Immunotherapy for the Treatment of Kidney and Bladder Cancer

Alan J. Koletsky, MD

Genitourinary Cancer Research Program, Lynn Cancer Institute Clinical Associate Professor of Biomedical Science The Charles E. Schmidt College of Medicine, Boca Raton, FL

Immunotherapy for Kidney and Bladder Cancer

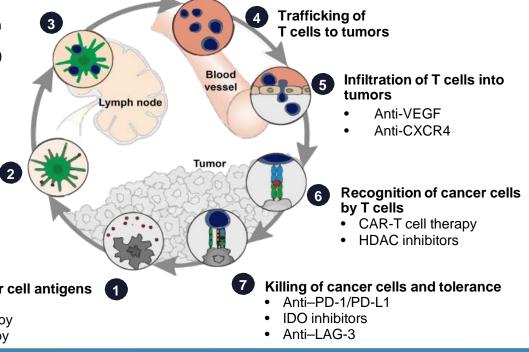
Overview

Update of Recently Approved Therapies in First and Second Line Settings

Rationale for New Combination Therapies

Future Strategies

ALAN KOLETSKY, MD

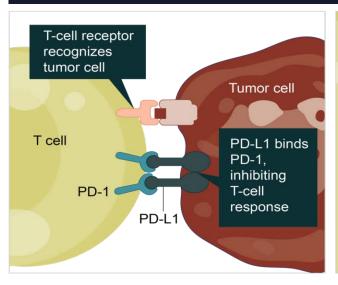

Immunotherapy in Kidney & Bladder Cancers

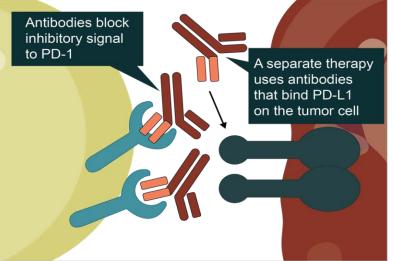
Relevant Financial Relationships in the Past Twelve Months By Presenter or Spouse / Partner

Speakers Bureau: Astellas, BMS, Exelixis

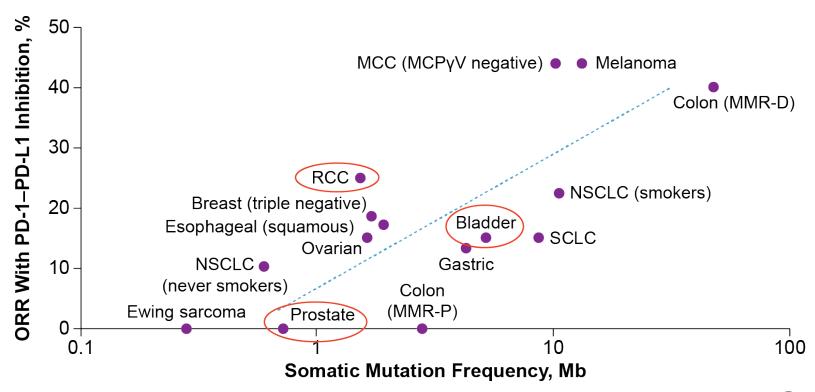
The Speaker will Directly Disclosure The Use of Products For Which Are Not Labeled (e.g., Off Label Use) or if the Product is Still Investigational

Multiple Steps Required for Anticancer Activity¹

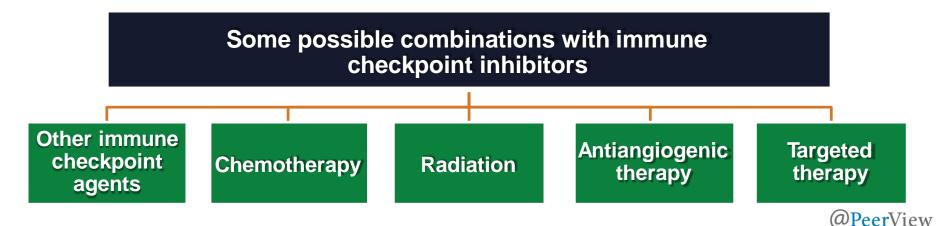



- Priming and activationAnti–CTLA-4
- Anti-CD137 (agonist)
- Anti-OX40 (agonist)
- Anti-CD27 (agonist)
- IL-2
- IL-12
- Cancer antigen presentation 2
- Vaccines
- IFN-α
- GM-CSF/T-VEC
- Anti-CD40 (agonist)
- TLR agonists
 - Release of cancer cell antigens
 - Chemotherapy
 - Radiation therapy
 - Targeted therapy
- Multiple processes are required to establish and maintain an effective immune response.
- Determinants of sensitivity and resistance not clearly defined yet

@PeerView


Immune Checkpoint Blockade in Cancer

Tumor cells can inhibit the body's immune response by binding to proteins, such as PD-1, on the surface of T cells; antibody therapies that block this binding reactivate the immune response



Response Rate and Tumor Mutational Burden¹

Overcoming Immunotherapy Resistance

- Multiple strategies may be considered
- Tip balance away from tumor-protective mechanisms and towards antitumor immunity
- Rational combinations are required to move the field forward
- Some are leading to improved survival

Targeting the PD-1/PD-L1 Axis Has Activity in GU Cancers

5 anti-PD-1/anti-PD-L1 drugs now approved for advanced urothelial carcinoma

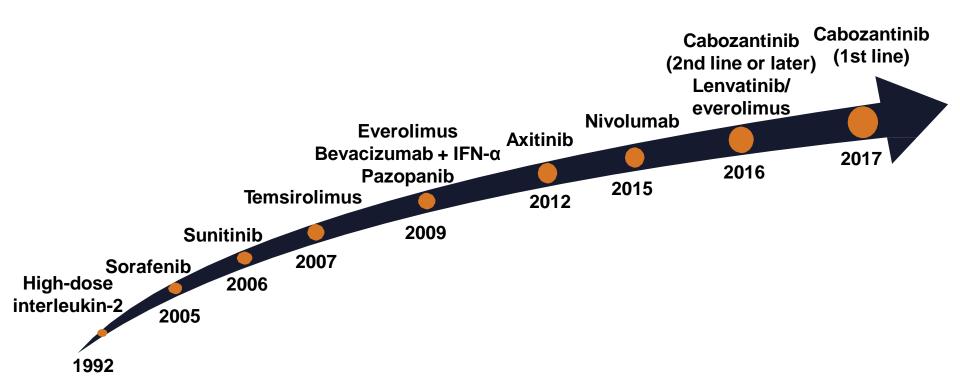
Atezolizumab, nivolumab, durvalumab, avelumab, pembrolizumab

Nivolumab approved for kidney cancer

Two positive phase 3 trials for combination therapy:

- Ipilimumab/nivolumab in first-line therapy
- Atezolizumab/bevacizumab as first-line therapy in PD-L1-positive tumors

Provocative data with enzalutamide-resistant cancers responding to pembrolizumab


Multiple large trials ongoing

Immunotherapy for the Treatment of

Renal Cell Carcinoma

Approved Therapies for Renal Cell Carcinoma

New Options for Pretreated Patients

NCCN recommended parameters of risk stratification

Poor-Prognosis patients are defined as those with 3 or more predictors of short survival

Karriofsky performance score of 70 or less

Hemoglobin Level < lower Limit of normal

Corrected Serum Calcium level > 10 mg/dl (2.5 mmol/liter)

Lactate dehydrogenous level > 1.5 times upper limit of normal

Interval less than a year from original diagnosis to start of systemic therapy

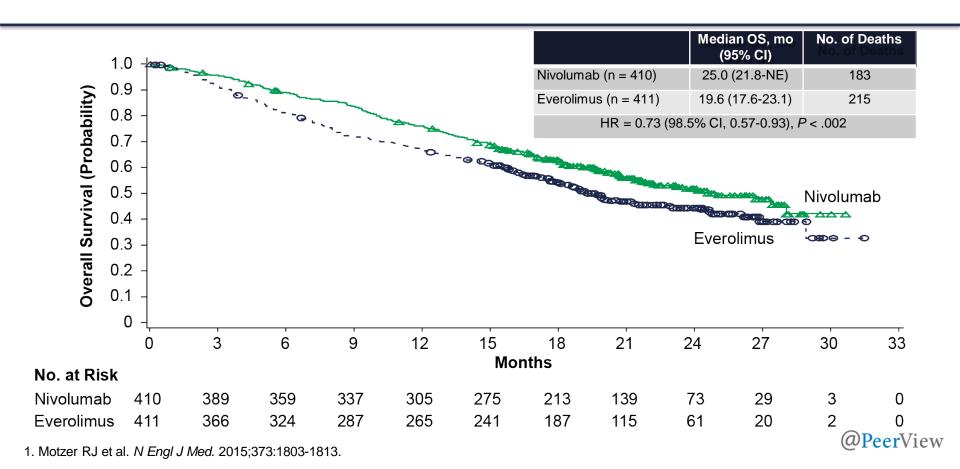
2 or more sites of organ metastasis *NCCN Guidelines 2013 Kidney Cancer

CheckMate-025: Phase 3 Study of Nivolumab vs Everolimus¹

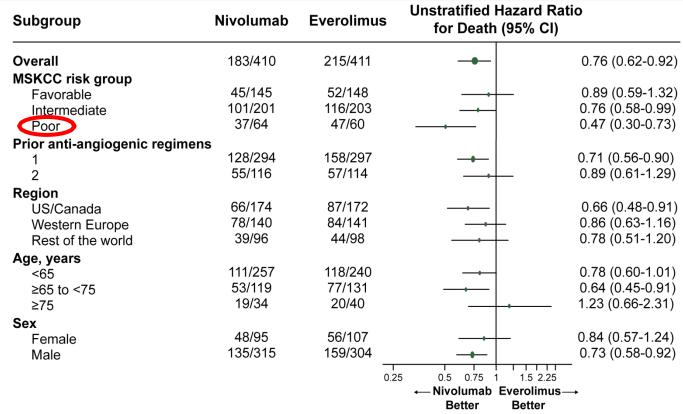
- mRCC patients with clear-cell histology
- Prior antiangiogenic therapy

N = 821

Nivolumab
3 mg/kg IV Q2W


Everolimus 10 mg PO daily

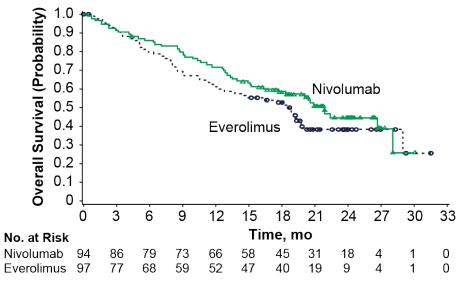
Endpoints


- Primary: OS
- Secondary: Response rate, PFS, effect of PD-L1 expression on OS, safety

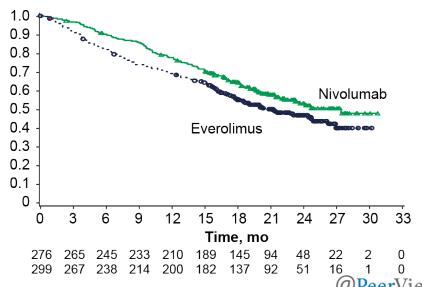
CheckMate-025: Overall Survival¹

CheckMate-025: Subgroup Analysis of OS¹

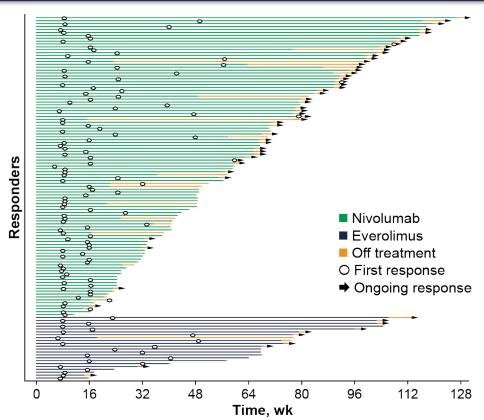
ORR by Risk Level¹


MSKCC Risk Group	Nivolumab, %	Everolimus, %
Favorable	24	8
Intermediate	25	5
Poor	27	3

Overall Survival by Tumoral PD-L1 Expression¹


Patients With ≥1% PD-L1 Expression

	Median OS, mo (95% CI)	No. of Deaths
Nivolumab (n = 94)	21.8 (16.5-28.1)	48
Everolimus (n = 87)	18.8 (11.0-19.9)	51


Patients With <1% PD-L1 Expression

	Median OS, mo (95% CI)	No. of Deaths
Nivolumab (n = 276)	27.4 (21.4-NE)	118
Everolimus (n = 299)	21.2 (17.7-26.2)	150

^{1.} Motzer RJ et al. N Engl J Med. 2015;373:1803-1813.

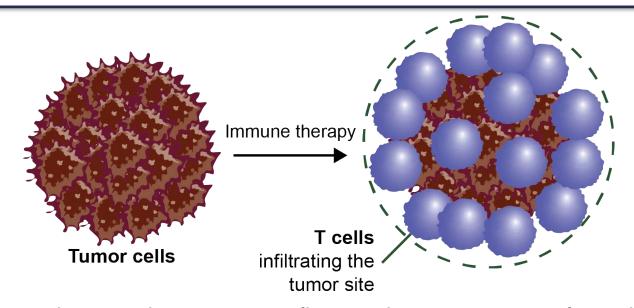
CheckMate-025: Duration of Response¹

Response Rate

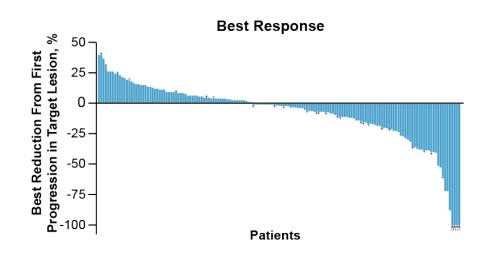
Nivolumab 21.5% Everolimus 3.9%

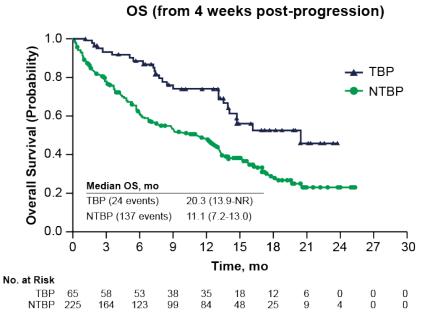
DOR

Nivolumab 23.0 months
Everolimus 13.7 months


Number of patients with durable benefit off therapy

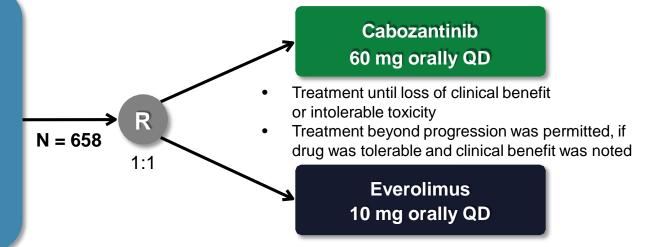
Optimal duration of therapy unknown


1. Motzer RJ et al. N Engl J Med. 2015;373:1803-1813.


Tumor Flare With Immunotherapy¹

- In patients on immunotherapy, tumor flare or the appearance of new lesions may precede antitumor effects

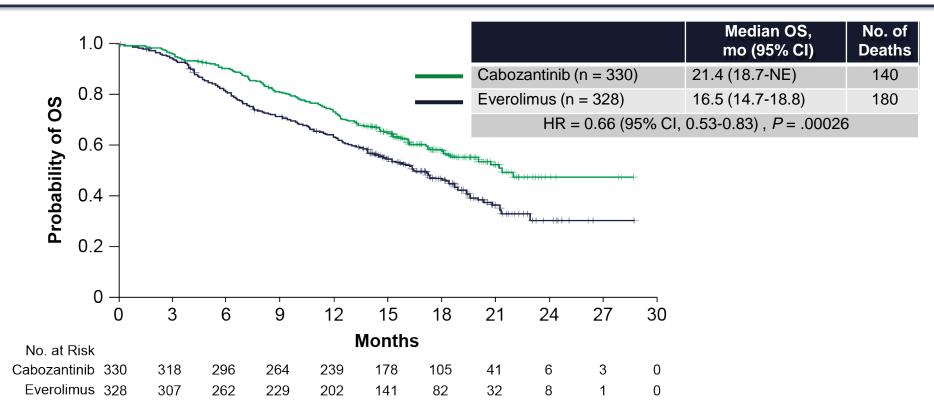
CheckMate-025: Treatment Beyond Progression¹



METEOR: Phase 3 Study of Cabozantinib vs Everolimus¹

Eligibility criteria

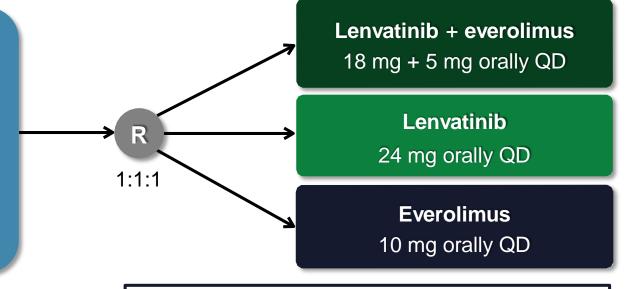
- mRCC with clear-cell component
- At least one prior VEGFR TKI
- Progression on or after prior VEGFR TKI within 6 months of study enrollment
- Karnofsky PS ≥70


Stratification: MSKCC risk criteria; number of prior VEGFR TKIs

- Primary endpoint: PFS
- Secondary endpoints: OS, ORR
 - **Exploratory endpoints:** Safety, tolerability, tumour MET status, circulating tumour cells, serum bone markers and plasma biomarkers, skeletal-related events, and HRQOL

METEOR: OS1,a

a Cut-off: December 31, 2015.


^{1.} Choueiri TK et al. Lancet Oncol. 2016;17:917-927.

Lenvatinib Alone or Plus Everolimus vs Everolimus Randomized Phase 2 Trial¹

Eligibility criteria:

- Advanced or mRCC with clear-cell component
- One prior
 VEGF-targeted therapy
- ECOG PS 0 or 1

N = 153

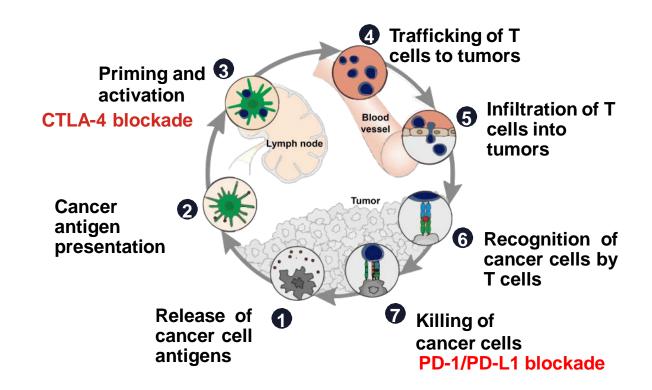
- Primary endpoint: PFS
- Secondary endpoints: OS, ORR, and safety

Phase 2 Lenvatinib Plus Everolimus: Efficacy

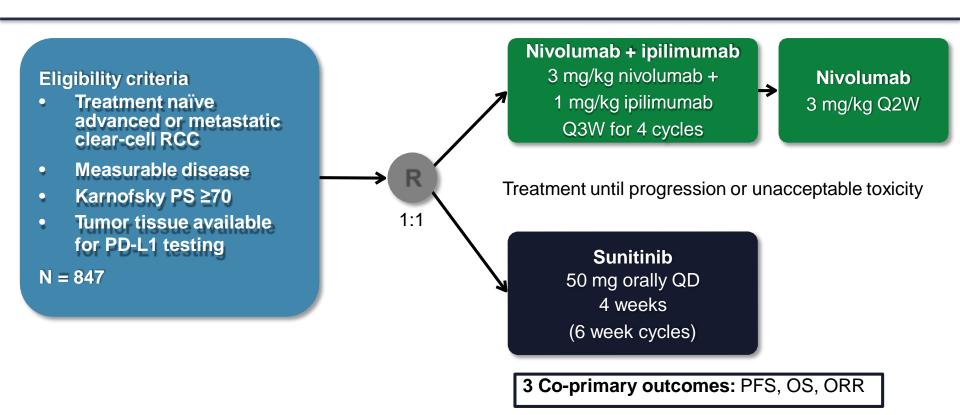
Primary Analysis	Lenvatinib + Everolimus (n = 51)	Lenvatinib (n = 52)	Everolimus (n = 50)
Median PFS, mo	12.8	9.0	5.6
(95% CI) ^{1,a}	(7.4-17.5)	(5.6-10.2)	(3.6-9.3)
Median OS, mo	25.5	18.4	17.5
(95% CI) ²	(20.8-25.5)	(13.3-NE)	(11.8-NE)
ORR, n (%) ^{1,a}	18 (35)	20 (39)	0 (0)
Median duration of response, mo (95% CI) ²	13.1 (3.8-NE)	7.5 (3.8-NE)	8.5 (7.5-9.4)
Median number of	9.0	8.5	5.0
cycles (range)2	(1-25)	(1-25)	(1-22)

^a As assessed by an independent radiologic review.

^{1.} Motzer RJ et al. Lancet Oncol. 2016;17:e4-e5. 2. Motzer RJ et al. Lancet Oncol. 2015;6:1473-1482.

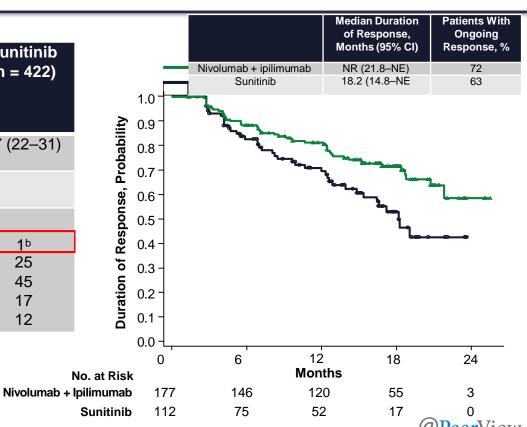

Key Points: Second-Line Therapy

- Level 1 data supports use of nivolumab OR cabozantinib
- Toxicities vary between VEGF pathway— versus PD-1 pathway—directed therapy
- No clear evidence for clinical choice
- No definitive biomarkers
- Role of additional combinations being tested
- Phase 3 confirmatory trial of lenvatinib + everolimus pending



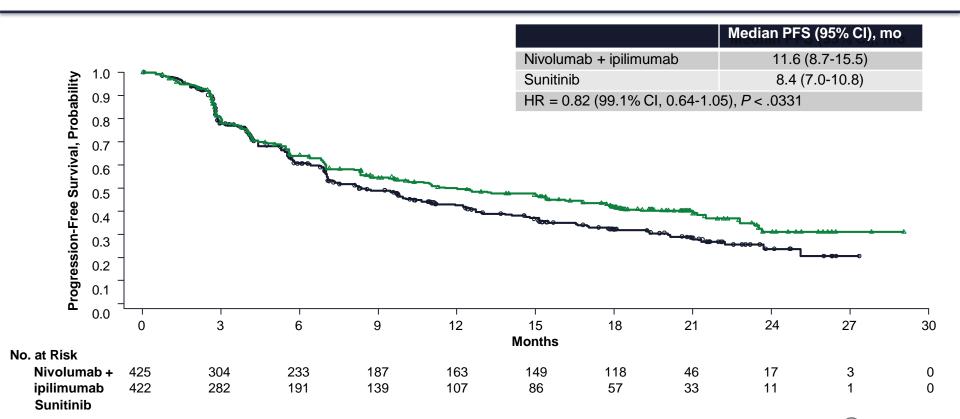
What About Front-Line Therapy?

Is CTLA-4 Blockade Synergistic With Anti–PD-1?1



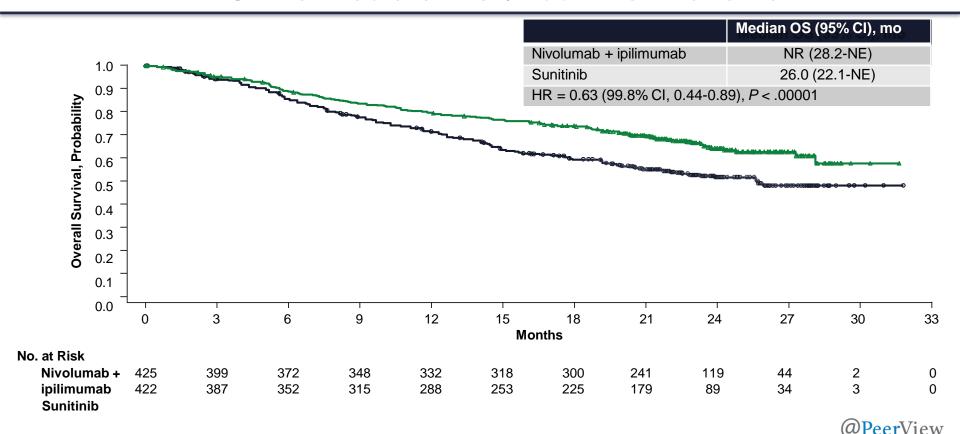
CheckMate-214: Phase 3 Trial¹

CheckMate-214: ORR per IRCC IMDC Intermediate-Risk/Poor-Risk Patients¹


Outcome (N = 847)	Nivolumab + ipilimumab (n = 425)	Sunitinib (n = 422)	
Confirmed ORR, ^a % (95% CI)	42 (37–47) 27 (22–3		
	P < .0001		
Confirmed BOR, ^a %			
Complete response	9 b	1 ^b	
Partial response	32	25	
Stable disease	31	45	
Progressive disease	20	17	
Unable to determine/not reported	8	12	

^a IRRC-assessed ORR and BOR by RECIST v1.1. ^b P < 0.0001.

^{1.} Escudier B et al. ESMO 2017. Abstract LBA5.


CheckMate-214: PFS per IRRC IMDC Intermediate-Risk/Poor-Risk Patients¹

@PeerView

1. Escudier B et al. ESMO 2017. Abstract LBA5.

CheckMate-214: OS IMDC Intermediate-Risk/Poor-Risk Patients¹

1. Escudier B et al. ESMO 2017. Abstract LBA5.

CheckMate 214: ORR and PFS per IRRC IMDC Favorable Risk¹

Outcome, N = 249 ^a	Nivolumab + Ipilimumab (n = 125)	Sunitinib (n = 124)	
Confirmed ORR, ^b % (95% CI)	29 (21–38)	52 (43–61)	
	P = .0002		
PFS,c median (95% CI), months	15.3 (9.7–20.3)	25.1 (20.9-NE)	
	HR (99.1% CI) 2.18 (1.29–3.68) P < .0001		

a 11% of patients in both arms had tumor PD-L1 expression ≥1%. b IRRC assessed by RECIST v1.1. c IRRC assessed.

1. Escudier B et al. ESMO 2017, Abstract LBA5.

CheckMate-214: Treatment-Related Adverse Events¹

Event, %	Nivolumab + Ipilimumab (n = 547)		Sunitinib (n = 535)	
	Any Grade	Grade 3–5	Any Grade	Grade 3–5ª
Treatment-related adverse events in ≥25% of patients	93	46	97	63
Fatigue	37	4	49	9
Pruritus	28	<1	9	0
Diarrhea	27	4	52	5
Nausea	20	2	38	1
Hypothyroidism	16	<1	25	<1
Decreased appetite	14	1	25	1
Dysgeusia	6	0	33	<1
Stomatitis	4	0	28	3
Hypertension	2	<1	40	16
Mucosal inflammation	2	0	28	3
Palmar-plantar erythrodysesthesia syndrome	1	0	43	9
Treatment-related AEs leading to discontinuation, %	22	15	12	7
Treatment-related deaths	n =	- 7 b	n =	- 4 c

^a Two patients had grade 5 cardiac arrest. ^b Pneumonitis, immune-mediated bronchitis, lower GI hemorrhage, hemophagocytic syndrome, sudden death, liver toxicity, lung infection. ^c Cardiac arrest (n = 2), heart failure, multiple organ failure.

^{1.} Escudier B et al. ESMO 2017. Abstract LBA5.

CheckMate-214: Treatment-Related Adverse Events¹

Event, %	Nivolumab + Ipilimumab (n = 547)		Sunitinib (n = 535)		
LVEIR, 70	Any Grade	Grade 3-5	Any Grade	Grade 3–5ª	
Treatment-related adverse events in ≥25% of patients	93	46	97	63	
Fatigue	37	4	49	9	
Pruritus	28	<1	9	0	
Diarrhag	27	1	50		
Nausea 60% of patients treated with In Hypothyroidism systemic constraints and apparent to the systemic constraints.	nivolumab	+ ipilimun	nab require	ed 1	
Hypothyroidism systemic c	ortic6ster	oids.<1	25	<1	
Decreased appetite	14	1	25	1	
Dysgeusia 45% high dose steroids for an adverse event 33 <1					
Stomatitis	4	0	28	3	
Hypertension	2	<1	40	16	
iviúcosai intiammation	2	U	28	3	
Palmar-plantar erythrodysesthesia syndrome	1	0	43	9	
Treatment-related AEs leading to discontinuation, %	22	15	12	7	
Treatment-related deaths	n =	7 b	n =	= 4 ¢	

^a Two patients had grade 5 cardiac arrest. ^b Pneumonitis, immune-mediated bronchitis, lower GI hemorrhage, hemophagocytic syndrome, sudden death, liver toxicity, lung infection. ^c Cardiac arrest (n = 2), heart failure, multiple organ failure.

^{1.} Escudier B et al. ESMO 2017. Abstract LBA5.

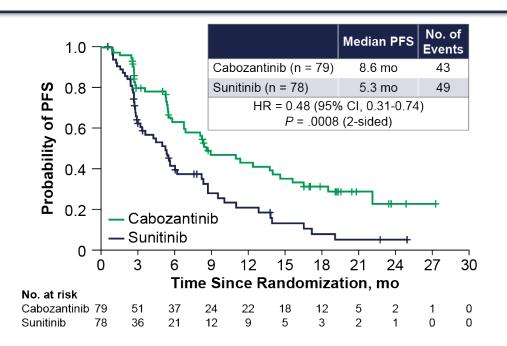
CABOSUN: Randomized Phase 2 Assessment of Front-Line Cabozantinib¹

Multicenter, randomized, phase 2 study

- Clear-cell RCC
- Intermediate or poor risk
- No prior systemic therapy
 N = 157

Stratified by:

- International Metastatic Renal Cell Carcinoma Database Consortium risk group (intermediate vs poor)
- Bone metastasis (yes/no)

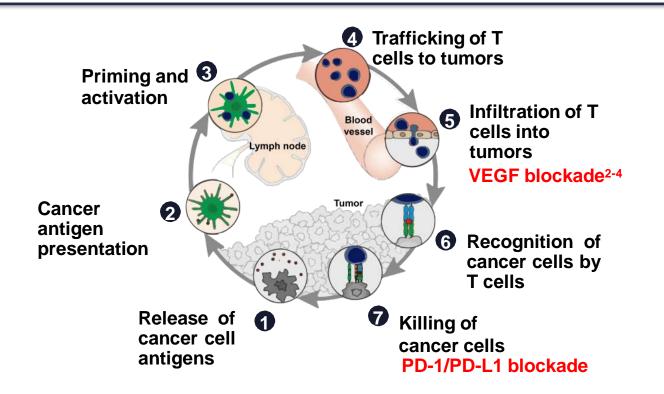

Cabozantinib 60 mg/d (Continuous dosing) (n = 79)


> Sunitinib 50 mg/d (4/2 dosing) (n = 78)

Primary endpoint: PFS

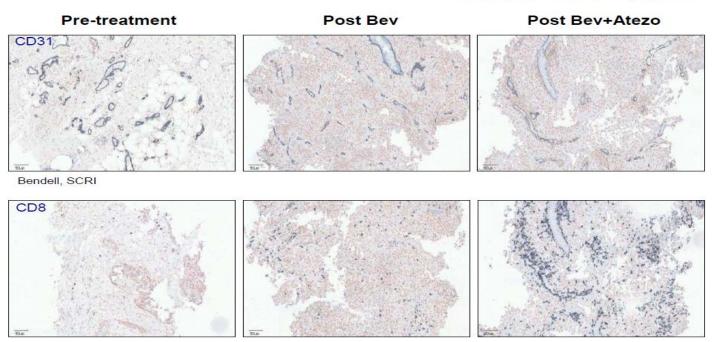
CABOSUN: PFS per IRC and OS^{1,a}

OS HR = 0.80 (95% CI, 0.53-1.21) P = .29 (2-sided) Median OS: cabozantinib, 26.6 mo; sunitinib, 21.2 mo

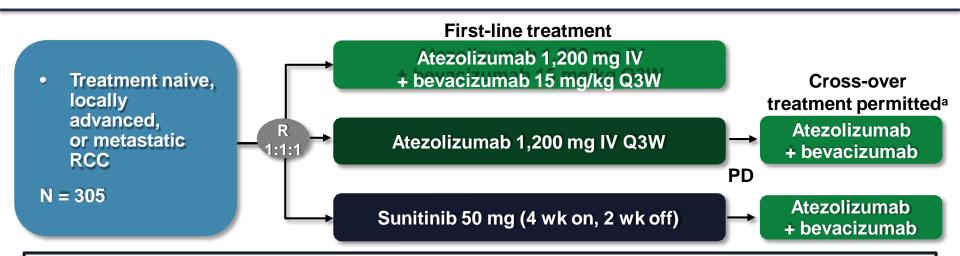

Favors Favors

cabozantinib sunitinib

^a Data cutoff: PFS, September 15, 2016; OS, July 1, 2017.


^{1.} Choueiri TK et al. ESMO 2017. Abstract LBA38.

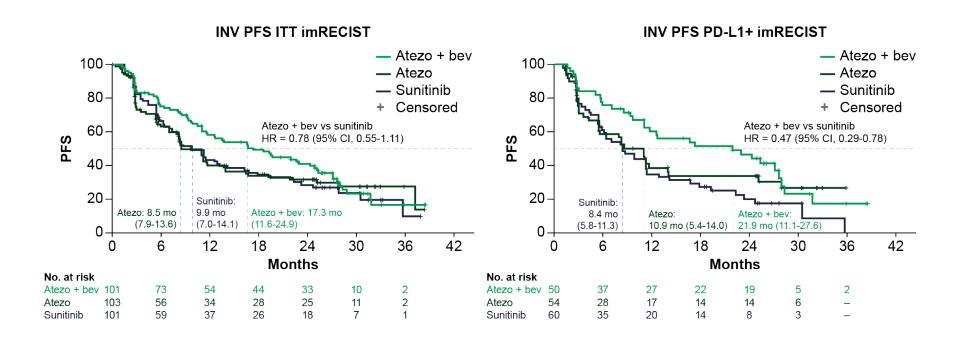
Is VEGF Inhibition Synergistic With Anti–PD-1?¹


Increases in CD8⁺ T cells are observed with treatments

Patient 3, Female, 62 years old

- 83% (5/6) of bev + atezo RCC patients had increases in tumor CD8+ T cells
- 11% (1/9) of RCC patients had increased tumor CD8⁺ T cells following monotherapy atezo (PCD4989g)

Phase 2 IMmotion150 Trial Design^{1,2}


- IMmotion150 was designed to be hypothesis generating and inform the phase 3 study IMmotion151
- Co-primary endpoints were PFS (RECIST v1.1 by IRF) in ITT patients and patients with ≥1% of IC expressing PD-L1
- Exploratory endpoints included interrogation of the association between outcome and TME gene signatures³

^a Crossover from atezolizumab monotherapy not allowed in Europe.

^{1.} McDermott DF et al. *J Clin Oncol.* 2016;34:833-842. 2. McDermott DF et al. American Society for Clinical Oncology 2017 Genitourinary Symposium (ASCO GU 2017). Abstract 431. 3. McDermott D et al. American Association for Cancer Research Annual Meeting 2017 (AACR 2017). Abstract CT081.

Bevacizumab + Atezolizumab - Phase 2 Efficacy¹

IMmotion151: Phase 3 Assessment of Bevacizumab/Atezolizumab¹

- Treatment-naïve advanced or metastatic RCC
- Clear-cell and/or sarcomatoid histology
- KPS ≥ 70
- Tumor tissue available for PD-L1 staining
 N = 915

R 1:1

Atezolizumab 1200 mg IV

Bevacizumab 15 mg/kg Q3W

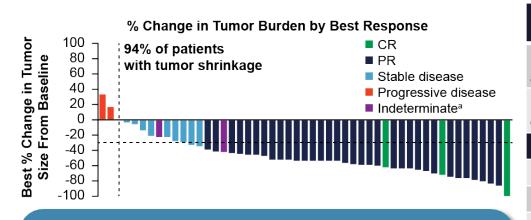
Sunitinib 50 mg (4 wk on, 2 wk off)

Stratification:

- MSKCC risk score
- Liver metastases
- PD-L1 IC IHC status (< 1% vs ≥ 1%)

Co-primary endpoints: Investigator-assessed PFS in patients with PD-L1 expression ≥1; OS in ITT population

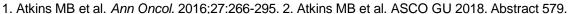
IMmotion151: Efficacy and Safety¹


	PD-L1+, (n = 362) ^a		ITT (N = 915)		
	Sunitinib (n = 184)	Atezolizumab + Bevacizumab (n = 178)	Sunitinib (n = 461)	Atezolizumab + bevacizumab (n = 454)	
mPFS (95% CI)	7.7 (6.8-9.7)	11.2 (8.9-15.0)	8.4 (7.5-9.7)	11.2 (9.6-13.3)	
HR (95% CI), P	0.74 (0.57-0.96), 0.0217		0.83 (0.70-	0.97), 0.219 ^b	
ORR, %	35 (28-42)	43 (35-50)	33 (29-38)	37 (32-41)	
DOR, months (95% CI)	1.29 (9.8-NE)	NE (12.4-NE)	14.2 (11.3-NE)	16.6 (15.4-NE)	

Treatment-related grade 3-4 AEs: 40% atezolizumab/bevacizumab; 54% sunitinib Treatment-related any grade AE leading to discontinuation: 12% atezolizumab/bevacizumab; 8% sunitinib

^a PD-L1 expression on ≥1% on tumor infiltrating immune cells, SP142 IHC assay. ^b Descriptive purposes only.

VEGFR-TKI + Anti–PD-1: Axitinib + Pembrolizumab—Efficacy¹



 Median PFS was 15.1 mo (11.4-NR) in overall pop

- UPDATED PFS: 20.9 months²
- Of 11 pts enrolled in the dose-finding phase, median PFS not yet reached
- 9 of 48 (18.8%) evaluable tumor specimens were PD-L1-positive

N = 52	Axitinib + Pembrolizumab
Pts with baseline assessment	52 (100)
Pts with measurable disease at BL	52 (100)
Best overall response, n (%)
CR	3 (5.8)
PR	34 (65.4)
Stable disease	10 (19.2)
Progressive disease	2 (3.8)
Indeterminate ^b	3 (5.8)
ORR (CR + PR)	37 (71.2)
95% exact CI	56.9-82.9
UPDATED ORR ²	73.1%

^a Stable disease or PR not confirmed. ^b 2 patients indeterminate and 1 patient with no follow-up assessment.

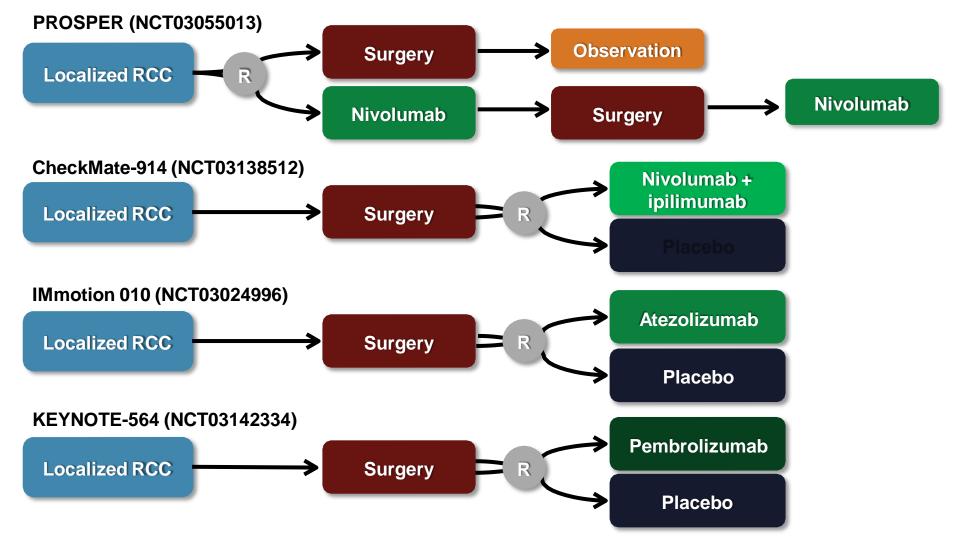
VEGFR-TKI + Anti–PD-1: Axitinib + Pembrolizumab—Safety¹

Dosage ^a (N = 52)	Pembrolizumab Average Dose per Cycle, mg/kg	. Axitinib . Average Daily . Dose, mg	Days on Treatment
Mean (SD)	1.9 (0.1)	8.5 (1.7)	318.5 (124.7)
Median	2.0	8.9	316.0
Range	1.6-2.1	4.7-13.8	22.0-656.0

Update²

- Most common grade ≥ 3 AEs
 - Hypertension (23%), diarrhea (10%) fatigue (10%)
- Immune-related AEs
 - Diarrhea (29%), increased ALT 17%, increased AST(13%), hypothyroidism (13%), fatigue (12%)

Jolizumad Garety						
	- AEs in ≥20% of Pts, n (%)	-Immune-Related AEs, n (%)⊧				
Any AE	34 (65.4)	10 (19.2)				
Diarrhea	5 (9.6)	4 (7.7)				
Fatigue	3 (5.8)	2 (3.8)				
Decreased appetite	1 (1.9)	0				
Hypertension	9 (17.3)	0				
Increased ALT	3 (5.8)	2 (3.8)				
Hypothyroidism	0	2 (3.8)				
Nausea	1 (1.9)	0				
PPE syndrome	2 (3.8)	0				
Increased AST	2 (3.8)	2 (3.8)				
Headache	4 (7.7)	0				
Dizziness	1 (1.9)	0				
Dyspnea	2 (3.8)	0				
Weight loss	3 (5.8)	1 (1.9)				
Vomiting	1 (1.9)	0				
Oral pain	1 (1.9)	0				
Proteinuria	1 (1.9)	0				
Hyperthyroidism	1 (1.9)	0				
Colitis	2 (3.8)	2 (3.8)				


^a Dosage: 2 mg/kg IV pembrolizumab every 3 weeks + 5 mg axitinib twice daily. ^b No immune-related grade ≥4 AEs reported.

^{1.} Atkins MB et al. Ann Oncol. 2016;27:266-295. 2. Atkins MB et al. ASCO GU 2018. Abstract 579.

First-Line Phase 3 Trials in Advanced RCC¹

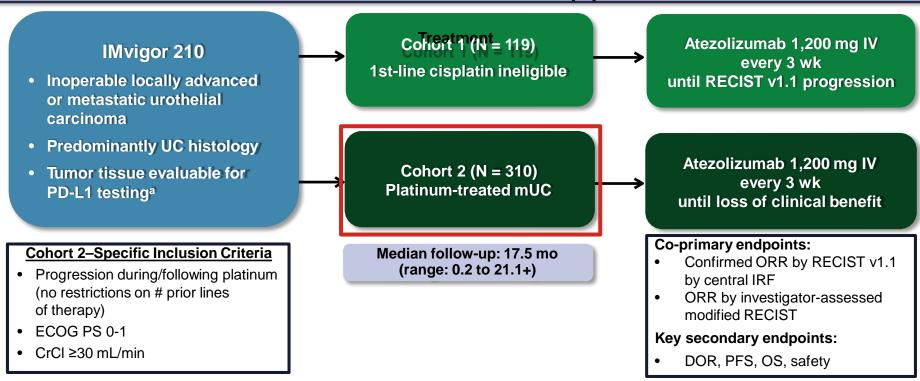
Experimental Arm	Primary Endpoint	Estimated N	Trial	ClinicalTrials.gov ID
Axitinib + avelumab	PFS	583	JAVELIN Renal 101	NCT02684006
Axitinib + pembrolizumab	PFS, OS	840	KEYNOTE-426	NCT02853331
Bevacizumab + atezolizumab	PFS, OS in PD-L1– detectable tumors	900	IMmotion151	NCT02420821
Nivolumab + ipilimumab	PFS, OS	1,070	CheckMate 214	NCT02231749
Nivolumab + cabozantinib or nivolumab + ipilimumab + cabozantinib	PFS in intermediate-risk/ poor-risk patients	1,014	CheckMate 9ER	NCT03141177
Lenvatinib/pembrolizumab or lenvatinib/everolimus	PFS	735	CLEAR	NCT02811861
Sunitinib + AGS-003	OS	450	ADAPT	NCT01582672

Immunotherapy for the Treatment of Bladder Cancer

Immune Checkpoint Blockade Has Revolutionized the Treatment of Advanced Urothelial Carcinoma¹

- Before 2016, cytotoxic chemotherapy was the only option for patients with locally advanced or metastatic urothelial carcinoma
- Cisplatin-based combination chemotherapy remains the standard of care for eligible patients
- Outcomes with carboplatin-based chemotherapy are poor, with median survival about 9 months in phase 3 trials
- After failure of platinum-based chemotherapy, survival was short, and available treatments (taxanes, pemetrexed, vinflunine [EU]) were toxic

Proposed Criteria for Definition of Cis-Platinum Ineligible Patients for CDDP-Based Regimens

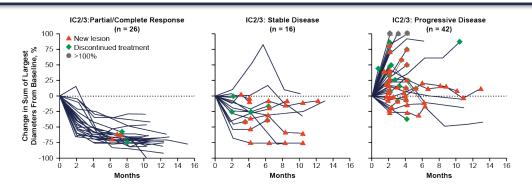

- 1. Poor Performance Status (ECOG 2 or higher)
- 2. CrCl <60 ml/min
- 3. Hearing Loss or Neuropathy (Grade 2 or Worse)
 - 4. NYHA Class III Heart Failure

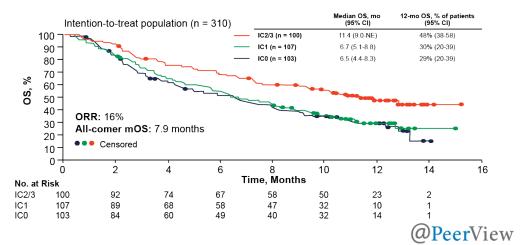
Rapid Development of Immunotherapy in Bladder Cancer

5 drugs approved in 13 months

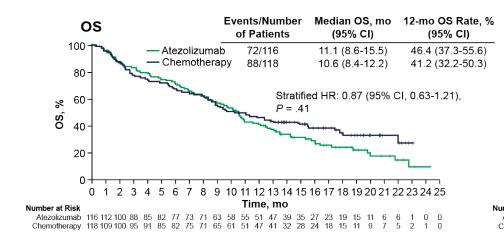
Agent	Mechanism	Schedule	Post Platinum	Frontline Cis Ineligible
Atezolizumab	Anti-PD-L1	Q3W	Accelerated approval	Accelerated approval
Nivolumab	Anti–PD-1	Q2W	Accelerated approval	-
Durvalumab	Anti-PD-L1	Q2W	Accelerated approval	-
Avelumab	Anti-PD-L1	Q2W	Accelerated approval	-
Pembrolizumab	Anti-PD-1	Q3W	Full approval	Accelerated approval

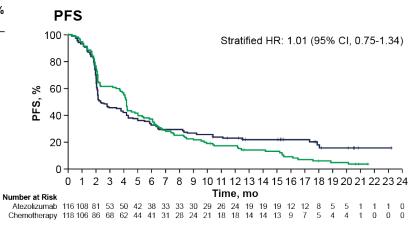
IMvigor210 Cohort 2 Study Design: Basis for Accelerated Approval^{1,2}


^a PD-L1 prospectively assessed by a central laboratory, with patients and investigators blinded.

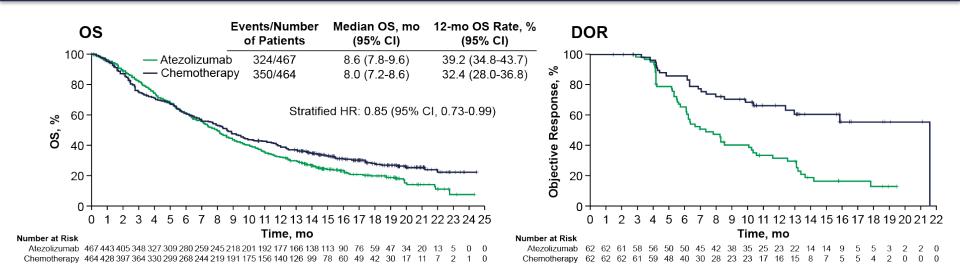


^{1.} Dreicer R et al. ASCO 2016. Abstract 4515. 2. Rosenberg JE et al. Lancet. 2016;387:1909-1920.

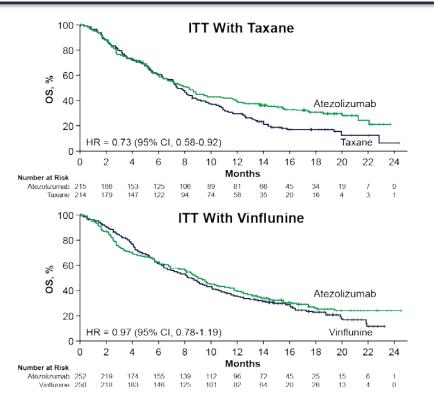

IMvigor210: Atezolizumab Approved for Prior Platinum-Treated Patients¹


- 40% had 2 or more prior regimens
- ORR: 14.8%
- Median OS: 7.9 mo
- Modest toxicity
- Higher levels of PD-L1
 staining on immune cells
 are associated with higher
 response rate and longer
 survival (SP142 assay)

Atezolizumab Did Not Improve OS in the PD-L1–Positive Population¹



PD-L1 staining enriched for response and survival for both chemotherapy and atezolizumab


IMvigor211:Outcomes in the ITT Population¹

- Study design did not allow formal assessment of OS in the entire study population
 HR and long-term survival favored atezolizumab
- DOR was dramatically longer in patients treated with atezolizumab

IMvigor211: Subgroup Analysis by Chemotherapy Type¹

OS was also examined in subgroups based on chemotherapy type at randomization

 Improved OS was observed with atezolizumab vs taxanes

Subgroup	Median OS, mo (95% CI)
Atezolizumab	8.3 mo (6.6-9.8)
Taxane	7.5 mo (6.7-8.8)

Subgroup	Median OS, mo (95% CI)
Atezolizumab	9.2 mo (7.9-10.4)
Vinflunine	8.3 mo (6.9-9.6)

1. Adapted from Powles T et al. European Association for Cancer Research, American Association for Cancer Research, and Italian Cancer Society (EACR-AACR-SIC) 2017 Special Conference. Abstract 606.

What Does This Mean?

Atezolizumab is an active drug

Phase 3 trial showed that vinflunine is a more active agent than previously thought

Atezolizumab activity recapitulated earlier data

SP142 PD-L1 biomarker did not perform as predicted

IC2/3 predicted both chemotherapy and immunotherapy response

Level 1 evidence (randomized phase 3 trial) supports pembrolizumab as second-line therapy

KEYNOTE-045 Phase 3 Trial (NCT02256436)¹

Key Eligibility Criteria

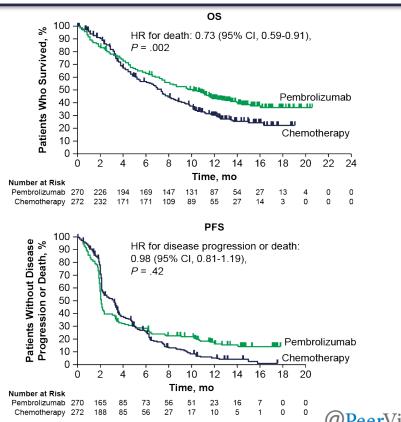
- Urothelial carcinoma of the renal pelvis, ureter, bladder, or urethra
- Transitional-cell predominant
- PD after 1-2 lines of platinum-based chemo or recurrence within 12 mo of perioperative platinum-based therapy
- ECOG PS 0-2
- Provision of tumor sample for
 - biomarker assessment

N = 542

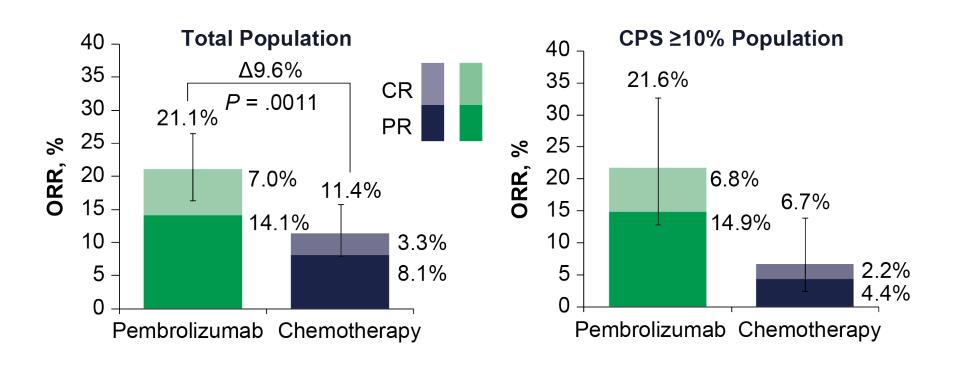
Pembrolizumab 200 mg IV Q3W for 2 y Paclitaxel 175 mg/m2 Q3W, or Docetaxel 75 mg/m2 Q3W, or Vinflunine 320 mg/m2 Q3W

Stratification Factors

- ECOG PS (0/1 vs 2)
- Hemoglobin level (<10 vs ≥10 g/dL)
- Liver metastases (yes vs no)
- Time from last chemotherapy dose (<3 vs ≥3 mo)

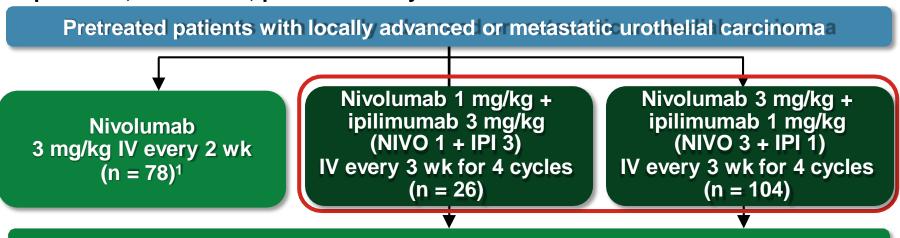

Key Endpoints

- Primary: OS and PFS in total and in PD-L1 combined positive score ≥10% populations
- Secondary: ORR and DOR in total and in PD-L1 combined positive score ≥10% populations; safety in total population



KEYNOTE-045: Pembrolizumab Improves OS vs Chemotherapy in the Second or Third Line¹

- Median OS 10.3 months for pembrolizumab vs 7.4 for chemo (HR = 0.73)
- Updated: 10.3 mo vs 7.3 mo (HR = 0.70)²
- PFS short, and not different between the two arms
- PD-L1 expression with this assay was a poor prognostic biomarker and does not help with patient selection


KEYNOTE-045: Confirmed Objective Response Rate¹

Anti–CTLA-4 and Anti–PD-1: CheckMate-032: Study Design^{1,2}

Nivolumab 3 mg/kg IV every 2 wk

- Treatment beyond progression was permitted if treatment was tolerated and prespecified clinical benefit was noted
- Tumor measurements: CT or MRI every 6 wk (±1 wk) from first dose for the first 24 wk, then every 12 wk (±1 wk)

1. Sharma P et al. Lancet Oncol. 2016;17:1590-1598. 2. https://clinicaltrials.gov/ct2/show/NCT01928394. Accessed January 28, 2018.

@PeerView

Anti–CTLA-4 and Anti–PD-1: CheckMate-032: Antitumor Activity¹

Outcome, %	Nivolumab 1 + Ipilimumab 3 (n = 26)	Nivolumab 3 + Ipilimumab 1 (n = 104)	Nivolumab Monotherapy (n = 78)
Confirmed ORR, %	38.5	26.0	24.4
95% CI	20.2-59.4	17.9-35.5	15.3-35.4
Best overall response, %			
Complete response	3.8	2.9	6.4
Partial response	34.6	23.1	17.9
Stable disease	19.2	25.0	28.2
Progressive disease	26.9	41.3	38.5

[@]PeerView

Immune–Immune Combinations Hold Significant Promise

- CTLA-4, PD-1 pathway combinations have significant toxicity
- Identification of agents with less toxicity in combination is warranted
 - Advanced bladder cancer patients tend to be older and sicker
- Multiple different classes of agents are being tested

Approved Checkpoint Inhibitors for Platinum-Refractory mUC

			M Ornstein JTT online Feb 13, 2018 with permission			
	Atezolizumab	Nivolumab	Pembrolizumab	Avelumab	Durvalumab	
Phase (no. of pts)	Phase II (310)	Phase II (265)	Phase III (270)	Phase 1b (241)	I/II (191)	
Dosing	1200 mg Q 3wk	240 mg Q 2wk	200 mg Q 3wk	10mg/kg Q 2wk	10 mg/kg Q 2w	

29%

15%

2.1/10.3

Pruritis (19.5%)

Fatique (13.9%)

Nausea (10.9%)

May 18, 2017

(regular approval)

18%

8%

1.8/13.7

Infusion-related

Fatigue (12%)

May 9, 2017

(accelerated)

reaction (22.8%)

18%

7%

1.5/18.2

Fatigue (19.4%)

Diarrhea 8.4%)

May 1, 2017

(accelerated)

Decrease appetite (9%)

	Atezolizumab	Nivolumab	Pembrolizumab	Avelumab	Durvalu
Phase	Phase II (310)	Phase II (265)	Phase III (270)	Phase 1b (241)	I/II (191)
(no. of pts)					

24%

2.0/8.7

18%

Fatigue (17%)

Pruritis (9%)

Diarrhea (9%)

February 2, 2017

(accelerated)

15%

2.1/7.9

16%

Fatigue (30%)

Nausea (14%)

Pruritis (10%)

May18,2016

(accelerated)

ORR

mPFS/OS

Grade 3/4

Rx-Related AEs

Most Common

FDA Approval

Rx-related AEs

(months)

Future Strategies

Indoleamine 2,3-Dioxygenase 1 (IDO1)¹

Resistance to PD-1 pathway inhibition may be mediated in part by IDO1 activity

IDO1:

- Depletes tryptophan and increases kynurenine levels
- Leads to an immunosuppressive tumor microenvironment

This leads to:

- Decreased effector T-cell function
- Differentiation of regulatory T cells

Inhibitors of this pathway are being tested in mUC

Epacadostat and Pembrolizumab¹

40 patients treated in expansion cohort at 100 mg PO BID

ORR is 35%

Tolerability appears similar to PD-1 therapy alone

80% had 1 or fewer prior regimens in metastatic setting

 Relatively lightly pretreated cohort compared with IMvigor210 (59%), but similar to KEYNOTE-045 (80%) and Checkmate-275 (71%)

Promising ORR worthy of further investigation in a planned large randomized trial

Nivolumab and BMS9862051

25 bladder cancer patients treated in a multicohort phase 1/2a dose-escalation and expansion study (CA017-003)

ORR was 32%

Kynurenine levels were decreased in pre- and on-treatment tumor biopsies

Toxicity seemed similar to single agent therapy