

Colorectal Cancer: Novel Insights

Richard Kim M.D. Associate Professor Service Chief of Medical Oncology Department of Gastrointestinal Oncology Moffitt Cancer Center Tampa, FL

Richard Kim, MD

Colorectal Cancer: Novel Insights

Relevant financial relationships in the past twelve months by presenter or spouse/partner.

Grant/Research Support: Bayer, BMS, Taiho Consultant: BMS, Lilly, Bayer Speakers Bureau: Lilly

The speaker will directly disclosure the use of products for which are not labeled (e.g., off label use) or if the product is still investigational.

- Know the current trend for treatment of advanced colorectal cancer
- Know the current status of personalized medicine in advanced CRC
- Know the differences between left vs right sided colon cancer

Impact of CRC

- CRC US statistics:
 - 3rd highest incidence rate (~135,000/yr)
 - 2nd highest mortality rate (~49,000/yr)
- CRC Global statistics:
 - 3rd highest incidence rate (~ 1.2million/yr)
 - 4th highest mortality rate (~608,000/yr)
- The burden of disease is clearly evident...

A High Number of Agents Is Currently Available for the Treatment of

Landscape in mCRC

- Bevacizumab and EGFR mAbs competing for firstline patients in KRAS wt CRC
- Bevacizumab, ramucirumab and Aflibercept competing for second-line patients with each other, and with EGFR mAbs in KRAS wt CRC
- Best sequence of therapies (VEGFi vs EGFRi) still to be established
- Regorafenib and TAS 102 as salvage therapy option
- Immunotherapy for pts with MMR deficient/MSI-H tumor

Tools for Treatment Selection

Age PS Comorbidities Tumor burden Potential for cure? Symptoms? Tumor location

Clinical Markers Molecular Markers

Histologic grade CEA KRAS NRAS BRAF MSI/MMR

Patient characteristics

+ *Tumor characteristics*

Questions

- How can biologics be used to their full potential?
 - Prognostic markers -Biomarker that correlates with clinical outcome *regardless of therapy*
 - Predictive markers-Biomarker that is associated with the likelihood of *response to therapy*
- Can a patient population be identified which would benefit most from one specific treatment strategy?

MOFFITT MEDIC OVERVIEW of EGFR and VEGFR Growth Signaling Pathways

Biomarkers for anti- VEGF Drugs

RAS and BRAF Status

	Panitumumab	FOLFOX4	
	+ FOLFOX4	Alone	Total
KRAS exon 2 (codons 12/13)			
Wild-type	325	331	656
Mutant	221	219	440
Wild-type KRAS exon 2 tumors tested for RAS and BR	RAF N = 320	N = 321	N = 641
Wild-type KRAS exon 2/mutant other RAS – n (%)	51 (16)	57 (18)	108 (17)
KRAS exon 3 (codon 61) – n (%)			
Wild-type	308 (96)	306 (95)	614 (96)
Mutant	10 (3)	14 (4)	24 (4)
Failure	2 (1)	1 (0)	3 (0)
KRAS exon 4 (codons 117/146) – n (%)			
Wild-type	288 (90)	296 (92)	584 (91)
Mutant	21 (7)	15 (5)	36 (6)
Failure	11 (3)	10 (3)	21 (3)
NRAS exon 2 (codons 12/13) - n (%)			
Wild-type	308 (96)	307 (96)	615 (96)
Mutant	8 (3)	14 (4)	22 (3)
Failure	4 (1)	0 (0)	4 (1)
NRAS exon 3 (codon 61) – n (%)			
Wild-type	305 (95)	305 (95)	610 (95)
Mutant	12 (4)	14 (4)	26 (4)
Failure	3 (1)	2 (1)	5 (1)
NRAS exon 4 (codons 117/146) – n (%)			
Wild-type	316 (99)	313 (98)	629 (98)
Mutant	0 (0)	0 (0)	0 (0)
Failure	4 (1)	8 (2)	12 (2)
BRAF exon 15 (codon 600) – n (%)			
Wild-type	286 (89)	280 (87)	566 (88)
Mutant	24 (8)	29 (9)	53 (8)
Failure	10 (3)	12 (4)	22 (3)

KRAS exon 2 codon 12/13	40%
KRAS exon 3 codon 61	4%
KRAS exon 4 codon 117/146	6%
NRAS exon 2 codon 12/13	3%
NRAS exon 3 codon 61	4%
BRAF exon 15 codon 600	8%

17%

Oliner et al., ASCO 2013

Oliner J, et al. ASCO. 2013 (abstr 3511).

- testing for these additional codons could help screen 20% more patients with mCRC for treatment with EGFR inhibitors
- This method could help to more accurately select patients who will benefit from EGFR inhibitors.
- NCCN now recommends testing for all RAS mutations

- BRAF is primary effector of KRAS signaling
- BRAF mutations:
 - Occur most frequently in exon 15 (V600E)
 - Found in 4%-14% of patients with CRC
 - Mutually exclusive with KRAS mutations

Yarden. *Nat Rev Mol Cell Biol*. 2001;2:127; Di Nicolantonio. *J Clin Oncol*. 2008;26:5705; Artale. *J Clin Oncol*. 2008;26:4217.

MOFFITT The Prognosis of Patients With BRAF V600E Mutations is Poor

 Table 1. Association of the Mutation Status of the BRAF Oncogene

 with Progression-free Survival, Overall Survival, and Response Rate.*

Variable	Wild-Type BRAF	Mutated BRAF	P Value
No. of patients			
CB group	243	17	
CBC group	231	28	
Median progression-free survival (mo)			
CB group	12.2	5.9	0.003
CBC group	10.4	6.6	0.010
Median overall survival (mo)			
CB group	24.6	15.0	0.002
CBC group	21.5	15.2	0.001
Response rate (%)			
CB group	50	35	0.32
CBC group	48	39	0.43

Roth AD, et al. J Clin Oncol. 2010;28(3):466-474. Tol J, et al. N Engl J Med. 2009;361(1):98-99.

Randomized trial of irinotecan and cetuximab with or without vemurafenib in *BRAF*-mutant metastatic colorectal cancer (SWOG S1406)

Scott Kopetz, ¹ Shannon McDonough, ² Heinz-Josef Lenz, ³ Anthony Magliocco, ⁴ Chloe Atreya, ⁵ Luis A. Diaz Jr., ⁶ Carmen Allegra, ⁷ Kanwal Raghav, ¹ Van Morris, ¹ Stephen Wang, ⁸ Christopher Lieu, ⁹ Katherine A. Guthrie, ² Howard S. Hochster¹⁰

 ¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²Fred Hutchinson Cancer Research Center, Seattle, WA; ³USC Norris Comprehensive Cancer Center, Los Angeles, CA; ⁴H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; ⁵University of California, San Francisco, San Francisco, CA; ⁶Memorial Sloan Kettering Cancer Center, NewYork, NY; ⁷University of Florida, Gainesville, FL; ⁸Kaiser Permanente, Sacramento, CA; ⁹University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; ¹⁰Yale Cancer Center, New Haven, CT

Study Design

Irinotecan 180mg/m2 IV q2weeks

Primary Endpoint: Progression-free survival

Response Rate

	Cetuxim ab + Irinotec an (n=47) ^a	Vemurafe nib + Cetuxima b + Irinotecan (n=44) ^a	P-value ^c
Partial response ^b	4%	16%	
Stable disease	17%	50%	P=0.001
Progression c	66%	18%	
Disease Control Rate	22%	67%	

^a93 patients had measurable disease; ^bConfirmed and unconfirmed; PR for patients previously treated with irinotecan was 0% and 18%, respectively; ^cIncluding symptomatic deterioration; ^c Chi-squared

Crossover to VIC after progression

- Patients with <u>radiographically documented</u> progression on IC crossed over to receive VIC
- 48% of patients treated on IC arm crossed over

Months after randomization

^a2 patients did not progress prior to crossover; 4 did not have measurable disease; these patients are excluded from response rates

Secondary Endpoint: Overall Survival

April 18. 2017 data cutoff

Conclusions

- The combination of vemurafenib, cetuximab, and irinotecan (VIC) met its primary endpoint demonstrating improved progression-free survival in patients with BRAF^{V600E} CRC
- Addition of Vemurafenib to IC showed activity even after progression on IC
- VIC represents a new treatment for metastatic BRAF^{V600E} colorectal cancer

What is the impact of site of primary tumour?

PRESENTED AT THE 2014 ASCO ANNUAL MEETING

DATA IS THE PROPERTY OF THE AUTHOR

80405: (KRASWT) Overall Survival by Sidedness

Meta-analysis: Sidedness in MCRC

Study	n	
NO16966	1268	HIH
FOCUS	1390	+=
AGITG MAX	440	
AVF2107g	559	
CALGB80405	474	
FIRE-1	423	
FIRE-3	394	
CRYSTAL	364	→ →→
FIRE-2	95	
PRIME	416	
MAVERICC	376	
PROVETTA	200	i
JACCRO-CC 05/06	110	<u>⊢−−−−</u>
PEAK	143	

0.50

ors RC

Favors LEFT

favors LC

Holch et al, Eur J Cancer, 2017

Predictive impact – bev versus anti-EGFRs

Chemo+anti-EGFR vs Chemo+Bev FIRE 3 CALGB PEAK RAS FOLFIR RAS **CHEMO** RAS **FOLFO** I+ BEV X+ BEV + BEV RAS RA! wt W.U FOLFI FOLFO CHEMO X+ PAN R I+ + CET

Tejpar et al., JAMA Oncol 2016

Right versus Left: PEAK – OS

Boeckx ESMO 2016; Peeters et al. Ann Oncol 2017. Apr 25. Epub ahead of print.

Beva, bevacizumab; HR, hazard ratio; OS, overall survival; Pmab, panitumumab

Right versus Left: CALGB80405 study - OS

Minimal difference between bev and cetux in left sided tumors

	Median OS (95% CI)	Log-rank	Adjusted HR
Population	L-sided R-sided	p-value	(95%, CI)
80405 (N = 728)	32.9 (30.7, 35.3) 19.6 (7.0, 23.6)	< 0.0001	1.39 (1.03, 1.88)
All RAS /BRAF wt (N = 225)			
BV (N = 91)	38.7 (34.3, 42.3) 34.4 (23.6, 82.0)	0.918	0.62 (0.32, 1.23)
Cet (N = 96)	40.3 (34.0, 48.3) 18.4 (14.2, 30.1)	0.003	1.68 (0.85, 3.34)
BRAF mut (N = 48)			
BV (N = 23)	12.0 (4.8, 14.5) 23.7 (7.9, 36.9)	0.035	
Cet (N = 16)	9.6 (8.6, NE) 5.8 (1.9, 11.7)	0.508	

Venook A, ASCO 2017; abstract 3503

Take Home Points

- Left sided primary colorectal cancers have better prognosis than right sided colon cancers
- Right sided colorectal cancers do not benefit from anti-EGFR therapy but do benefit from bevacizumab
- Left sided tumors benefit from both bevacizumab and anti-EGFR therapy

MSI-high CRC and Immune Checkpoint Blockade

Background

- In non selected colorectal cancer patients PD-1 blockade seems to be ineffective.
- Average tumor has dozens of somatic mutations.
- Mismatch repair deficient tumors harbor thousands of mutations
- Somatic mutations have the potential to generate neo-antigiens which can be recognized by immune system.

Clinical Trial Design: Basket Trial

- Anti–PD-1 antibody (Pembrolizumab): 10 mg/kg q 2 week
- Primary endpoint: Immune-related ORR and the 20-week immune-related PFS rate
- Mismatch-repair status was assessed in tumors with the use of the MSI Analysis System

MSI, Microsatellite Instability Analysis System

Le DT, et al. N Engl J Med. 2015;372(26):2509-2520.

Best Radiographic Response

MOFFITT jective Responses According

Table 2. Objective Responses According to RECIST Criteria.

Type of Response	Mismatch Repair–Deficient Colorectal Cancer (N=10)	Mismatch Repair–Proficient Colorectal Cancer (N=18)	Mismatch Repair–Deficient Noncolorectal Cancer (N=7)
Complete response — no. (%)	0	0	1 (14)*
Partial response — no. (%)	4 (40)	0	4 (57)†
Stable disease at week 12 — no. (%)	5 (50)	2 (11)	0
Progressive disease — no. (%)	1 (10)	11 (61)	2 (29)
Could not be evaluated — no. (%)‡	0	5 (28)	0
Objective response rate (95% CI) — %	40 (12–74)	0 (0–19)	71 (29–96)
Disease control rate (95% CI) — %∬	90 (55–100)	11 (1–35)	71 (29–96)
Median duration of response — wk	Not reached	NA¶	Not reached
Median time to response (range) — wk	28 (13–35)	NA¶	12 (10–13)

* The patient had a partial response at 12 weeks, which then became a complete response at 20 weeks.

† One patient had a partial response at 12 weeks.

‡ Patients could not be evaluated if they did not undergo a scan at 12 weeks because of clinical progression.

§ The rate of disease control was defined as the percentage of patients who had a complete response, partial response, or stable disease for 12 weeks or more.

¶ The median time to response was not applicable (NA) because no responses were observed among patients with mismatch repair-proficient colorectal cancer.

RECIST, Response Evaluation Criteria in Solid Tumors

Le DT, et al. N Engl J Med. 2015;372(26):2509-2520.

Progression-free Survival

Time

Adverse Events

All Grades	Grade 3 or 4
N=53	N=53
5 (9)	0(0)
8 (15)	0(0)
4 (8)	0(0)
6(11)	1(2)
6(11)	0(0)
4 (8)	2 (4) 🛛 🗲
2 (4)	0(0)
13 (25)	1(2) 🔶
2 (4)	0(0)
2 (4)	1(2) 🔶
2 (4)	0(0)
2 (4)	1(2) 🔶
3 (6)	1(2)
	All Grades N=53 5 (9) 8 (15) 4 (8) 6 (11) 6 (11) 4 (8) 2 (4) 13 (25) 2 (4) 2 (4) 2 (4) 2 (4) 2 (4) 3 (6)

- - - -

PRESENTED AT: ASCO ANNUAL MEETING '16 Sildes are the property of the author. Permission required for reuse.

D Le, ASCO 2016

Nivolumab ± Ipilimumab in Treatment of Patients With Metastatic Colorectal Cancer With and Without High Microsatellite Instability: CheckMate 142 Interim Results Michael Overman,¹ Scott Kopetz,¹ Ray McDermott,² Joseph Leach,³ Sara Lonardi,⁴ Heinz-Josef Lenz,⁵ Michael Morse,⁶ Jayesh Desai,⁷ Andrew Hill,⁸ Michael Axelson,⁹ Rebecca A. Moss,⁹

Chen-Sheng Lin,⁹ Monica Goldberg,⁹ Thierry Andre¹⁰

¹MD Anderson Cancer Center, Houston, TX, USA; ²St Vincent's University Hospital, Dublin, Ireland; ³Allina Health System, Minneapolis, MN, USA; ⁴Istituto Oncologico Veneto IOV-IRCSS, Padova, Italy; ⁵USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁶Duke University Office of Research Administration, Durham, NC, USA; ⁷Royal Melbourne Hospital, Victoria, Australia; ⁸Tasman Oncology Research Pty Ltd, Southport, Queensland, Australia; ⁹Bristol-Myers Squibb, Princeton, NJ, USA; ¹⁰Hopital Saint Antoine, Paris, France

Phase 2 CheckMate 142 Study Design: MSI-H Cohort

^aIn patients with centrally confirmed MSI-H status

^bCurrently enrolling

cStage 1 = combination therapy stage 2 = combination therapy stage 2; Ipi = ipilimumab; mStage 1 = monotherapy stage 1; mStage 2 = monotherapy stage 2; Nivo = nivolumab; Q2W = every 2 weeks; Q3W = every 3 weeks

Investigator-Assessed Best Overall Response in Patients With MSI-H Receiving Nivolumab Monotherapy

	Nivolumab 3 mg/kg (n = 47)ª	Nivolumab 3 mg/kg
ORR, n (%) (95% exact CI)	12 (25.5) (15.4, 38.1)	 75 - 50 - 50 - 6 - 75 -
Complete response	0	
Partial response	12 (25.5)	- 0 Bas
Stable disease	14 (29.8)	
Progressive disease	17 (36.2)	-50_
Unable to determine	4 (8.5)	-75 -
Median time to response, mo (range)	2.12 (1.3–13.6)	-100
Median duration of response, mo (range)	NE (0.0 ^b –15.2 ^b)	Horizontal reference line indicates 30% reduction 48

MOFFITT

Response and Disease Control

	dMMR/MSI-H per Local Laboratory (N = 74)		dMMR/MSI-H per Central Laboratory (n = 53)	
	Investigato r	BICR	Investigato r	BICR
ORR, n (%) 95% Cl	23 (31.1) 20.8, 42.9	20 (27.0) 17.4, 38.6	19 (35.8) 23.1, 50.2	17 (32.1) 19.9, 46.3
Best overall response, n (%) CR PR SD PD Unable to determine	0 23 (31.1) 29 (39.2) 18 (24.3) 4 (5.4)	2 (2.7) 18 (24.3) 28 (37.8) 20 (27.0) 6 (11.1)	0 19 (35.8) 21 (39.6) 10 (18.9) 3 (5.7)	1 (1.9) 16 (30.2) 21 (39.6) 12 (22.6) 3 (5.7)
Disease control for ≥ 12 weeks, n (%) ^a	51 (68.9)	46 (62.2)	39 (73.6)	37 (69.8)

BICR, blinded independent central review.

^a Patients with CR, PR, or SD for \geq 12 weeks.

PRESENTED AT 2017 Gastrointestinal Cancers Symposium | #GI17 Presented by: Dr Michael J. Overman

Slides are the property of the author. Permission required for reuse.

Overall Survival

NR, not reached. ^a Patients evaluated as dMMR/MSI-H by local laboratory.

PRESENTED AT: 2017 Gastrointestinal Cancers Symposium | #GI17

Presented by: Dr Michael J. Overman

Slides are the property of the author. Permission required for reuse.

Reduction in Target Lesion Size Regardless of PD-L1 Expression

ORR, n/N (%)	Investigato r	BICR
Tumor PD-L1		
expression	6/21 (28 6)	7/20 (35.0)
≥ 1%	12/15 (20.0)	11/45
< 1%	13/45 (20.9)	(24.4)

PRESENTED AT: 2017 Gastrointestinal Cancers Symposium | #GI17

Abundance of PD-L1 Expressing Tumor-Associated Immune Cells

ORR, n/N (%)	Investigato r	BICR
Abundance of PD-L1 expressing immune cells Rare Intermediate Numerous	5/23 (21.7) 5/20 (25.0) 9/23 (39.1)	4/22 (18.2) 4/20 (20.0) 10/23 (43.5)

Presented by: Dr Michael J. Overman

Slides are the property of the author. Permission required for reuse.

Study Design

Patients

Other key endpoints: ORR per blinded independent central review (BICR), PFS, OS, and safety

- Current analysis included all patients (n = 84) who received their first dose ≥6 months prior to the data cut-off
 - Median (range) time from first dose to data cut-off: 8.6 (6.3-19.4) months

ORR, overall response; OS, overall survival; PFS, progression-free survival

Andre T, et al. *J Clin Oncol.* 2017;35(suppl): Abstract 3531.

Investigator-Assessed Best Overall Response in Patients With MSI-H Receiving Nivolumab + Ipilimumab

^aPatients with \geq 12 weeks of follow-up

^bIncludes censored observations

CR = complete response; NE = not estimable; PR = partial response

Horizontal reference line indicates 30% reduction

Overall Response and Disease Control

	NIVO + IPI (n = 84)	NIVO Monotherapy ¹ (n = 74)
	Investigator-Assessed	Investigator-Assessed
ORR, n (%)	46 (55)	23 (31)
[95% CI]	[43.5, 65.7]	[20.8, 42.9]
Best overall response, n (%) CR PR SD PD Not determined/reported	2 (2) 44 (52) 26 (31) 9 (11) 3 (4)	0 23 (31) 29 (39) 18 (24) 4 (5)
Disease control for≥12 weeks, n (%)ª	00/701	51 (80)
	66 (79)	51 (69)

-Patients with CR, PR, or 8D for 212 weeks

1. Overman M, et al. J Clin Oncol 2017;38(suppl 48): Abstract 618.

Andre T, et al. J Clin Oncol. 2017;35(suppl): Abstract 3531.

Treatment-Related Adverse Events in ≥ 15% of Patients With MSI-H

Event, n (%)	Nivol 3 m; (n =	umab g/kg 570)	Nivolumab 3 mg/kg + Ipilimumab 1 mg/kg (n = 30)			
	Any grade	Grade 3–4	Any grade	Grade 3–4		
Any event	41 (58.6) ^a	10 (14.3)	25 (83.3)	8 (26.7)		
Fatigue	13 (18.6)	1 (1.4)	6 (20.0)	0		
Diarrhea	10 (14.3)	1 (1.4)	13 (43.3)	0		
Pruritus	8 (11.4)	0	5 (16.7)	1 (3.3)		
Nausea	5 (7.1)	0	6 (20.0)	0		
Pyrexia	3 (4.3)	0	7 (23.3)	0		
Any event leading to discontinuation	4 (5.7)	2 (2.9)	4 (13.3)	4 (13.3)		

^aOne Grade 5 event of sudden death

Question??

• Can we convert non-immunogenic tumor into immunogenic tumor?

PD-L1 and MEK Inhibition: A Rational Combination

• MEK inhibition alone can result in **intratumoral T-cell accumulation** and **MHC I upregulation**, and synergizes with an anti-PDL1 agent to promote **durable tumor regression**¹

 To examine the possible benefits of MEK inhibition with an anti-PDL1 agent, we evaluated cobimetinib + atezolizumab in patients with advanced solid tumors

MHC, major histocompatibility complex; ND, no drug (vehicle alone). CT26 (KRASmt) CRC models. 1. Ebert et al. *Immunity* 2016.

Cobimetinib + Atezolizumab in CRC: Phase Ib Dose Escalation and Cohort Expansion Study

n = 2	Dose-Escalation Stage		n = 1	
1 <i>KR</i> ASmt; 1 wt	(3 + 3)		1 <i>KR</i> ASmt	
20 mg cobi PO QDª 800 mg atezo IV q2w	•	40 mg cobi PO QDª 800 mg atezo IV q2w	→	60 mg cobi PO QDª 800 mg atezo IV q2w

DLT window of 28 days until MTD for combination is defined

Key eligibility Criteria

- ECOG PS of 0 or 1
- Measurable disease per RECIST v1.1

Primary Objectives

 Safety and clinical activity of cobimetinib + atezolizumab

^aCobimetinib was administered on 21 days on/7 days off dosing schedule.

Atezo, atezolizumab; cobi, cobimetinib; DLT, drug limited toxicity; ECOG PS, Eastern Cooperative Oncology Group performance status; *KRAS*mt, *KRAS* mutant; MTD, maximum tolerated dose; NSCLC, non-small cell lung cancer

Bendell J, et al. J Clin Oncol. 2016;34(suppl): Abstract 3502.

Efficacy: Change in Tumor Burden

• 4 patients had partial responses (confirmed per RECIST v1.1)

MOFFITT MEDICAL GROUP

- MSI status of CRC patients was examined by NGS-based scoring: 3 of 4 responders were mismatch-repair proficient (not MSI-H); 1 responder had unknown MSI status and was not evaluable
- Tumor volume reduction was not associated with PD-L1 status: TC3 (n = 1; PD), TC0 (n = 18), NA (n = 4)

PD-L1 IHC status on tumor cells (TC) and tumor-infiltrating immune cells (IC) defined as: TC3 = TC \geq 50% PD-L1+ cells; IC3 = IC \geq 10% PD-L1+ cells; TC2 = TC \geq 5% and < 50% PD-L1+ cells; IC2 = IC \geq 5% and < 10% PD-L1+ cells; TC1 = TC \geq 1% and < 5% PD-L1+ cells; IC1 = IC \geq 1% and < 5% PD-L1+ cells; TC0 = TC < 1% PD-L1+ cells; IC0 = IC < 1% PD-L1+ cells. NA, not available; NGS, next generation sequencing. Efficacy-evaluable patients. 2 patients missing or unevaluable are not included. Data cut-off February 12, 2016.

MOFFITE Efficacy: Change in Tumor Burden Over Time

^aConfirmed per RECIST v1.1. CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease. Efficacy-evaluable patients. 2 patients missing or unevaluable are not included. Data cut-off February 12, 2016.

Phase Ib Dose Escalation and Cohort Expansion Study (NCT01988896)

 Endpoints: Primary – Safety and tolerability Secondary – Investigator-assessed ORR and PFS by RECIST v1.1, and OS

Patients: PD-L1 unselected

MSI status was locally reported and centrally confirmed by NGS-based scoring

3

Atezo, atezolizumab; cobi, cobimetinib; IV, intravenously; NGS, next-generation sequencing; NSCLC, non-small cell lung cancer; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PO, orally; q2w, every 2 weeks.

^a Safety-evaluable population consisting of patients who received at least 1 dose of atezolizumab.

PRESENTED AT: 2018 Gastrointestinal Cancers Symposium #GI18 Presented by: Bendell J, et al. Atezolizumab + cobimetinib in mCRC Slides are the property of the author. Permission required for reuse.

Duration of Response

• The median duration of response was 14.3 months (95% CI: 6.0, NE)

NE, not estimable.

Data cutoff: September 4, 2017.

^a 2 patients had unknown *KRAS* mutation status and are not included in these graphs. ^b BOR was missing or unevaluable for 2 KRAS wild type and 5 KRAS mutant patients. ^c DCR defined as PR or SD ≥ 6 weeks.

PRESENTED AT: 2018 Gastrointestinal Cancers Symposium #GI18 Presented by: Bendell J, et al. Atezolizumab + cobimetinib in mCRC Slides are the property of the author. Permission required for reuse.

7

Progression-Free Survival and Overall Survival

Data cutoff: September 4, 2017.

^a Of the remaining 42 non-MSS patients, 32 patients had unknown MSI status, 9 patients were MSI-low and 1 patient was MSI-high. ^b 2 patients had unknown KRAS mutation status.

PRESENTED AT: 2018 Gastrointestinal Cancers Symposium | #GI18 Presented by: Bendell J, et al. Atezolizumab + cobimetinib in mCRC Slides are the property of the author. Permission required for reuse.

Presented By Johanna Bendell at 2018 Gastrointestinal Cancers Symposium

COTEZO IMblaze-370: Phase 3 Trial Atezolizumab With and Without Cobimetinib vs Regorafenib

- Primary endpoint: OS
- Secondary endpoint: PFS, ORR, DOR, QoL, safety

1, https://clinicaltrials.gov/ct2/show/NCT02788279

Summary

- VEGF and EGFR mAbs competing for first-line patients in RAS wt CRC
- For anti-EGFR treatment, all RAS tests are required
- Primary tumor location is related to effect of cetuximab
- Bevacizumab, *Ramucirumab* and Aflibercept competing for second-line patients with each other, and with EGFR mAbs in KRAS wt CRC

Summary

- Best sequence of therapies (VEGFi vs EGFRi) still to be established
- Regorafenib and TAS 102 as salvage therapy option
- Checkpoint inhibitors are highly active in select molecular subsets
- Rationale combination maybe able to covert "cold" tumor to "hot" tumor

Thank you !

GI oncology questions Richard.kim@moffitt.org