Mohamed A. Kharfan-Dabaja, MD, MBA

Relevant financial relationships in the past twelve months by presenter or spouse/partner.

Speakers Bureau: Alexion Pharmaceuticals, Incyte Corp, Seattle Genetics

The speaker will directly disclosure the use of products for which are not labeled (e.g., off label use) or if the product is still investigational.

CLL and CML

Mohamed A. Kharfan-Dabaja, MD, MBA, FACP
Director, Blood and Marrow Transplantation and Cellular Therapies
Mayo Clinic
Jacksonville, FL

15th Annual Miami Cancer Meeting, April 29, 2018

Outline

CLL

- Disease-risk stratification
 - Genomics
- Ibrutinib-5 years later!
- Novel ibrutinib-based combinations
- BCL2 inhibition-Murano Study update (ASH 2017)
- Role of allogeneic HCT and CAR-T

CML

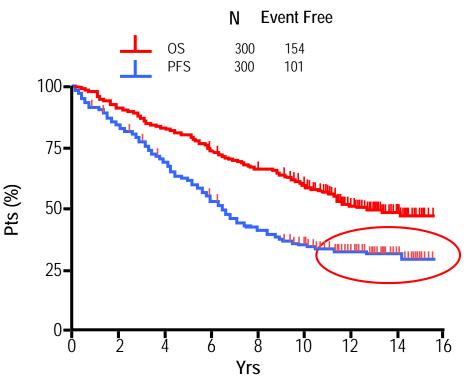
- CML, 17 years after Imatinib approval on May 2001
- Updates on Dasision and ENESTnd
- TKI discontinuation and treatment-free remission

Cumulative Index Rating Scale (CIRS)

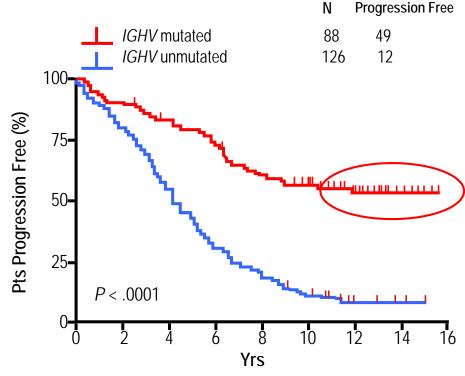
- No Go: Supportive therapy
 - CIRS >12
- Slow Go: Reduced-intensity treatment
 - CIRS 7-12
- Go Go: Standard treatment
 - CIRS 0-6
 - Physically fit
 - No significant comorbidities (CIRS 3/4)
 - Excellent renal function
 - Regardless of age

Frailty

CLL: Incidence of genetic lesions

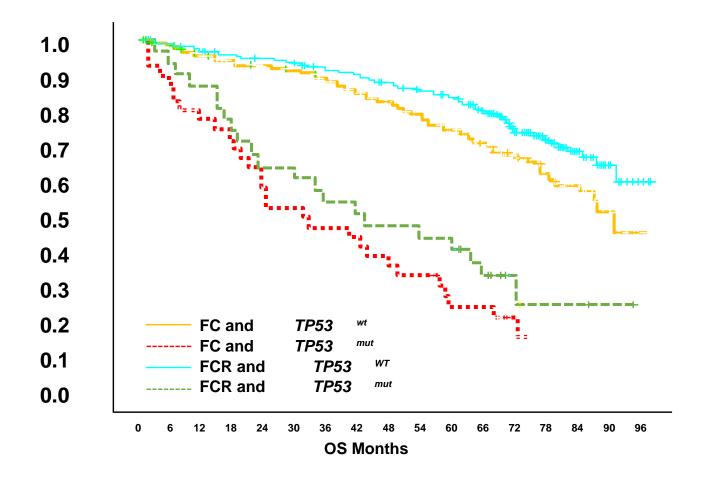

Incidence of Genetic Lesion, %	Treatment naïve CLL ^[1] (n = 452)	CLL8 ^[2] Frontline FC vs FCR (n = 635)	CLL3X ^[3,4] High-Risk AlloSCT (n = 80)	CLL2H ^[5,6] F-Refractory Alemtuzumab (n = 97)	
TP53 ^{mut}	5.3	11.5	30.0	39.0	
NOTCH1 ^{mut}	12.6	10.0	14.0	13.4	
SF3B1 ^{mut}	8.6	18.4	26.0	17.5	
IGHV UM	32.8	63.0	96.0	79.0	
del(17p)	5.3	8.4	18.1	30.1	
del(11q)	16.0	24.6	36.1	19.4	

^{1.} Puente XS, et al. Nature. 2015;526:519-524; 2. Stilgenbauer S, et al. Blood. 2014;123:3247-3254; 3. Dreger P, et al. ASH 2012. Abstract 966; 4. Dreger P, et al. Blood. 2013;121:3284-3288; 5. Schnaiter A, et al. Blood. 2013;122:1266-1270; 6. Schneiter A, et al. ASH 2012. Abstract 710.

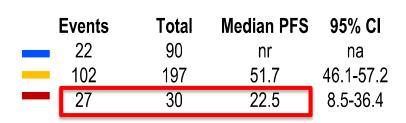


FCR300 Phase 2 Trial: plateau in PFS with FCR as initial therapy for CLL

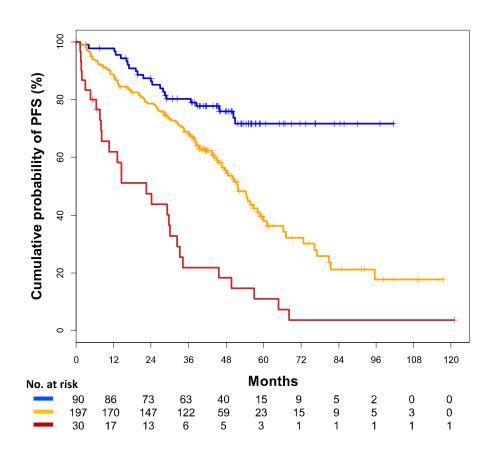
With extended follow-up, PFS shows plateau at years 10-11



FCR has limited efficacy in unmutated IGHV



del(17p)/*TP53mut* inferior outcomes CLL8 (FCR vs FC): *TP53* mutation on OS

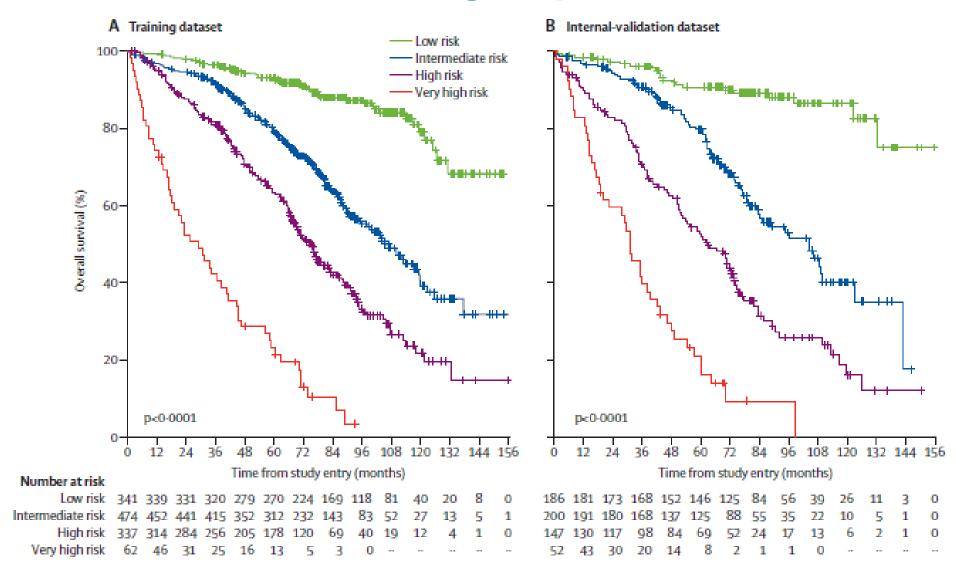


FCR in untreated CLL

Pairwise comparisons of the PFS curves

р			
	-	0.0001	<0.0001
	0.0001	-	< 0.0001
	<0.0001	< 0.0001	-

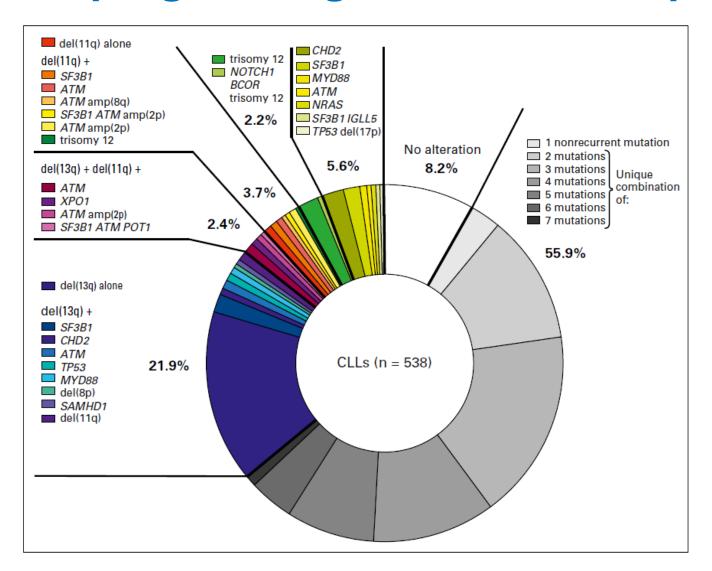
- Low-risk group (IGHV mutated)
 Intermediate-risk group (IGHV unmutated and/or 11q deletion)
- High-risk group (17p deletion)


CLL-International Prognostic Index CLL-IPI

Variable	Adverse Factor	Grading
<i>TP53/</i> 17p	Mutated/deleted	4
IGHV status	Unmutated	2
β2 microglobulin	> 3.5 mg/L	2
Clinical stage	Binet B/C or Rai II-IV	1
Age	> 65 years	1
Prognostic score		0-10

Risk Group	Score
Low	0-1
Intermediate	2-3
High	4-6
Very High	7-10

CLL-IPI: risk groups & outcomes



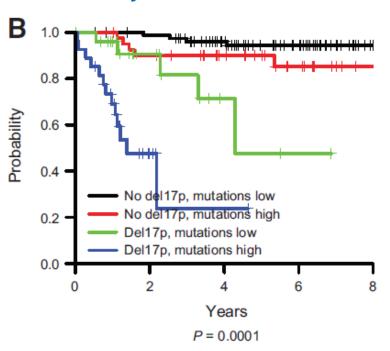
Genomics

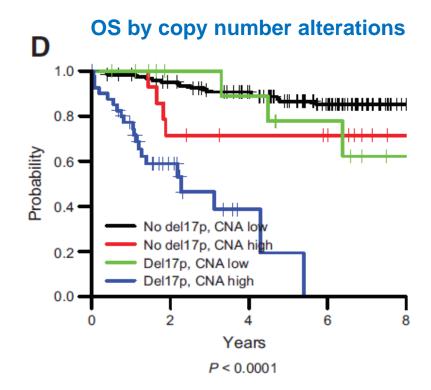
CLL prognostic genomic landscape

Survival of Del17p CLL Depends on Genomic Complexity and Somatic Mutation

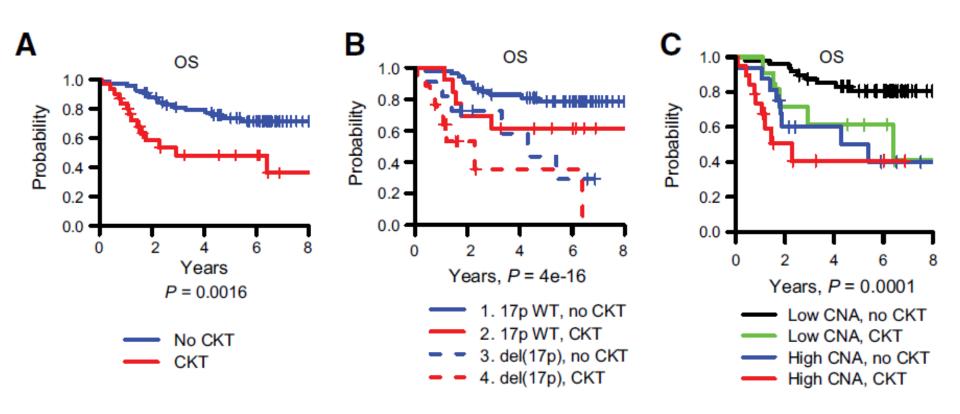
Lijian Yu^{1,2}, Haesook T. Kim³, Siddha N. Kasar^{1,2}, Parul Benien⁴, Wei Du⁴, Kevin Hoang¹, Andrew Aw⁵, Bethany Tesar¹, Reina Improgo^{1,2}, Stacey M. Fernandes¹, Saranya Radhakrishnan⁴, Josephine L. Klitgaard^{1,2}, Charles Lee⁶, Gad Getz^{7,8}, Sunita R. Setlur^{2,4}, and Jennifer R. Brown^{1,2}

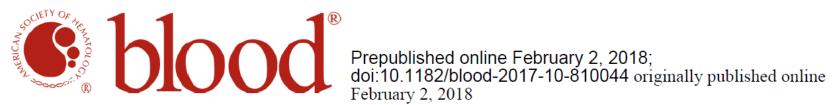
Table 1. Patient characteristics and summary of CNAs and somatic mutations


	All	wt 17p	del(17p)	P
N	277 (100%)	208 (75%)	69 (25%)	
Male	163 (59%)	118 (57%)	45 (65%)	0.26
Age of onset	55 (32-86)	54 (32-78)	61 (38-86)	2.2e-05
Treated before sampling	74 (27%)	39 (19%)	35 (51%)	6.4e-07
IGHV mutated	135 (52%)	125 (64%)	10 (16%)	1.2e-11
Complex karyotype	42 (32%)	20 (21%)	22 (61%)	4.03e-05
FISH cytogenetics				
13q14 loss	170 (61%)	139 (67%)	31 (45%)	1.9E-4
11q loss	37 (13%)	29 (14%)	8 (12%)	0.55
Trisomy 12	36 (13%)	25 (12%)	11 (16%)	0.54
Profiled by WES ^a	176 (100%)	123 (70%)	53 (30%)	
Total mutations	19 (0-94)	18 (0-94)	21 (7-68)	0.0048
Nonsynonymous mutations	14 (0-70)	13 (0-70)	16 (5-54)	0.0055
Synonymous mutations	4 (0-24)	4 (0-24)	4 (1-14)	0.14
Subclonal mutations	9 (0-89)	9 (0-89)	8 (2-35)	0.9
Clonal mutations	9 (0-34)	7 (0-24)	12 (0-34)	5.8E-4
Profiled by SNP ^a	200 (100%)	145 (72%)	55 (28%)	
# of CNAs	1 (0-36)	1 (0-16)	7 (0-36)	1.5e-16
# of losses	1 (0-35)	1 (0-16)	6 (0-35)	5e-15
# of gains	0 (0-19)	0 (0-3)	1 (0-19)	3.3e-08
Lost Mb	3 (0-530)	1.2 (0-88)	97 (0-530)	2.9e-18
Gained Mb	0 (0-340)	0 (0-260)	5.9 (0-340)	9.9e-6
8p loss	21 (10%)	6 (4%)	15 (27%)	1.1e-05
3p loss	15 (8%)	0 (0%)	15 (27%)	8.1e-10
4p loss	14 (7%)	2 (1%)	12 (22%)	4.1e-06
9p loss	15 (8%)	2 (1%)	13 (24%)	1.1e-06
Loss in 3p, 4p, or 9p	31 (16%)	3 (2%)	28 (51%)	8.6e-16


^aMedian values and ranges are presented for the WES and SNP analysis.

Overall survival


OS by number of mutations



OS: complex karyotype

Ibrutinib: 5 years later!

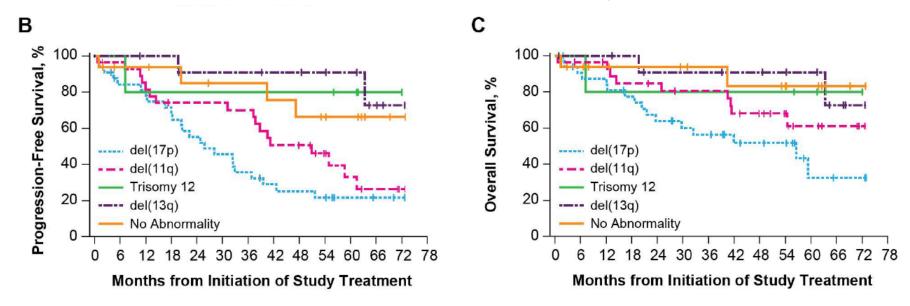
February 2, 2018

Single-Agent Ibrutinib in Treatment-Naïve and Relapsed/Refractory Chronic Lymphocytic Leukemia: A 5-Year Experience

Susan O'Brien, Richard R. Furman, Steven Coutre, Ian W. Flinn, Jan A. Burger, Kristie Blum, Jeff Sharman, William Wierda, Jeffrey Jones, Weigiang Zhao, Nyla A. Heerema, Amy J. Johnson, Ying Luan, Danelle F. James, Alvina D. Chu and John C. Byrd

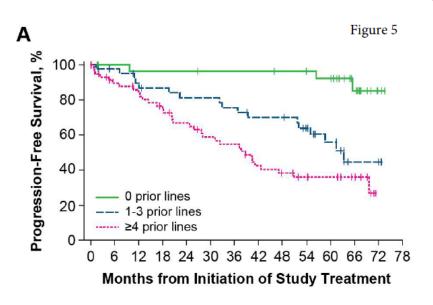
Ibrutinib: 5 years later!

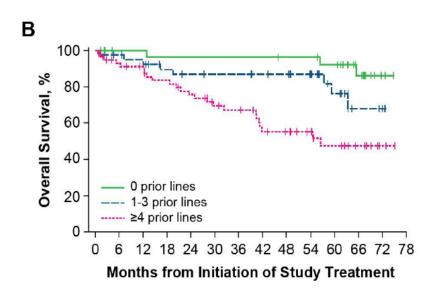
Table 1. Baseline characteristics of all treated patients


	TN ≥65 years	R/R	All patients
	(n=31)	(n=101)	(N=132)
Median age, years (range)	71 (65–84)	64 (37–82)	68 (37–84)
Age ≥70 years, n (%)	23 (74)	34 (34)	57 (43)
ECOG performance status, n (%)			
0	23 (74)	43 (43)	66 (50)
1	8 (26)	54 (53)	62 (47)
2	0 (0)	4 (4)	4 (3)
Rai stage, n (%)			
0-II	13 (42)	38 (38)	51 (39)
III-IV	17 (55)	58 (57)	75 (57)
Unknown	1 (3)	5 (5)	6 (5)
Bulky disease (lymph nodes), n (%)			
≥5 cm in diameter	6 (19)	55 (54)	61 (46)
≥10 cm in diameter	0	15 (15)	15 (11)
Unmutated <i>IGHV</i> gene, n (%)	15 (48)	79 (78)	94 (71)
Cytogenetic abnormalities, n (%)	V.	V	
del(17p)	2 (6)	34 (34)	36 (27)
del(11q)	1 (3)	35 (35)	36 (27)
Trisomy 12	8 (26)	12 (12)	20 (15)
del(13q)	17 (55)	47 (47)	64 (49)
Complex karyotype	4 (13)	37 (37)	41 (31)
β ₂ -microglobulin level >3.5 mg/L, n (%)	4 (13)	37 (37)	41 (31)

Median no. of prior therapy, n	_	4 (1–12)	_
(range)	_	27 (27)	_
1–2 prior therapies, n (%)	_	14 (14)	_
3 prior therapies, n (%)	_	60 (59)	_
≥4 prior therapies, n (%)		` ´	
Types of prior systemic therapy, n			
(%)			
Chemotherapy	_	101 (100)	_
Nucleoside analog	_	97 (96)	_
Alkylator (including bendamustine)	_	92 (91)	_
Anti-CD20-based regimen	_	99 (98)	_
Anti-CD20-based			_
chemoimmunotherapy	_	97 (96)	_
Alemtuzumab-based regimen	_	23 (23)	_
Idelalisib	_	6 (6)	

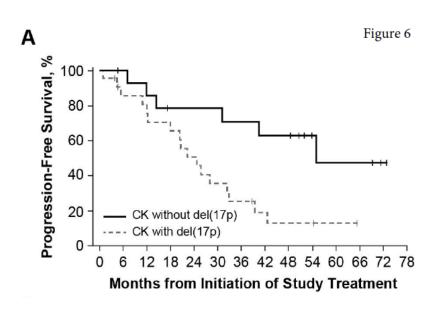
Survival outcomes in relapsed/refractory pts

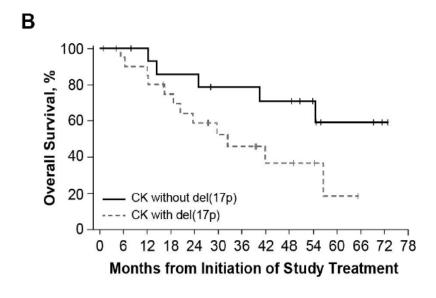

Chromosomal abnormalities by FISH



Survival outcomes in relapsed/refractory pts

Lines of prior therapy





Survival outcomes in relapsed/refractory pts

Complex karyotype with or without del17p

ASH 2017

Mato AR, et al.

Abstract 4315: Disease and Patient Characteristics, Patterns of Care, Toxicities, and Outcomes of Chronic Lymphocytic Leukemia (CLL) Patients Treated with Venetoclax: A Multicenter Study of 204 Patients

ASH 2017-Mato AR, et al. Abs # 4315

- N= 204 (98% relapsed/refractory CLL)
 - Median age=67 (37-91)
 - Median prior therapies=3 (0-11)
 - Del17p=44% (TP53 mut=41%)
 - Complex karytotype=33% (≥ 3abn)
 - Prior cellular therapy (CAR-T or transplantation)=5%
 - Prior kinase inhibitors=64%
 - ≥ 2 kinase inhibitors=15%
 - *BTK* mutated= 27% (51 tested)
 - PLCy2 mutated=10% (49 tested)

Mato AR, et al. (ASH 2017), Venetoclax

- Median F/U (10 mos)
 - 72 venetoclax-treated pts discontinued therapy
 - CLL progression=47%
 - Richter transformation=21%
 - Toxicity=11%
 - Others=21%

Multivariate analysis

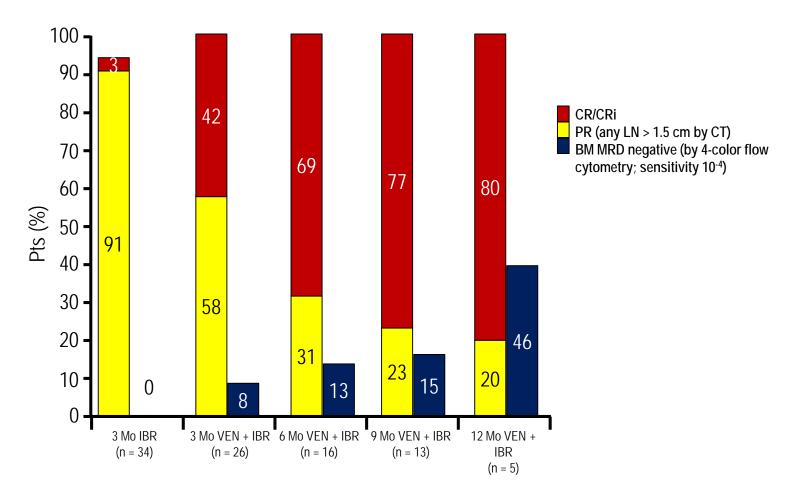
Pre-venetoclax risk factors for inferior PFS	Hazard ratio (95%CI)	P-value
Prior kinase inhibitor exposure	3.7 (1.9-7.5)	<0.001
Prior cellular therapy	4.6 (2.0-10.7)	<0.001
TP53 interruption	2.8 (1.6-5.2)	<0.001
Complex karyotype	1.9 (1.04-3.4)	0.04

Venetoclax plus ibrutinib

Venetoclax + Ibrutinib in CLL: study design

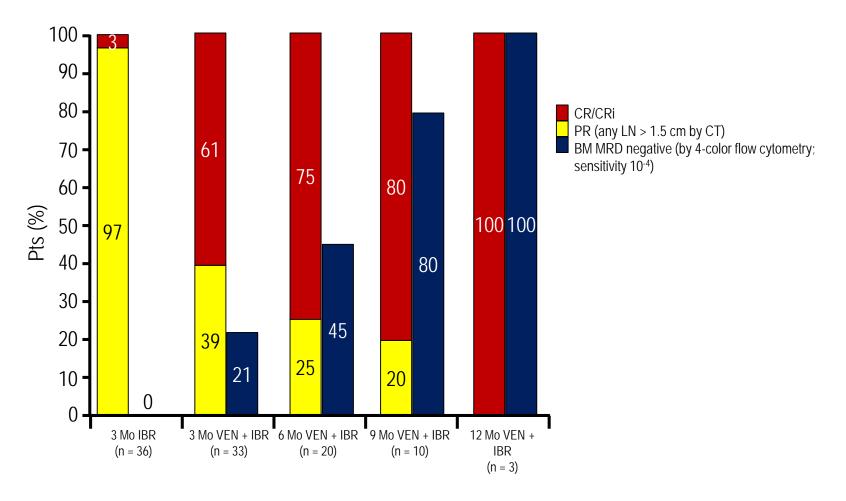
 Investigator-initiated, single-arm, multicohort phase II trial (all pts initiating tx: N = 116; current analysis: n = 77)

Cycle 3 Adult pts with CLL/SLL meeting IWCLL 2008 criteria Ibrutinib 420 mg QD + with either R/R disease (cohort Ibrutinib 420 mg QD in 28-Venetoclax 1, n = 37) or untreated high-IBR: until PD d cycles dose escalation[†] to 400 risk* disease (cohort 2, n = VEN: for 2 yrs mg QD 40), adequate organ function, no prior IBR, no prior VEN


*≥ 1 of following high-risk characteristics: ≥ 65 yrs of age; del(11q); del(17p) or mutated *TP53*; unmutated *IGHV*.

[†]Venetoclax weekly dose escalation (all doses QD): 20 mg, 50 mg, 100 mg, 200 mg, 400 mg. Response assessment by blood, BM, CT every 3 mos during Yr 1, every 6 mos during Yr 2, then every 6-12 mos thereafter.

Primary endpoint: CR/CRi per IWCLL 2008 criteria Other endpoints: OS, TLS risk categorization at BL vs post-IBR, safety



Venetoclax + Ibrutinib in CLL: response in R/R CLL/SLL (Cohort 1)

Venetoclax + Ibrutinib in CLL: response in untreated high-risk CLL/SLL (Cohort 2)

Venetoclax + Ibrutinib in CLL: safety

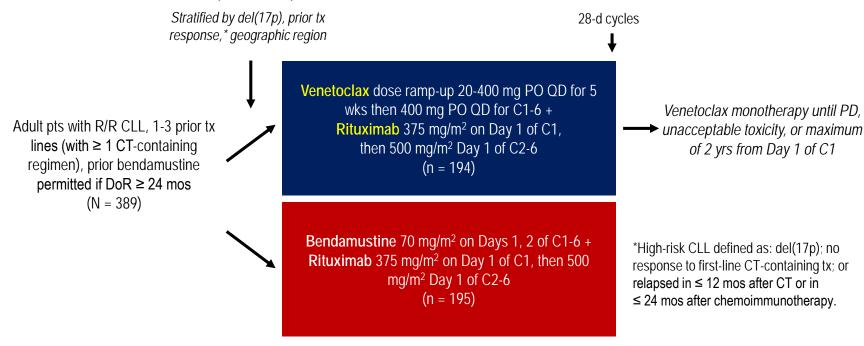
 2/3 of infections observed in ibrutinib monotherapy phase

AE	n = 77
Grade 3/4 hematologic AE,* %	
Neutropenia	44
Thrombocytopenia	4
Atrial fibrillation, n (%)	10 (13)
Infections, n (%)	
 Neutropenic fever† 	6 (8)
Pneumonia	1 (2)
Cellulitis	1 (2)
Septic arthritis	1 (2)

^{*}Most grade 3/4 hematologic AEs occurred during VEN + IBR (neutropenia, 70%; thrombocytopenia, 100%). † Associated with aspergillosis (n = 1), anaplasmosis (n = 1), Vibrio (n = 1), or culture negative (n = 3).

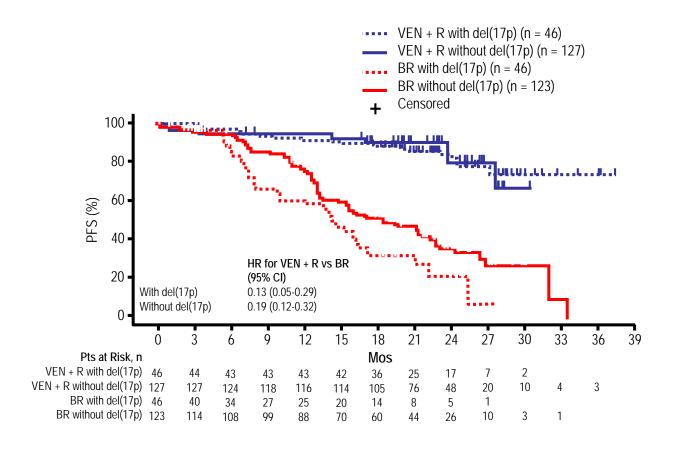
 TLS risk categorization downgraded (BL vs post-IBR) in 54% of pts

TLS Risk Category,‡ n (%)	Baseline	Post- IBR
High	18 (26)	2 (3)
Medium	38 (54)	29 (41)
Low	14 (20)	39 (56)


[‡]Assessed in 70 pts.

No clinical TLS observed; laboratory TLS observed in 2 pts

MURANO interim analysis: study design


Multicenter, randomized, open-label phase III trial

Primary endpoint: investigatorassessed PFS Secondary endpoints: IRC-assessed PFS and MRD negativity, IRC-assessed CR → ORR → OS (hierarchical testing), safety

MURANO interim analysis: investigatorassessed PFS by Del17p

Venetoclax + rituximab consistently favored across subgroups stratified by del(17p) status, TP53 status, baseline IGHV status, no. prior tx, refractory vs relapse to last tx

ASBMT 2016 recommendations

Biol Blood Marrow Transplant 22 (2016) 2117-2125

Biology of Blood and Marrow Transplantation

journal homepage: www.bbmt.org

Guideline

Clinical Practice Recommendations for Use of Allogeneic Hematopoietic Cell Transplantation in Chronic Lymphocytic Leukemia on Behalf of the Guidelines Committee of the American Society for Blood and Marrow Transplantation

Mohamed A. Kharfan-Dabaja ^{1,2,*}, Ambuj Kumar ³, Mehdi Hamadani ⁴, Stephan Stilgenbauer ⁵, Paolo Ghia ⁶, Claudio Anasetti ^{1,2}, Peter Dreger ⁷, Emili Montserrat ⁸, Miguel-Angel Perales ⁹, Edwin P. Alyea ¹⁰, Farrukh T. Awan ¹¹, Ernesto Ayala ^{1,2}, Jacqueline C. Barrientos ¹², Jennifer R. Brown ¹⁰, Januario E. Castro ¹³, Richard R. Furman ¹⁴, John Gribben ¹⁵, Brian T. Hill ¹⁶, Mohamad Mohty ¹⁷, Carol Moreno ¹⁸, Susan O'Brien ¹⁹, Steven Z. Pavletic ²⁰, Javier Pinilla-Ibarz ^{2,21}, Nishitha M. Reddy ²², Mohamed Sorror ²³, Christopher Bredeson ²⁴, Paul Carpenter ²³, Bipin N. Savani ²²

- Different from EBMT 2007, the ASBMT guidelines included:
 - A mix of transplant and non-transplant physicians
 - Experts from USA (20), Canada (1), and Europe
 - Germany (2)
 - Italy (1)
 - Spain (2)
 - United Kingdom (1)
 - France (1)

ASBMT 2016: indications for allogeneic HCT for <u>high risk</u> CLL

Table 3Summary of Indications for Allo-HCT in High-Risk CLL at Time of Transplant Evaluation

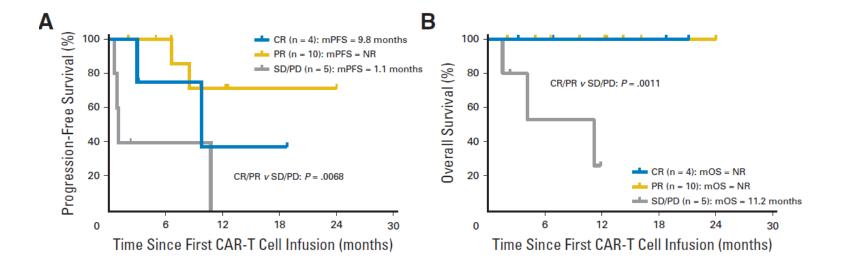
	Clinical Scenarios	Strength of Recommendation
High-risk CLL at time of transplant evaluation	The panel <u>does not recommend</u> offering an allogeneic HCT in the front-line consolidation setting	Strong
	The panel does not recommend offering an allogeneic HCT for patients who relapse after front-line therapy and demonstrate sensitive disease after second line therapy (not BCR inhibitors)	Weak
	The panel <u>recommends</u> allogeneic HCT for patients who relapse after front-line therapy, demonstrate refractory disease after second-line (not BCR inhibitors), but show an objective response to BCR inhibitors or to a clinical trial	Strong
	The panel <u>recommends</u> allogeneic HCT for patients who relapse after front-line therapy, demonstrate refractory disease after second-line therapy including BCR inhibitors (not BCL-2 inhibitors), but show an objective response to BCL-2 inhibitors, namely venetoclax, or to a clinical trial	Strong
	The panel <u>recommends</u> allogeneic HCT when there is lack of response or there is progression after BCL-2 inhibitors, namely venetoclax	Strong
Richter transformation	The panel <u>recommends</u> allogeneic HCT for patients with Richter transformation after achieving an objective response to anthracycline-based chemotherapy	Strong
Purine analogue relapsed and/or refractory disease	The panel <u>considers</u> purine analogue relapsed and/or refractory disease high-risk disease but <u>not</u> an indication for immediate allogeneic HCT	Strong

High-risk is defined as the presence of Del17p and/or TP53 mutations and/or complex karyotype.

CAR-T

 Presently, CLL in <u>not</u> an approved indication for CAR-T cell therapy

- Encouraging data in the setting of
 - Richter Transformation
 - Patients relapsing after multiple lines of therapy


Durable Molecular Remissions in Chronic Lymphocytic Leukemia Treated With CD19-Specific Chimeric Antigen Receptor–Modified T Cells After Failure of Ibrutinib

Cameron J. Turtle, Kevin A. Hay, Laïla-Aïcha Hanafi, Daniel Li, Sindhu Cherian, Xueyan Chen, Brent Wood, Arletta Lozanski, John C. Byrd, Shelly Heimfeld, Stanley R. Riddell, and David G. Maloney

						Table 1	. Patient Chara	acteristics						
No.	Histology	Age (years)	Prior Therapies (No.)	Progression on Ibrutinib	Intolerant to Ibrutinib	Time on Ibrutinib (months)	Venetoclax	Complex Karyotype	Del 17p	Marrow Abnormal B Cells (% leukocytes)	Blood Abnormal B Cells (% leukocytes)	Absolute Lymphocyte Count (× 1,000 cells/µL)	Tumor Cross- sectional area (mm²)	Maximum SUV
1 C	CLL/Richter's	65	9	Yes	No	12	No	No	Yes	0.0	0.0	0.70	NE	12.9
2 C	CLL/PLL	54	3	No	No	0.75	No	Yes	Yes	21.9	10.6	0.88	1,223	3.4
3 C	CLL/Richter's	64	9	Yes	No	10	No	No	Yes	77.0	29.0	6.59	2,018	NA
4 C	CLL	59	7	No	Yes	1	No	Yes	No	78.8	75.1	0.41	4,276	NA
5 C	CLL	55	7	Yes	No	17	Refractory	Yes	No	89.8	23.0	0.81	20,406	9.1
6 C	CLL	61	6	Yes	No	11	No	No	Yes	77.7	92.0	66.63	NE	NA
7 C	CLL	63	7	No	No	3	Refractory	No	Yes	32.2	31.2	6.24	1,140	NA
8 C	CLL	62	5	Yes	No	14	No	Yes	Yes	66.4	39.7	8.93	3,867	NA
9 C	CLL	53	5	Yes	No	13	No	Yes	Yes	79.3	22.3	0.62	2,909	4.3
10 C	CLL/Richter's	68	4	Yes	No	16	No	Yes	No	3.5	0.2	0.66	1,683	27.5
11 C	CLL	53	5	Yes	No	34	No	Yes	Yes	64.5	26.1	1.04	4,753	10.9
12 C	CLL	70	5	No	Yes	5	No	No	Yes	55.4	62	5.08	1,490	NA
13 C	CLL/Richter's	47	3	Yes	No	13	No	No	Yes	6.7	0.1	1.28	11,057	10.1
14 C	CLL/IPCs	40	4	Yes	No	14	No	Yes	Yes	84.2	67.0	30.11	5,833	4.9
15 C	CLL	73	3	Yes	No	4	No	No	Yes	0.4	0.0	1.11	3,229	3.7
16 C	CLL	61	4	No	Yes	0.75	No	Yes	No	31.8	2.3	1.13	8,223	NA
17 S	LL/Richter's	70	6	Yes	No	8	No	No	No	0.0	0.0	0.88	546	17.8
18 C	CLL	58	7	Yes	No	26	Refractory	Yes	No	96.0	84.9	10.68	2,482	NA
19 C	CLL	50	6	Yes	No	22	Refractory	Yes	Yes	90.0	79.0	22.62	3,223	NA
20 C	CLL	64	5	Yes	No	19	No	Yes	No	78.0	28.9	3.19	4,349	NA
	CLL/IPCs	53	5	Yes	No	39	No	Yes	No	41.1	21.7	3.29	1,235	5.1
	CLL	62	7	Yes	No	9	Refractory	Yes	No	40.0	0.03	1.02	3,093	11.5
	CLL	66	4	Yes	No	26	No	Yes	No	58.6	13.1	2.49	2,400	3.8
24 C	CLL	58	7	Yes	No	19	Refractory	Yes	Yes	81.0	90.1	31.79	6,071	5.0

Abbreviations: CLL, chronic lymphocytic leukemia; IPCs, increased proliferation centers; NA, not applicable; NE, not evaluated (pretherapy imaging did not permit high-resolution tumor measurement); PLL, prolymphocytic leukemia; Richter's, Richter's transformation; SLL, small lymphocytic lymphoma; SUV, standardized uptake value.

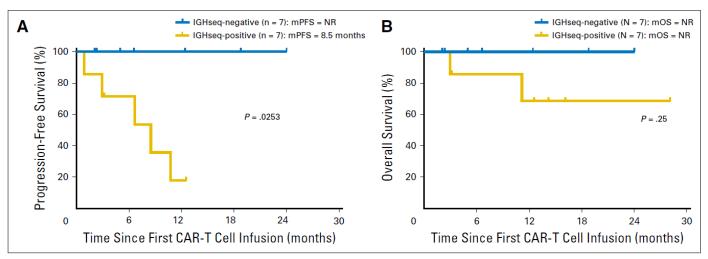
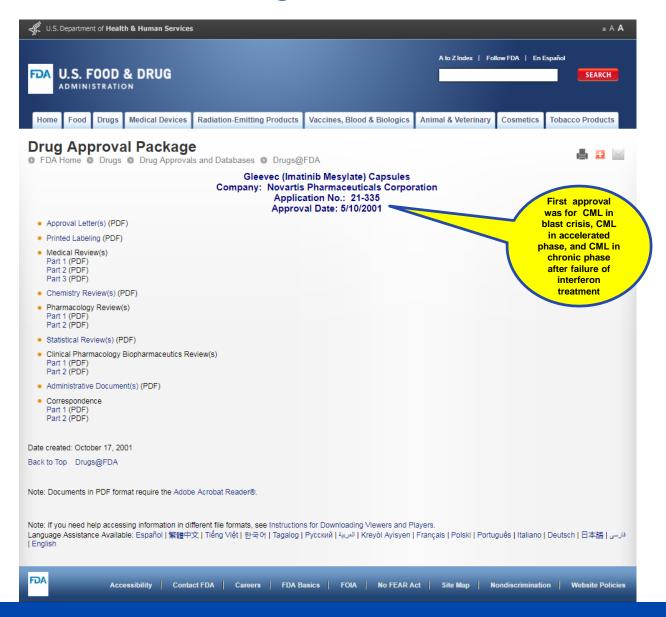
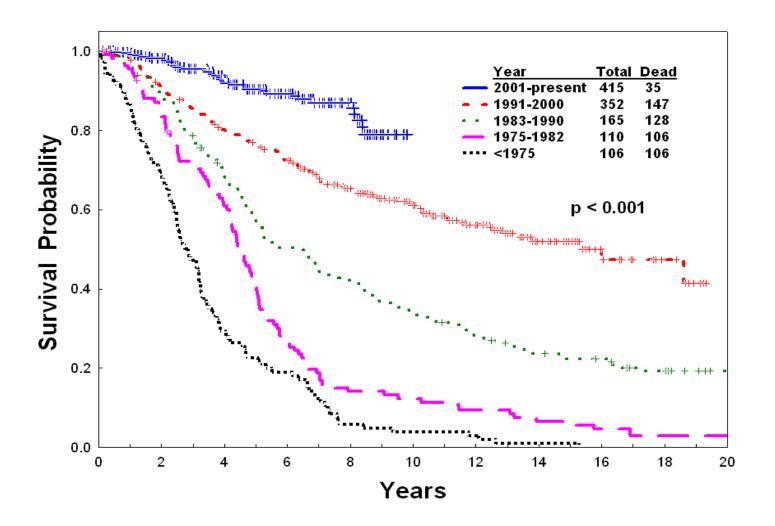



Fig 4. (A) Progression-free survival and (B) overall survival in patients who cleared disease from bone marrow 4 weeks after CAR-T cell infusion by flow cytometry and had no detectable malignant IGH copies (IGHseq-negative) compared with those who had detectable malignant IGH copies (IGHseq-positive). mOS, median OS; mPFS, median PFS; NR, not reached.



CML

Survival in early chronic phase CML

DASISION randomized phase 3 trial

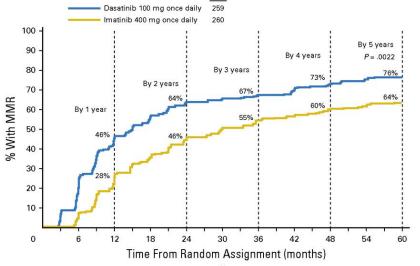
- n=519
- 108 centers
- 26 countries

Randomization

Dasatinib 100 mg Once Daily (n=259)

Imatinib 400 mg Once Daily (n=260)

Study Endpoints		
Primary endpoint	Confirmed CCyR by 12 months	
Secondary endpoints	Major molecular response at any time Time to a confirmed complete cytogenetic response Time to a major molecular response	
Other endpoints	 Rate of complete cytogenetic response observed at least once Rate of major molecular response by 12 months Progression-free survival Overall survival 	

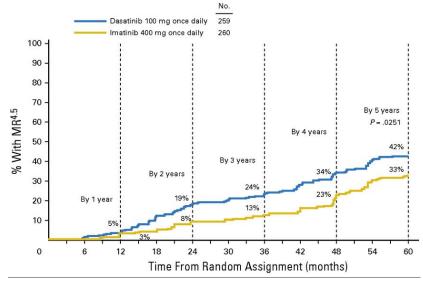

DASISION 5-year cum. response rates

MMR at 12 Months

Dasatinib 46% Imatinib 28%

MMR at 5-years

Dasatinib 76% Imatinib 64%



MR4.5 at 12 Months

Dasatinib 5% Imatinib 3%

MR4.5 at 5-years

Dasatinib 42% Imatinib 33%

ENESTnd randomized phase 3 trial

- n=846
- 217 centers
- 35 countries

Nilotinib 300 mg BID (n=282)

Nilotinib 400 mg BID (n=281)

Imatinib 400 mg Daily (n=283)

*Stratification by Sokal risk score

Study Endpoints		
Primary endpoint	MMR at 12 months	
Secondary endpoints	Durable MMR at 24 months	
Other endpoints	 Rate of CCyR by 12 months Progression to accelerated or blast phase CML CML-related deaths 	

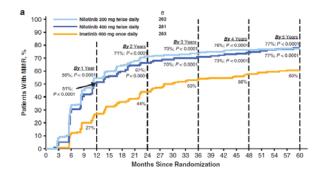
R

A N D

0

M

Z E

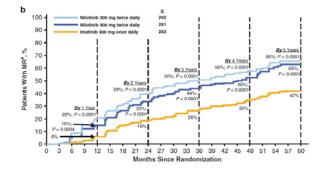

D

ENESTnd 5-Year cum. response rates

MMR

12 Months (p<0.0001) Imatinib 27% Nilotinib 55%

5 Years (p<0.0001) Imatinib 60% Nilotinib 77%


MR4.0

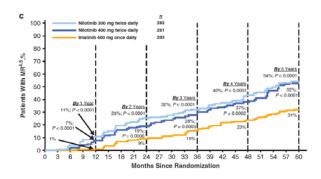
12 Months (p<0.0001) Imatinib 6%

Nilotinib 20%

5 Years (p<0.0001)

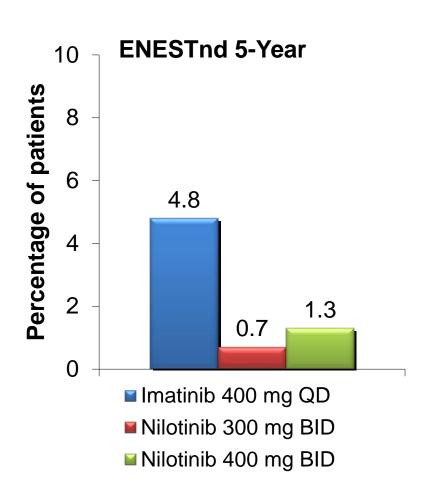
Imatinib 42% Nilotinib 66%

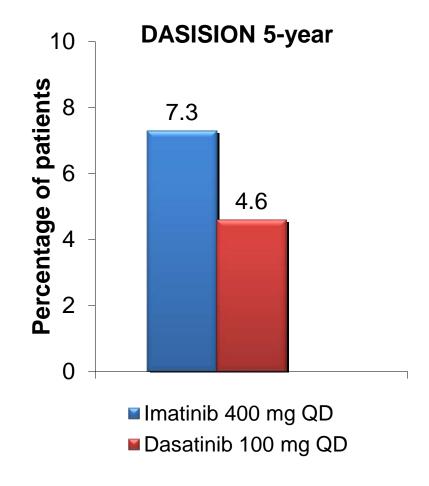
MR4.5


12 Months (p<0.0001)

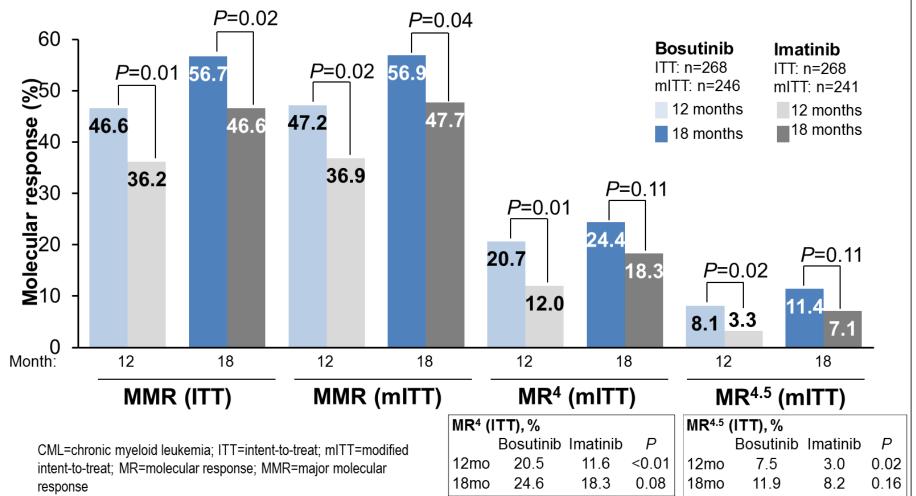
Imatinib 1% Nilotinib 11%

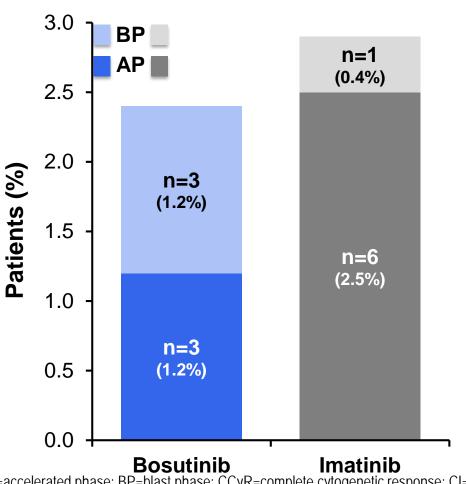
5 Years (p<0.0001)


Imatinib 31%


Nilotinib 54%

Transformation to AP/BP CML




Molecular response at 12 and 18 months

AP/BP transformation at 18 months BFORE: first-line Bosutinib vs Imatinib in CML

- 6 (2.4%) pts in bosutinib arm and
 7 (2.9%) on imatinib progressed to
 AP/BP during 1st 18 months of Rx
 - 6 of these patients (bosutinib: n=3; imatinib: n=3) met AP criteria within 2 wks based on basophil count
 - All 6 continued on study drug;
 4 achieved MMR and 1
 achieved CCyR
- There were no additional transformations in ITT population

AP=accelerated phase; BP=blast phase; CCyR=complete cytogenetic response; CI=confidence interval; CML=chronic myeloid leukemia; ITT=intent-to-treat; mITT=modified intent-to-treat; MMR=major molecular response

NCCN Guidelines Version 1.2017 Chronic Myeloid Leukemia

NCCN Guidelines Index Table of Contents Discussion

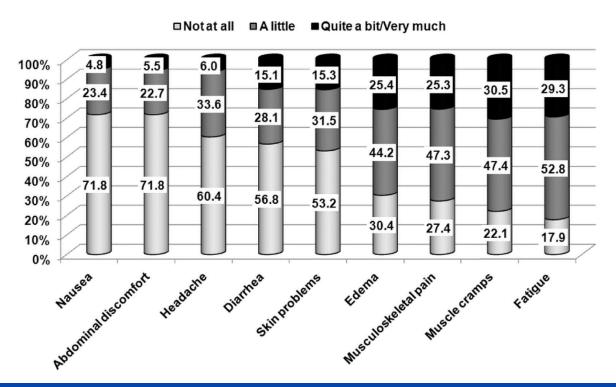
RESPONSE MILESTONES^{f,g}

BCR-ABL1 (IS)	3 months	6 months	12 months	>12 months
>10% ^h	YELLOW		RED	
1%–10%	GREEN		YELLOW	RED
0.1%-<1%	GREEN YELLOW			
<0.1%	GREEN			

CLINICAL CONSIDERATIONS

SECOND-LINE AND SUBSEQUENT TREATMENT OPTIONS

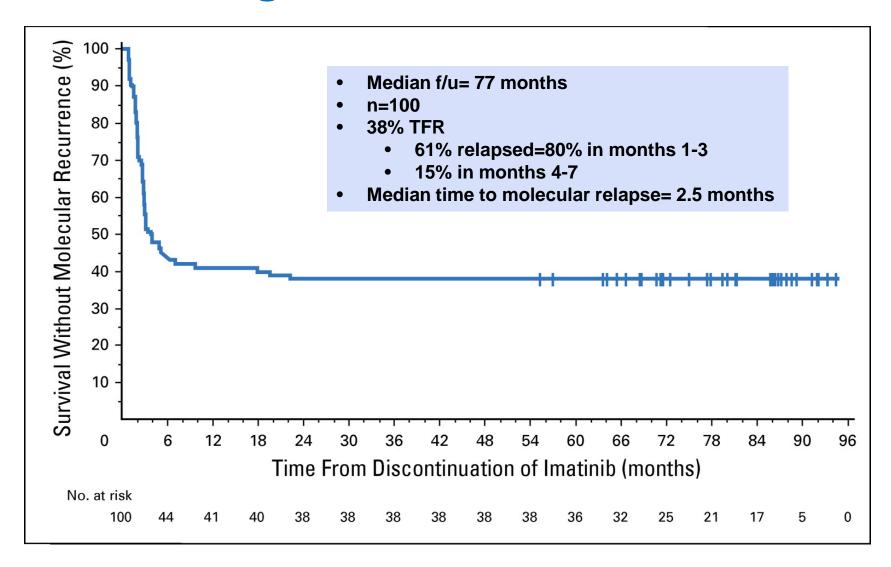
RED	Evaluate patient compliance and drug interations Mutational analysis	Switch to alternate TKI (CML-5) and Evaluate for HCT (CML-6)
YELLOW	Evaluate patient compliance and drug interactions Mutational analysis	Switch to alternate TKI (CML-5) or Continue same TKI (CML-G) ⁱ or Dose escalation of imatinib (to a max of 800 mg) and Evaluate for HCT (CML-6)
GREEN	Monitor response (CML-D) and side effets	Continue same TKI CML-G


Why to consider stopping Rx?

- TKI therapy associated with reduced QOL
- High cost to patients and society
- Potential for long-term toxicity
 - Cardiovascular
 - Pulmonary
 - Thyroid dysfunction
- Children and adolescents:
 - Substantial growth abnormalities
 - Effect on pregnancy/fertility
- Some patients may not require lifelong TKIs

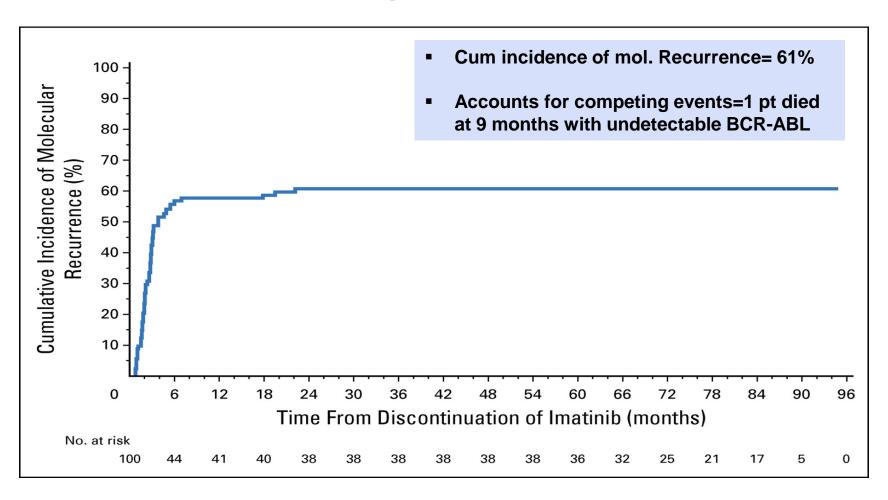
Health-related quality of life in chronic myeloid leukemia patients receiving long-term therapy with imatinib compared with the general population

Fabio Efficace,¹ Michele Baccarani,² Massimo Breccia,³ Giuliana Alimena,³ Gianantonio Rosti,² Francesco Cottone,¹ Giorgio Lambertenghi Deliliers,⁴ Claudia Baratè,⁵ Antonella Russo Rossi,⁶ Giuseppe Fioritoni,⁷ Luigia Luciano,⁸ Diamante Turri,⁹ Bruno Martino,¹⁰ Francesco Di Raimondo,¹¹ Melissa Dabusti,¹² Micaela Bergamaschi,¹³ Pietro Leoni,¹⁴ Maria Pina Simula,¹⁵ Luciano Levato,¹⁶ Stefano Ulisciani,¹⁷ Dino Veneri,¹⁸ Simona Sica,¹⁹ Alessandro Rambaldi,²⁰ Marco Vignetti,¹ and Franco Mandelli,¹ for GIMEMA



TKI discontinuation and treatment- free remission (TFR)

- The French STIM1 TFR trial was first to address possibility of TKI discontinuation
 - 100 pts with undetectable BCR-ABL d/c'ed imatinib and were monitored off treatment until evidence of molecular relapse
 - Proof-of-principle that attempting TKI discontinuation was safe in selected pts
- Subsequent studies have confirmed feasibility of TFR
 - Association between longer imatinib duration and maintenance of TFR, although a minimum treatment duration prior to TFR has not been determined



Long-term F/U from STIM

Cum incidence of molecular recurrence on STIM

Outcomes in pts With molecular relapse

Table 2. MR Patient's Disposition, Treatment, and Molecular Status at the Last Date of Follow-Up

	Patients (n = 61)		No. of Molecular Responses at Last Available Evaluation		Evaluation
Patient Disposition and Treatment	No.	%	≥ MR ^{4.5}	\geq MMR to $<$ MR ^{4.5}	< MMR
Alive with TKI therapy	43	70.5	34	6	3
Imatinib	31	50.8	28	2	1
Dasatinib	7	11.4	3	3	1
Nilotinib	4	6.5	3	1	0
Bosutinib	1	1.6	0	1	0
Alive without TKI therapy	14	22.9	10	3	1
Second or third TKI discontinuation*	9	14.7	8	1	0
Discontinuation for TKI-related AE	2	3.2	0	1	1
Without any TKI resumption	3	4.9	2	1	0
Death	4†	6.5	2	2	0

Abbreviations: AE, adverse event; MMR, major molecular response; MR, molecular response; MR^{4.5}, molecular response 4.5-log; TKI, tyrosine kinase inhibitor. *Twenty-one patients who had achieved a second sustained undetectable molecular residual disease (UMRD) of at least 1 year had a second treatment discontinuation as previously described. Of those patients, 13 had MR leading to treatment resumption, and eight were free from MR with a median follow-up of 11.6 months (range, 0.9 to 21.4 months) after second imatinib discontinuation and without TKIs at last follow-up. Among the 13 MR patients, four achieved a third sustained UMRD and one experienced a third treatment discontinuation without molecular recurrence at the last date of follow-up.

†One patient died as a result of pleural mesothelioma while receiving imatinib. The remaining three patients discontinued TKI therapy because of worsening concomitant disease leading to death (one patient case each of cerebral hemorrhage, metastatic gastric adenocarcinoma, and acute renal failure).

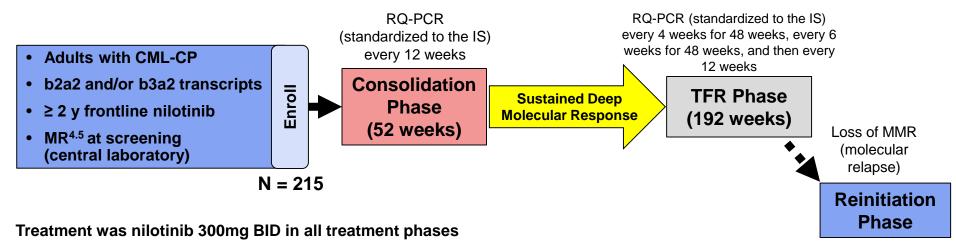
- 57/61 relapsed pts restarted TKIs
- 55 achieved 2nd undetectable status median time 4.3 months
- None progressed to AP/BP
- 14 alive and off TKIs 10 in MR4.5
- 4 deaths none were CML related

Multivariate analysis from STIM

- Two factors predictive of molecular relapse
 - 1. High-risk Sokal score at diagnosis
 - HR=2.22 (95%CI=1.11-4.42)
 - **P=0.024**

This was the median!

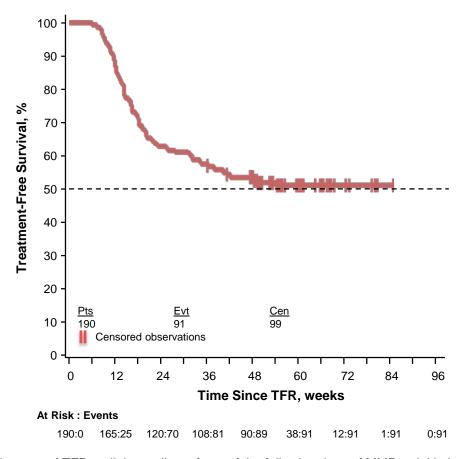
- 2. Imatinib duration ≥58.8 months prior to discontinuation
 - HR=0.54 (95%CI=0.32-0.92)
 - P=0.024



ENEST freedom

Enrollment and Inclusion Criteria		
Total enrollment	n=215	
Minimum treatment duration required prior to discontinuation	≥3 years frontline nilotinib	
Minimum response required prior to discontinuation	Sustained MR ^{4.5} for at least 1 year	

 37.9% of nilotinib 300mg BID treated patients on ENESTnd met the inclusion criteria for attempting TFR on ENESTfreedom

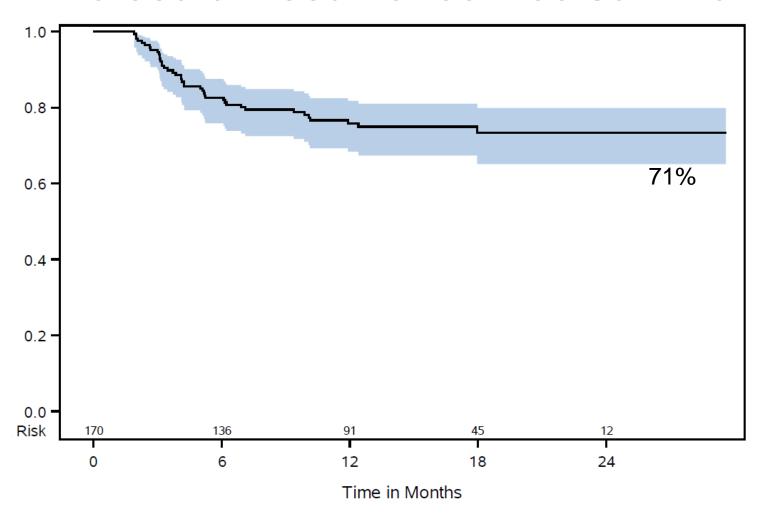

Study Design

Treatment-free survival

Kaplan-Meier estimated treatment-free survivala

- 190 patients entered the TFR phase
- 51.6% of patients (95% CI, 44.1-58.9%)
 remained in TFR after 48 weeks

^a Defined as the time from the start of TFR until the earliest of any of the following: loss of MMR, reinitiation of nilotinib for any reason, progression to accelerated phase/blast crisis, or death due to any cause.



The LAST study is a national study examining discontinuation in the US

Patients were enrolled from December 2014 through December 2016

Molecular recurrence-free survival

Molecular recurrence-free survival: 71% (based on study criteria)

Treatment free remission: 65% restarted drug

When to restart?

Trial	Trigger to Restart TKI
STIM1	Loss of MMR or confirmed ≥1-log increase in BCR-ABL
STIM2	Loss of MMR or ≥1-log increase in BCR-ABL
TWISTER	Loss of MMR or two consecutive positive PCR values
A-STIM	Loss of MMR
LAST	Loss of MMR
EURO-SKI	Loss of MMR
KIDS	Confirmed loss of MMR
ENEST freedom	Loss of MMR

TKI withdrawal syndrome

- Diffuse musculoskeletal pain and joint pain
- ~30% after stopping TKIs
- Median duration ~6 months

Closing remarks

CLL

- Treatment approach based on disease-risk and patient's fitness
- Del17p plus complex karyotype is very high-risk
- Genomics will be incorporated into future algorithms

CML

- Most pts with chronic phase CML do well with current therapy(ies)
- Stopping TKIs is ready for prime time
 - Multi-team approach is a key component to the success and safety of TFR

Thank you

