = .01 P < .0001 50 · 50 -0 0 200 400 600 800 0 200 400 600 ٥ Time (days) Time (days)

Sallman et al., Leukemia journal


Number of Mutations and Prognosis

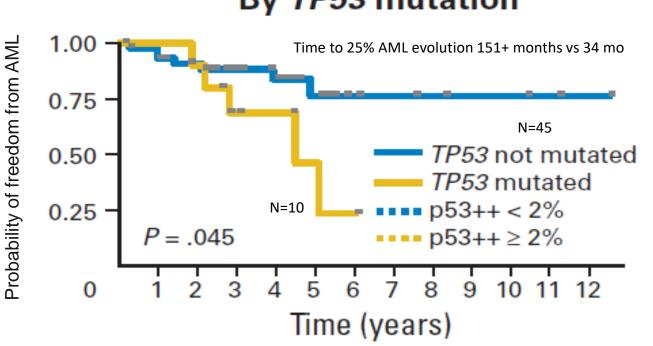
Papaemmanuil E, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013.


THERAPEUTIC IMPLICATIONS

Response by Variant Abundance

Gene (n) <i>VAF ≥ 0.1</i>	Unadjusted OR (95% CI)	p-value	Adjusted OR (95% CI)	p-value
<i>TET2</i> (50)	1.99 (1.05, 3.80)	0.036	1.98 (1.02, 3.85)	0.044
<i>TET2</i> mut + <i>ASXL1</i> wt (23)	3.65 (1.38, 9.67)	0.009	3.64 (1.35, 9.79)	0.011

Can we tailor therapy accordingly?



Sallman, et. al. ASH 2016

MDS with Founder *TP53* Mutations are Highly Responsive to Decitabine

- Welch JS, et. al. *NEJM* 2016; 375:2023.
 - 116 MDS/AML treated with decitabine 20 mg/m²/d x 10d q 28d
 - exome sequencing pretreatment & serially
 - Higher ORR in TP53 mutant vs. Wt (21/21 [100%] vs. 32/78 [41%], P
 <0.001)
 - CR/Cri higher in *TP53* mutant vs. Wt (13/21 [62%] vs. 26/78 [33%], *P*=0.04)
- Chang CK, et. al. *Brit J Haematol* 2016; Epub.
 - 109 MDS treated with decitabine 20 mg/m²/d x 5d q 28d
 - exome sequencing pretreatment
 - CR rate higher in *TP53* mutant vs. Wt (10/15 [66.7%] vs. 20/94 [21%], P =0.001)
 - No difference in ORR (*TP53* mutant, 11/15 [73%] vs. 63/94 [67%] Wt)
 - Poor OS in *TP53_{mu}* MDS (median, 14 vs. 39 mos; *P*=0.012)

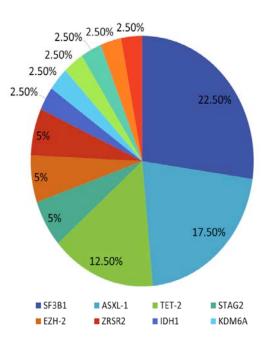
Probability of AML Progression in Low/Int-1 del(5q) MDS by TP53 mutation

By TP53 mutation

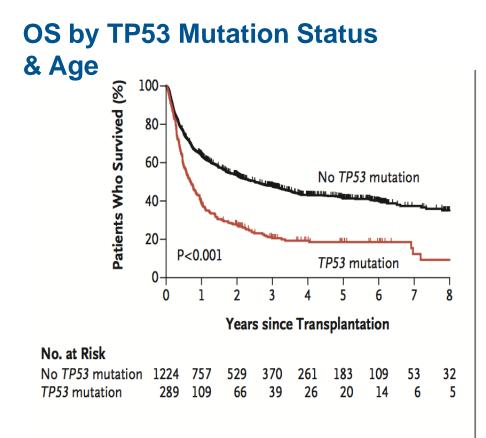
[n=55]

•TP53 with median clone size of 11% was detected in 18% of pts.

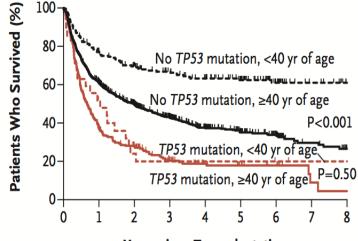
•5 out of 12 patients who progressed to AML had TP53 mutation.


8 out of 10 mutated Tp53 patients received lenalidomide where a trend toward AML progression was noted.

 no complete CCR observed among p53 mutated pts.


Median follow-up: 40 months Progression = blasts >10% or complex karyotype.

Somatic Gene Mutations (SGM) as Biomarkers for Response to Immunosuppressive Therapy (IST)

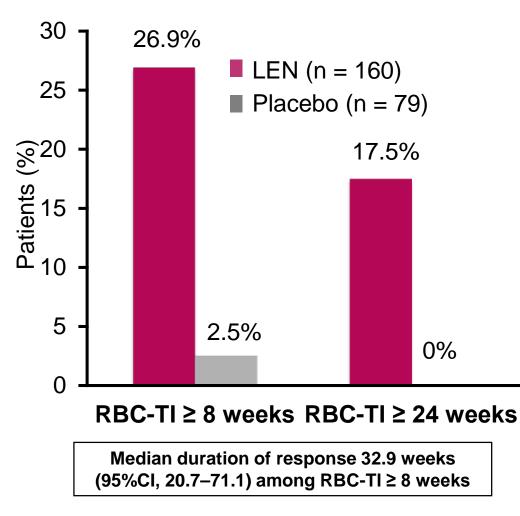

- Independent clinical covariates for response to ATG <u>+</u> CsA include age, HLA-DR15⁺ & duration of transfusion dependence in the NIH model
- 66 IPSS Low/Int risk MDS pts treated with ATG <u>+</u> CsA with 42% (n=28) ORR
- No SGM in detected 50% of patients.
- Absence of SGM associated with higher IST ORR (70% vs 40%, P=0.16) with a mean response duration of 12 mos in SGM⁻ vs 9 mos in SGM⁺pts (P=0.09).
- SF3B1 mutation was associated with IST nonresponse (11% SF3B1Mu⁺ vs 68% WT, p=0.01)
- Rate of AML transformation in pts with non-SF3B1 SGM > SGM⁻, p=0.023 with reduced OS.

Impact of TP53 Mutation & Age on AlloHCT

OS by TP53 Mutation

Years since Transplantation

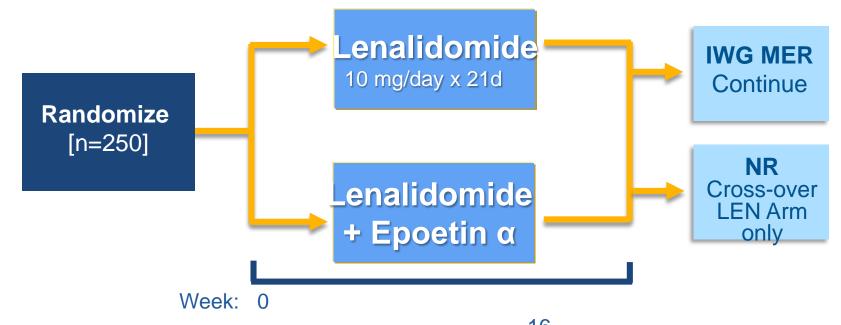
No. at Risk									
No TP53 mutation	1								
<40 yr of age	214	1 59	133	115	100	78	42	23	13
≥40 yr of age	1010	598	396	255	161	105	67	30	19
TP53 mutation									
<40 yr of age	27	14	7	5	5	5	4	4	3
≥40 yr of age	262	95	59	34	21	15	10	3	2


Lindsley RC, et. al. NEJM 2017; 376: 536.

LRMDS

Would you use lenalidomide or HMAs?

Lenalidomide

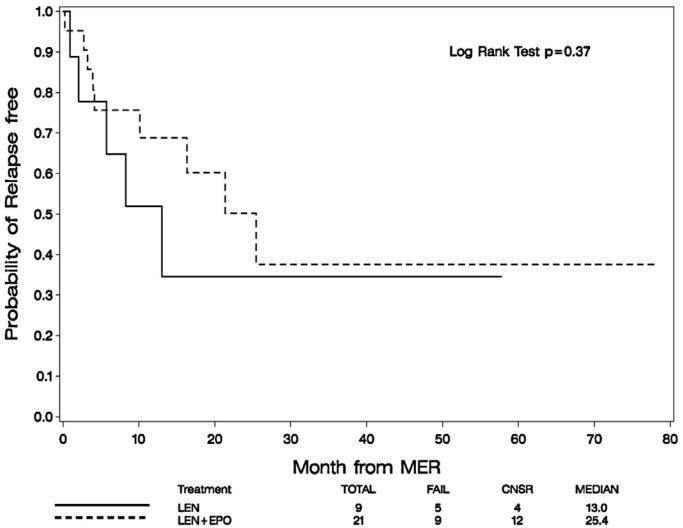

Azacitidine

Lineage HI in Evaluable Pts,* n/N (%)	5-2-2 (n = 50)	5-2-5 (n = 51)	5d (n = 50)
Erythroid	19/43	19/43	20/44
^{Ma}	(44)	(44)	(46)
RBC-TI	12/24	12/22	15/25
	(50)	(55)	(64)
Platelet_{Ma}	12/28	8/30	11/22
	(43)	(27)	(50)
Any HI	22/50	23/51	28/50
	(44)	(45)	(56)
Neutrophi	4/23	4/23	9/24
I _{Ma}	(17)	(17)	(38)

Santini V, et al. JCO 2016; Lyons RM, et al. J Clin Oncol. 2009;27:1850-1856.

Phase III Intergroup Study of Lenalidomide <u>+ Epoetin Alpha After ESA Failure [ECOG 2905]</u>

- Eligibility: Low/Int-1 IPSS, ESA failure or low response profile, Hgb <9.5 g/dL
- Stratification: serum EPO (> vs. <500mU/ml), prior ESA (EA vs. DA vs. None)
- Epoetin alfa 60,000 units SC weekly
- Primary Endpoint (EP): MER
- Secondary EP: Time to MER, MER duration, LEN cross-over response, candidate response biomarkers (CD45 isoform profile)

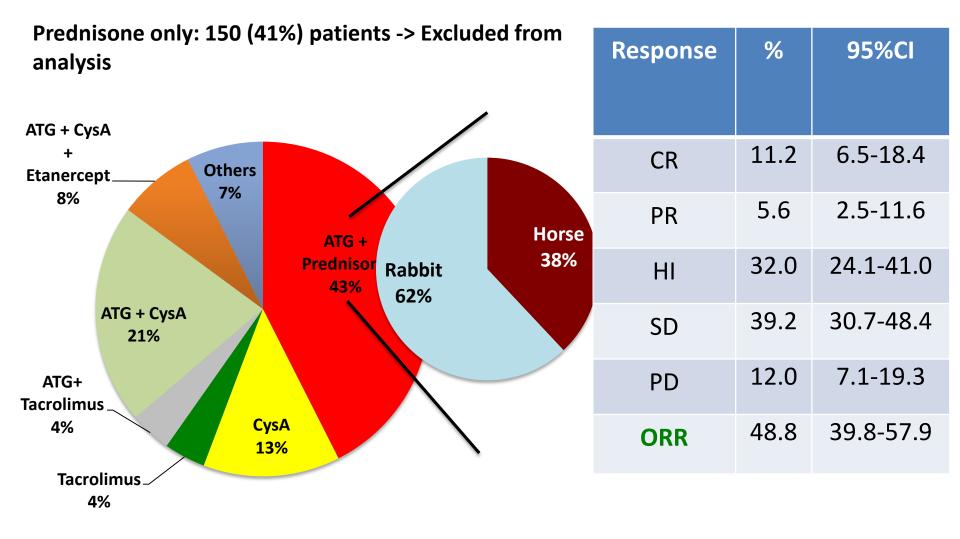

List A, et. al. ASH 2016; #223a.

Response Analysis

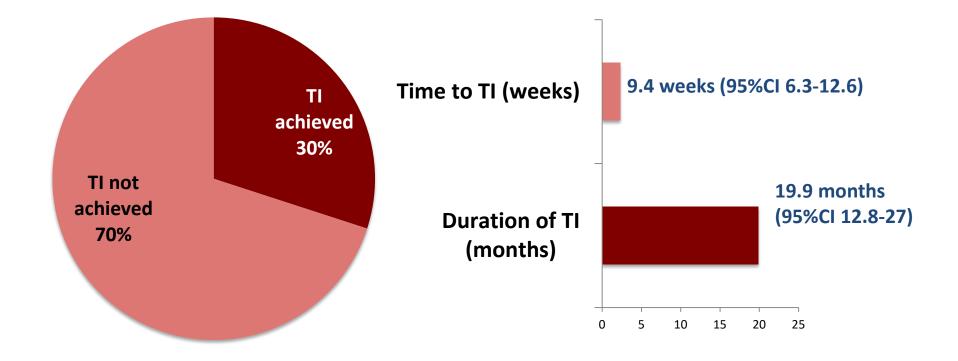
Response & Cohort	Arm A (%) LEN	Arm B (%) LEN+Epo	<i>P</i> value
ITT Analysis [n=163]	N=81	N=82	
MER	9 (11.1)	21 (25.6)	<i>P</i> =0.025
Minor ER	15 (18.5)	13 (15.9)	P=0.68
Overall ER	24 (29.6)	34 (41.5)	P=0.14
Arm A Crossover MER	N=34	7 (21%)	
Week 16 Evaluable [n=117]	N=56	N=60	
MER	8 (14.3)	20 (32.8)	<i>P</i> =0.029
Minor ER	13 (23.1)	13 (21.3)	P=0.83
Overall ER	21 (37.5)	33 (54.1)	P=0.09

List A, et. al. ASH 2016; #223a.

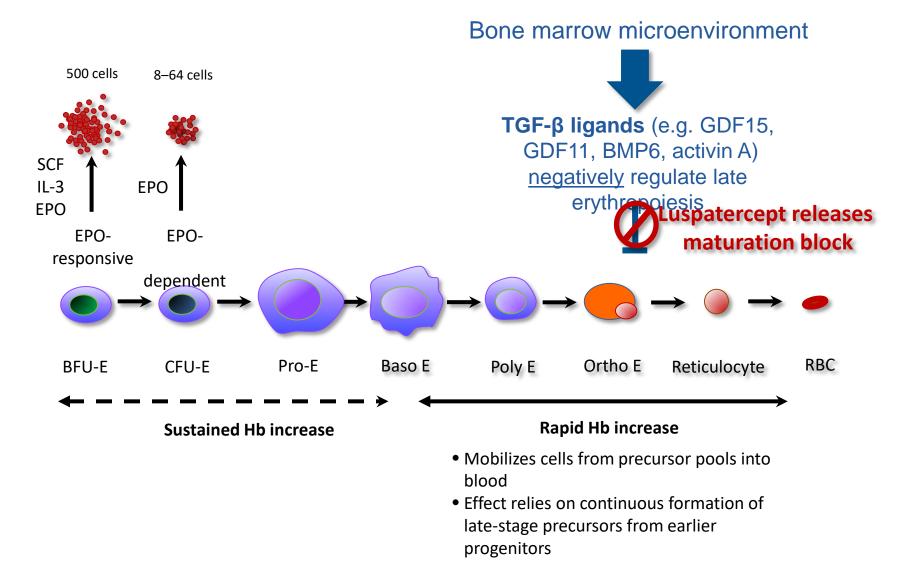
Duration of MER


List A, et. al. ASH 2016; #223a.

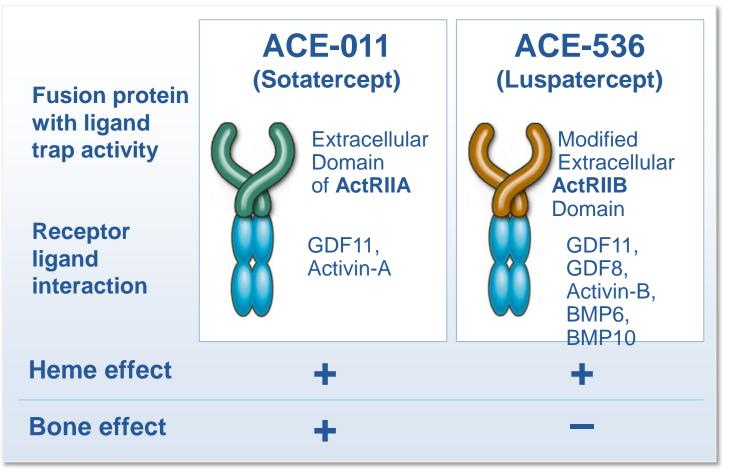
Low-Dose HMAs in LR MDS: Response Rates


Response,* %	Decitabine (n = 70)	Azacitidine (n = 39)	<i>P</i> Value	Response,* %	Decitabine (n = 70)	Azacitidine (n = 39)	<i>P</i> Value
ORR	70	49	.03	Blasts ≥ 5%	(n = 21)	(n = 11)	
■CR	37	36	.90	■ORR	100	36	< .001
■mCR	9	5	NR	■CR	52	18	.06
■HI ■SD	24 26	8 44	NR NR	Blasts < 5% ∎HI - ≥ 1	(n = 45)	(n = 27)	
■PD	4	8	NR	lineage	36	48	.29
CCyR	25	6	.12	•HI - all			
PCyR	36	19		lineages	22	26	.72
CCyR + PCyR	61	25	.02	Tlat			
*Median treatment cycles (range): 9 (1-41).			response	32	16	.20	

 Strongest predictors of response included BM blasts ≥ 5%, MDS/MPN or CMML diagnosis, high MDA LR MDS score, and IPSS intermediate-1 risk


Type of IST used (N=217) and responses

Transfusion independence (TI)



Excess Smad2/3 Signaling Suppresses Late-Stage RBC Maturation in MDS

ACE-011 (Sotatercept) and ACE-536 (Luspatercept)

Novel Ligand Traps for TGFβ Superfamily Ligands

Suragani R, et. al. Nat Med 2014; 20: 408.

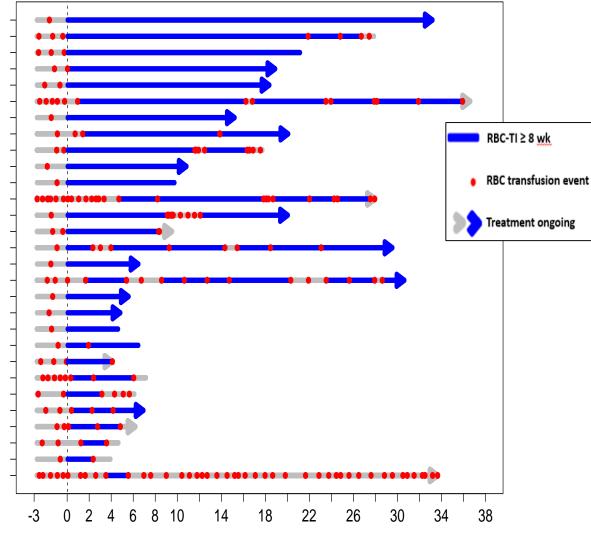
Luspatercept PACE-MDS Phase 2 Clinical Trials Overview

A Phase 2, multicenter, open-label, 3-month dose-escalation study in adults with lower-risk MDS followed by a 5-year extension study

	Base Study (N=106) 3 months NCT01749514	Extension Study (N=70) 5 years (ongoing) NCT02268383		
Patient Populat	ion	Efficacy Endpoints		
 Multiple cohorts enrolling low/intermediate-1 risk (IPSS) MDS patients including: Non-transfusion dependent and transfusion dependent patients ESA-naïve and ESA-experienced patients Patients with a range of baseline EPO levels RS+ and non-RS patients 		 <u>IWG (2006) HI-E:</u> Hb increase ≥ 1.5 g/dL for all values over 8 weeks for patients with < 4 units/8 wk and Hb < 10 g/dL ≥ 4 RBC unit decrease over 8 weeks for patients with ≥ 4 units/8 wk 		
Treatment		Other Efficacy Endpoints		
study); 1.0 - q3 weeks • All patients	ot 0.125 – 1.75 mg/kg (base - 1.75 mg/kg (extension) SC followed up for 2 months se or early discontinuation	 <u>RBC-TI:</u> RBC-transfusion independence ≥ 8 weeks (RBC evaluable patients, ≥2U/8 weeks) Time to/duration of HI-E response 		

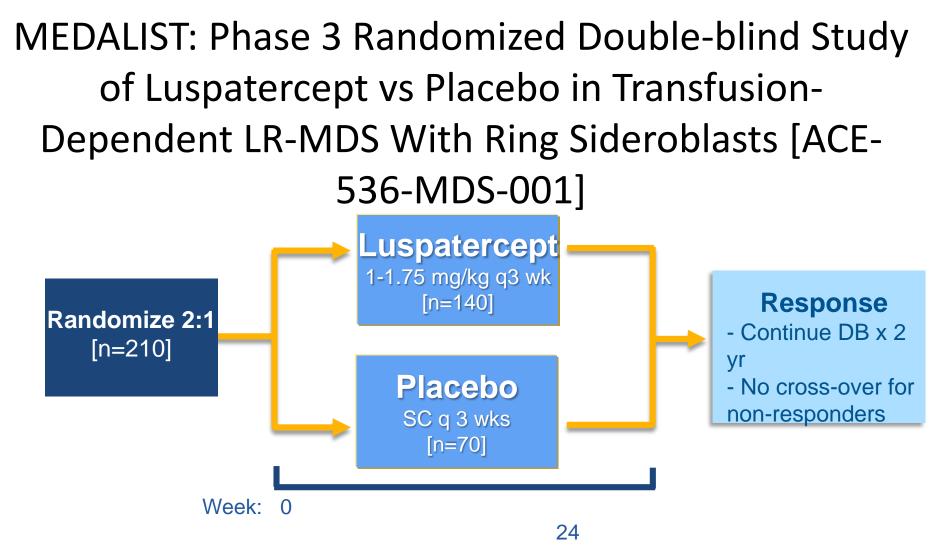
IWG HI-E and RBC-TI Response Rates by ESA, EPO, RS Status

Patients Treated at Dose Levels ≥ 0.75 mg/kg


Response Rates	IWG-HI-E, n/N (%) (N=99)	RBC-TI <i>,</i> n/N (%) (N=67)				
All patients	52/99 (53%)	29/67 (43%)				
ESA-naïve	28/53 (53%)	17/31 (55%)				
Prior ESA	24/46 (52%)	12/36 (33%)				
Baseline EPO <200 U/L						
RS+	25/39 (64%)	16/24 (67%)				
Non-RS	7/13 (54%) 3/7 (43					
Baseline EPO 200-500 U/L						
RS+	10/14 (71%)	4/9 (44%)				

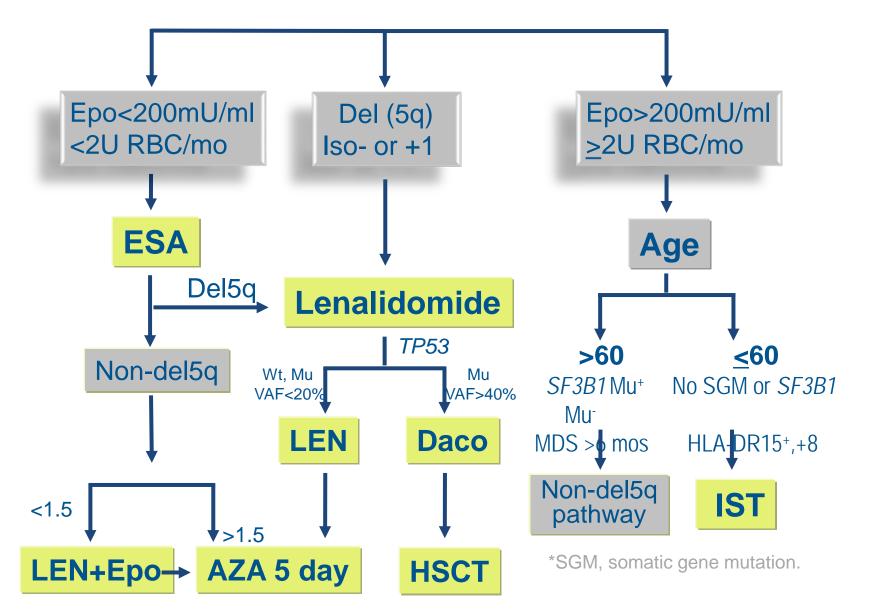
KS+	10/14 (71%)	4/9 (44%)
Non-RS	4/8 (50%)	3/5 (60%)

RS Status

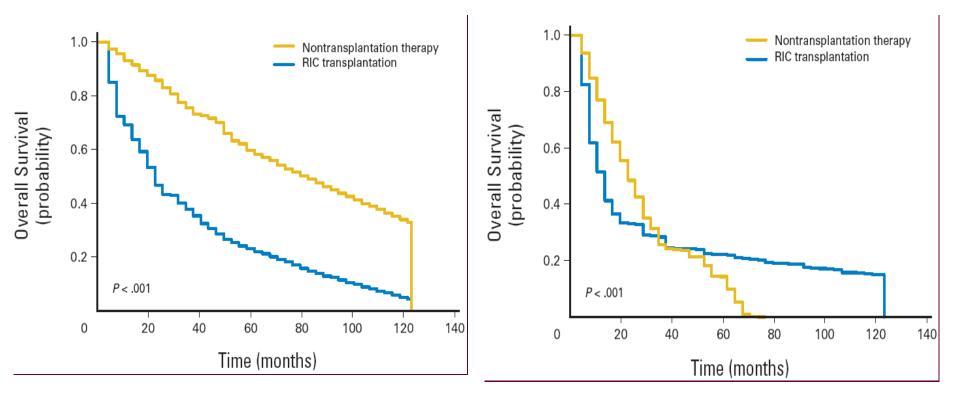

RS+	40/62 (65%)	22/42 (52%)
Non-RS	12/35 (34%)	7/23 (30%)
Unknown	0/2 (0%)	0/2 (0%)

Durability of Response in RBC-TI Responders Patients Treated at ≥ 0.75 mg/kg with Baseline RBC ≥2U/8 weeks

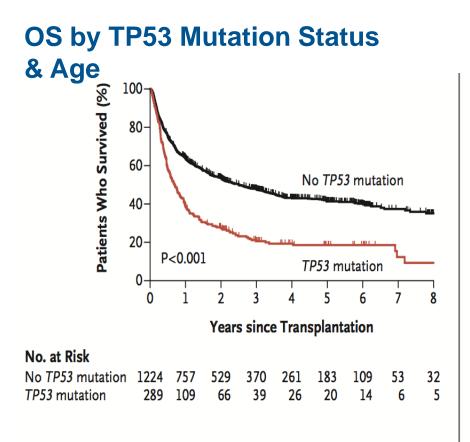
Months


Platzbecker U et al. ASH 2017 [Abstract # 2982]

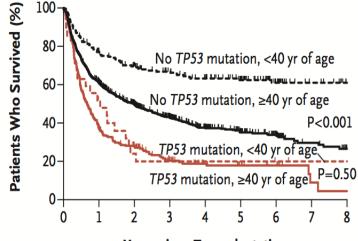
Eligibility: Non-del(5q) MDS with \geq 15% RS, VL-Int. IPSS-R, \Box 2 U PRBC/8 wks, prior ESA


Key Exclusions: Prior treatment with IMiDs, azanucleosides or IST; ANC < 500, plat<50K **Stratification:** RBC transfusion burden (< 6 vs \geq 6 U/8wk), IPSS-R VL/Low vs. Int. **Primary end-point:** Transfusion Independence x \geq 8 weeks

Anemia Management Algorithm in LR-MDS


HR-MDS

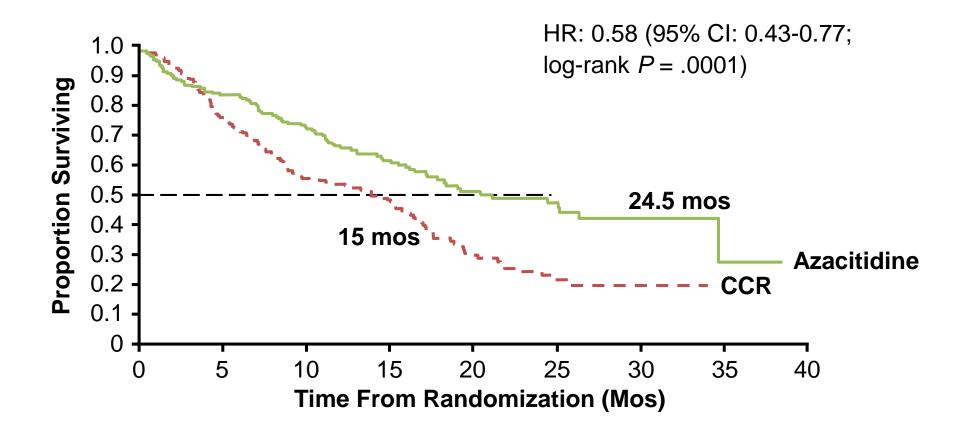
Allogeneic Hematopoietic Stem Cell Transplantation remains the only curative option for MDS patients



Koreth J, et al. J Clin Oncol. 2013;31:2662-2671.

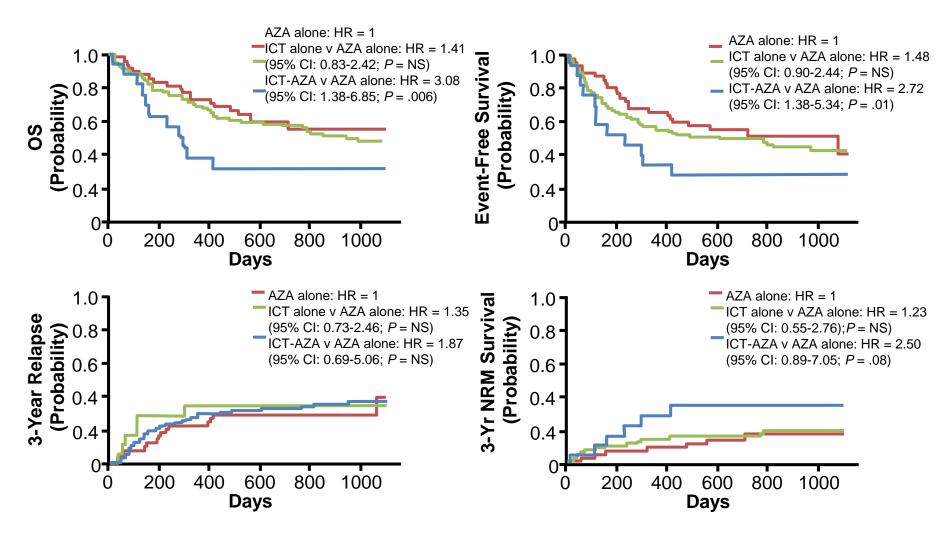
Impact of TP53 Mutation & Age on AlloHCT

OS by TP53 Mutation



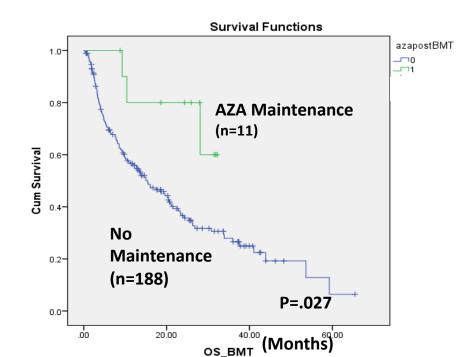
Years since Transplantation

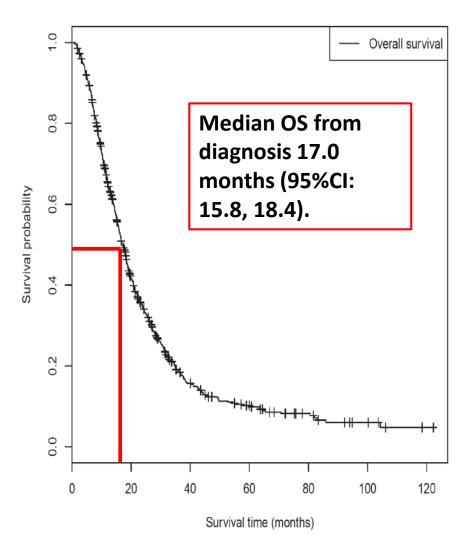
No. at Risk									
No TP53 mutation	1								
<40 yr of age	214	1 59	133	115	100	78	42	23	13
≥40 yr of age	1010	5 98	396	255	161	105	67	30	19
TP53 mutation									
<40 yr of age	27	14	7	5	5	5	4	4	3
≥40 yr of age	262	95	59	34	21	15	10	3	2


Lindsley RC, et. al. NEJM 2017; 376: 536.

AZA-001 Trial: Azacitidine Significantly Improves Overall Survival

Fenaux P, et al. Lancet Oncol. 2009;10:223-232

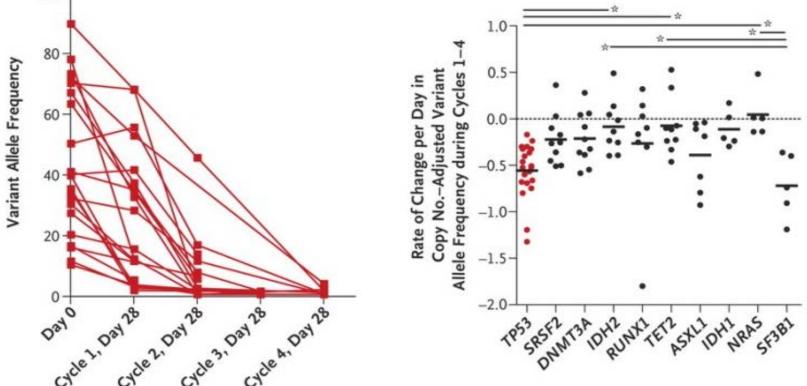

Treatment With AZA OR ICT Prior AHSCT


Damaj G, et al. J of Clin Oncol. 2012;30:4533-4540.

Azacitidine Maintenance after AHSCT

- De Lima, et al. Cancer 2010; 116(23)
 - N= 45, majority AML patients (n=37).
 - Excluded active disease, active GVHD, active infections.
 - MTD AZA 32mg/m² SQ for 5 days SQ X 4 cycles.
 - Median EFS 18.2 mo (95% CI: 11.9-NR), One year EFS and OS 58% and 77%
- Mishra et al. Leukemia Research, vol 55, S1, April 2017, Page S48

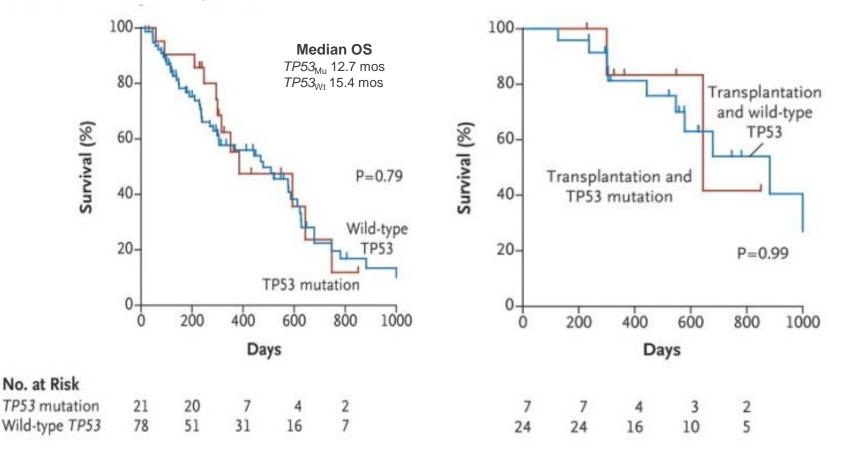
How do HMAs perform in the real-life setting?


- A retrospective analysis of 636 HR-MDS in the MDS Clinical Research Consortium database (6 tertiary centers, no single center accounted for > 39%).
- 69.6% INT-2, 30.4% high IPSS
- Median follow-up 15.7 months (95% CI: 14.6, 16.8).
- Median time from diagnosis to HMA initiation 0.95 months (95%CI: 0.86, 1.06).
- 67.9% azacitidine, 32.1% decitabine.
- Median number of cycles 5.0 (IQR: 3.0, 8.0)
- 72.2% received ≥ 4 cycles.

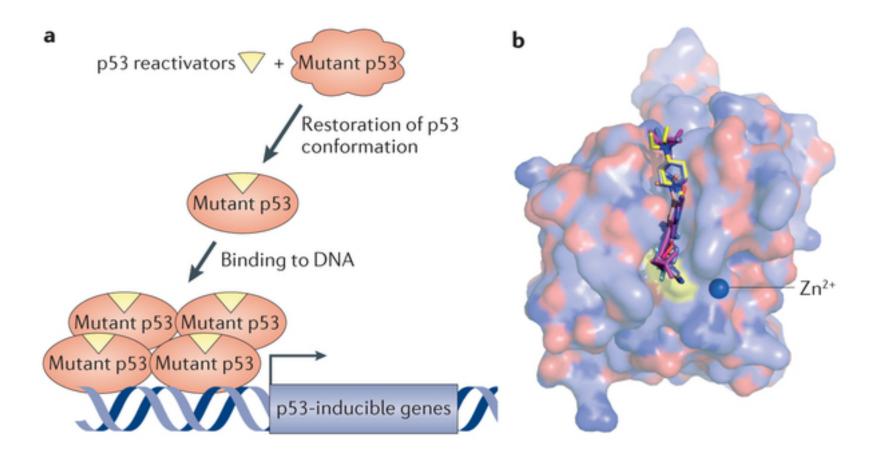
MDS with Founder *TP53* Mutations are Highly Responsive to Decitabine

- Welch JS, et. al. *NEJM* 2016; 375:2023.
 - 116 MDS/AML treated with decitabine 20 mg/m²/d x 10d q 28d
 - exome sequencing pretreatment & serially
 - ORR higher in fav/int cytogenetic risk vs. unfavorable (29/43 [67%] vs. 24/71 [34%], P <0.001)
 - Higher ORR in TP53 mutant vs. Wt (21/21 [100%] vs. 32/78 [41%], P < 0.001)
 - CR/Cri higher in *TP53* mutant vs. Wt (13/21 [62%] vs. 26/78 [33%], *P*=0.04)
 - No relation between response & change in cytosine methylation or subclonal TP53 mutation
- Chang CK, et. al. Brit J Haematol 2016; Epub.
 - 109 MDS treated with decitabine 20 mg/m²/d x 5d q 28d
 - exome sequencing pretreatment
 - CR rate higher in *TP53* mutant vs. Wt (10/15 [66.7%] vs. 20/94 [21%], *P* =0.001)
 - No difference in ORR (TP53 mutant, 11/15 [73%] vs. 63/94 [67%] Wt)
 - Poor OS in *TP53*_{mu} MDS (median, 14 vs. 39 mos; *P*=0.012)

Rate of Clearance of Somatic Gene Mutations in Decitabine Treated Patients


Clearance of TP53_{mu} Clones Somatic Mutation Change in VAF by

Overall Survival by TP53 Mutation Status

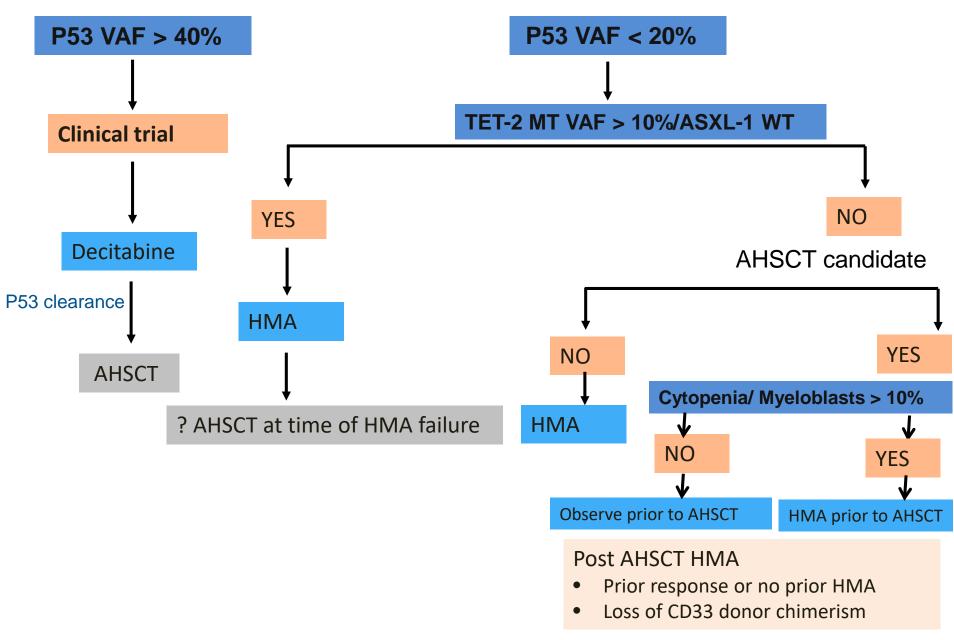

OS in TP53_{mu} vs. Wt

OS with HSCT by TP53

Welch JS, et. al. NEJM 2016; 375:2023.

APR-246 Restores Wild-type p53 Function

Khoo et al., Nature Reviews Drug Discovery; 2014, 13, 217-36


Enasidenib in mIDH2 MDS: Response

Response, n/N (%)	MDS Pts (N = 17)
ORR*	10/17 (59)
CR [†]	1/11 (9)
PR [†]	1/11 (9)
mCR [†]	3/11 (27)
Any HI •Erythrocytes •Platelets •Neutrophils •Trilineage improvement •Bilineage improvement	5/17 (29) 3/15 (20) 4/12 (33) 4/10 (40) 2/5 (40) 2/5 (40)

- 7 of 13 pts (54%) with prior HMA responded to enasidenib
- Median time to response: 21 days (range: 10-87)

*CR + PR + mCR + HI. [†]Investigator-assessed; pts had ≥ 5% BM blasts at BL.

Proposal for HR-MDS Treatment Algorithm

