UCDAVIS HEALTH

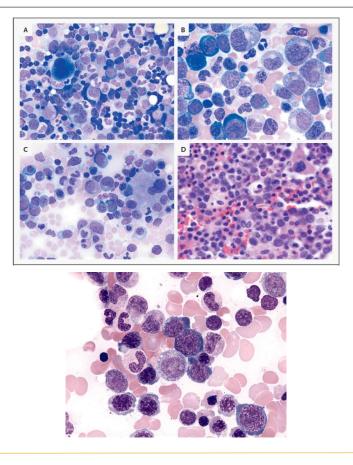
New Therapeutic Options in the Myelodysplastic Syndromes

Brian A. Jonas, MD, PhD, FACP Associate Professor of Medicine 20th Annual Advances in Oncology – October 11, 2019

Disclosures

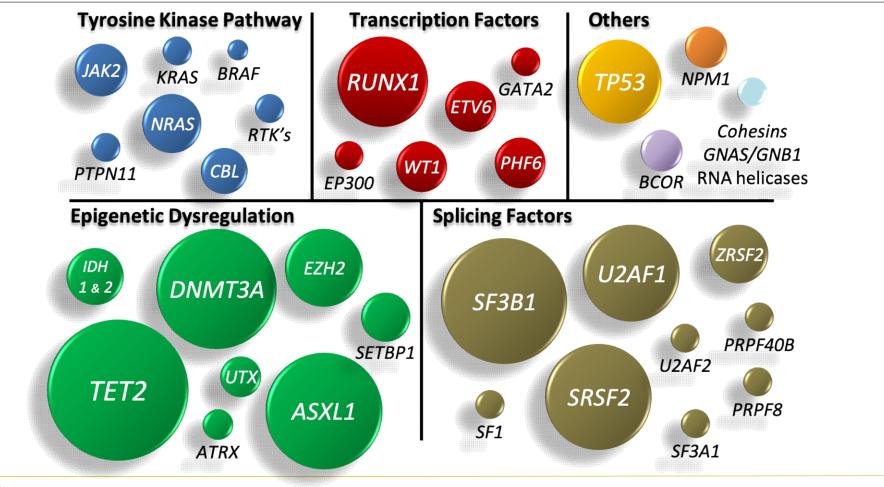
• Consulting/Advising:

- AbbVie, Amgen, Celgene, GlycoMimetics, Jazz, Pharmacyclics, Tolero
- Travel Support:
 - AbbVie, Amgen, GlycoMimetics
- Grant/Research Support (to institution):
 - AbbVie, AROG, Celgene, Daiichi Sankyo, Esanex, Forma, Genentech/Roche, GlycoMimetics, Incyte, Kalobios, Pharmacyclics, Accelerated Medical Diagnostics, LP Therapeutics


The Myelodysplastic Syndromes (MDS)

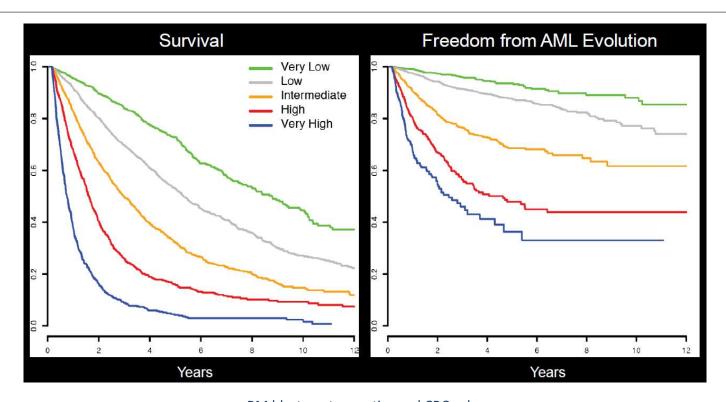
- Heterogeneous group of clonal bone marrow failure syndromes
- 10-30,000 cases per year in US
- Median age 76, > in males
- Ineffective hematopoiesis
 - Bleeding, infections, anemia
- Transformation to AML
- Variable clinical course

LICDAVIS


HEALTH

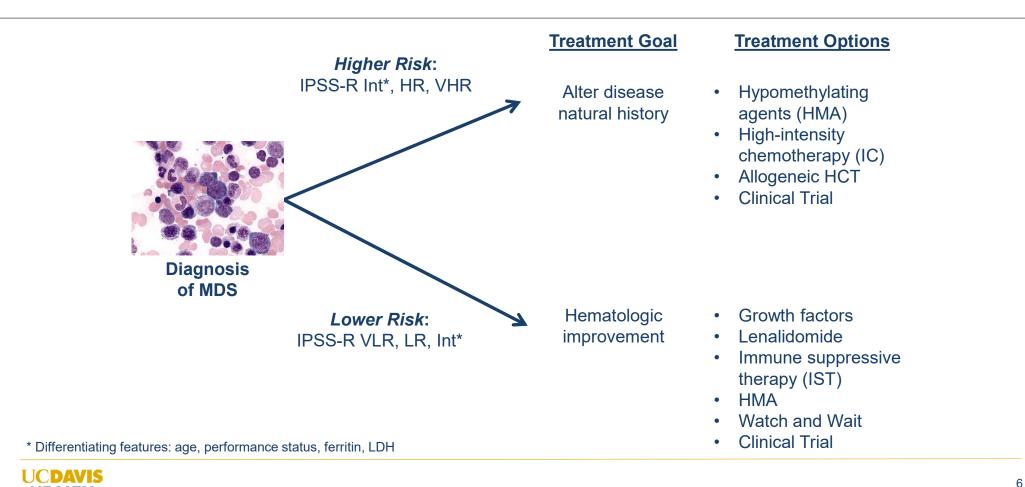
• Need for accurate prognostication

3

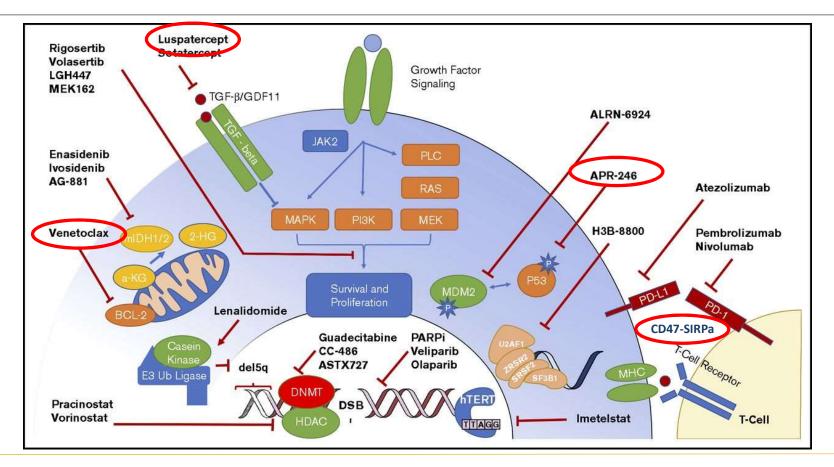

Recurrent Mutations in MDS

UCDAVIS HEALTH

Adapted from R. Bejar, US Focus on MDS and MPN, 2013. 4


IPSS-R: Risk Stratification and Prognosis

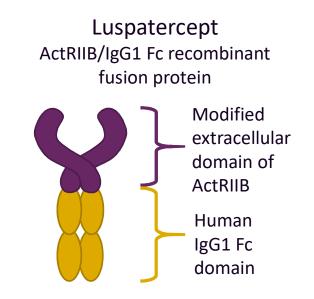
BM blasts, cytogenetics and CBC values Very low risk ≤1.5 points; Low risk >1.5-3 points; Intermediate risk >3-4.5 points; High risk >4.5-6 points; Very High risk >6 points


UCDAVIS HEALTH Greenberg et al, Blood 2012. 5 Schanz et al, JCO 2012.

Current Treatment Approach and Options in MDS

HEALTH

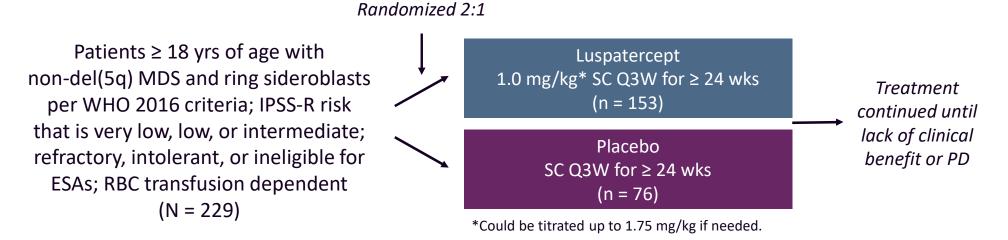
Emerging Molecular Targets and Therapeutics in MDS

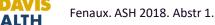


UCDAVIS HEALTH

Alex Aleshin and Peter L. Greenberg, Blood Adv 2018;2:2787-2797 7

Luspatercept


- Investigational first-in-class erythroidmaturation agent
- Neutralizes select TGF-β superfamily ligands to inhibit aberrant Smad2/3 signaling and enhance late-stage erythropoiesis in MDS models^[1]
- In a phase II study in lower-risk non-del(5q) MDS, luspatercept yielded a high frequency of transfusion reduction or RBC-TI in patients with ring sideroblasts vs other subtypes^[2]


Phase III MEDALIST Trial of Luspatercept vs Placebo in Lower-Risk Non-del(5q) MDS-RS

• International, randomized, double-blind, placebo-controlled phase III trial

Primary endpoint: RBC TI for ≥ 8 wks between Wk 1 and Wk 24

Secondary endpoints: RBC TI for ≥ 12 wks between Wk 1 and Wk 24, modified hematologic improvement–erythroid response per IWG 2006 criteria, DoR, Hb change from baseline

Slide credit: <u>clinicaloptions.com</u>

Medalist: Patient Characteristics

Characteristic	Luspatercept (n = 153)	Placebo (n = 76)
Median age, yrs (range)	71 (40-95)	72 (26-91)
Male, n (%)	94 (61.4)	50 (65.8)
Median time from diagnosis, mos (range)	44.0 (3-421)	36.1 (4-193)
Median RBC burden, units (range)* ■ ≥ 6 units/8 wks, n (%) ■ < 6 units/8 wks, n (%)	5 (1-15) 66 (43.1) 87 (56.9)	5 (2-20) 33 (43.4) 43 (56.6)
Median pre-transfusion Hb, g/dL (range)	7.6 (6-10)	7.6 (5-9)
Baseline serum erythropoietin, n (%) ■ < 200 IU/L ■ ≥ 200 IU/L	88 (57.5)† 64 (41.8)†	50 (65.8) 26 (34.2)
 IPSS-R risk category in 16 wks prior to randomization, n (%)[‡] Very low, Low Intermediate 	127 (83.0) 25 (16.3)	63 (82.9) 13 (17.1)
SF3B1 mutation, n (%)	141 (92.2)	65 (85.5)†

*In the 16 weeks prior to randomization. †Data were missing for 1 patient. ‡1 (0.7%) patient in the luspatercept arm was classified as IPSS-R high risk.

Fenaux. ASH 2018. Abstr 1.

Slide credit: <u>clinicaloptions.com</u> 10

Medalist: Efficacy

Outcome, %	Luspatercept (n = 153)	Placebo (n = 76)	<i>P</i> Value
RBC TI ≥ 8 wks in Wks 1-24	37.9	13.2	<.0001
RBC TI ≥ 12 wks in Wks 1-24	28.1	7.9	.0002
RBC TI ≥ 12 wks in Wks 1-48	33.3	11.8	.0003
mHI-E* ≥ 8 wks in Wks 1-24	52.9	11.8	< .0001
 Reduction of ≥ 4 RBC units/8 wks Hb increase of ≥ 1.5 g/dL 	48.6 63.0	14.3 5.0	
mHI-E* ≥ 8 wks in Wks 1-48	58.8	17.1	< .0001
 Reduction of ≥ 4 RBC units/8 wks Hb increase of ≥ 1.5 g/dL 	54.2 69.6	21.4 5.0	

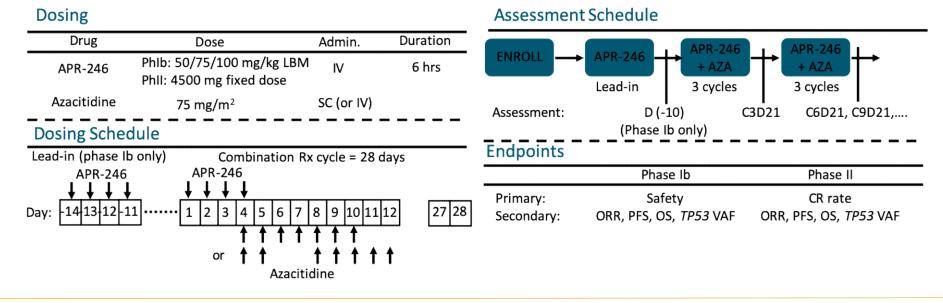
*Defined as transfusion reduction of \geq 4 units/8 wks or mean hemoglobin increase \geq 1.5 g/dL/8 wks in absence of transfusions

 Among primary endpoint responders, the median duration of RBC TI response was 30.6 wks in the luspatercept arm vs 13.6 wks in the placebo arm

Medalist: Safety

TEAE of Any Grade, %	Luspatercept (n = 153)	Placebo (n = 76)	TEAE, %	Luspatercept (n = 153)	Placebo (n = 76)		
Fatigue	26.8	13.2	Patients with \geq 1 TEAE	98.0	92.1		
Diarrhea	22.2	9.2	■ ≥ 1 serious TEAE	31.4	30.3		
Asthenia	20.3	11.8	■ ≥ 1 grade 3/4 TEAE	42.5	44.7		
Nausea	20.3	7.9	 TEAEs leading to death 	3.3	5.3		
Dizziness	19.6	5.3	■ ≥ TEAE causing				
Back pain	19.0	6.6	discontinuation	8.5	7.9		
Cough	17.6	13.2	4 patients prog	gressed to acute			
Peripheral edema	16.3	17.1	myeloid leuke	mia: 3 in lusp	uspatercept		
Headache	15.7	6.6	arm, 1 in place	bo arm			
Dyspnea	15.0	6.6					
Bronchitis	11.1	1.3	The most com	•			
Constipation	11.1	9.2	in luspatercept arm were anemi (6.5%), fatigue (4.6%), and fall				
UTI	11.1	5.3					
Fall	9.8	11.8	(4.6%)				

Medalist: Conclusions


- Luspatercept significantly reduced RBC transfusion burden compared with placebo in transfusion-dependent patients with very low- to intermediate-risk MDS with RS
 - Met primary endpoint of improving proportion of patients achieving RBC transfusion independence for ≥ 8 wks in Wks 1-24
 - Significantly more patients achieved RBC transfusion independence for ≥ 12 wks in Wks 1-24 and in Wks 1-48
 - Significantly more patients achieved increase in Hb of \geq 1.5 g/dL
- Treatment generally well tolerated
- Luspatercept may offer a new treatment option for transfusion-dependent anemia in lower-risk RS-positive MDS patients approval decision by 4/2020

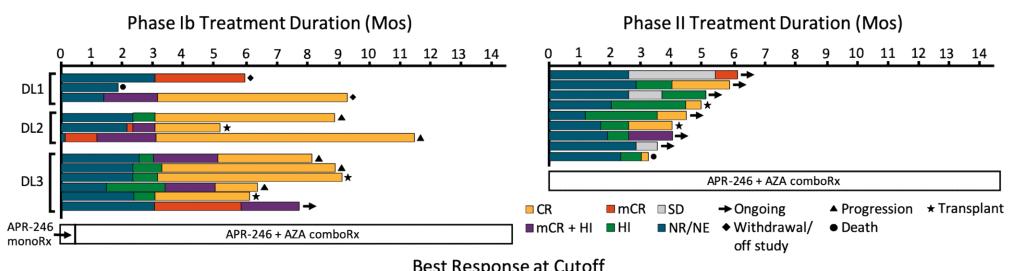
APR-246

- TP53 mutations confer a poor prognosis in patients with MDS
- APR-246 restores the wild-type conformation of mutant p53
- Phase Ib/II trial of APR-246 and Azacitidine in HMA-naïve TP53-mutated MDS and AML (≤ 30% blasts)

APR-246 plus Azacitidine: Safety

Most common TEAEs with any relation to APR-246 or AZA, n (%)					
	Gr 1	Gr 2	Gr 3	Gr 4	Gr 5
Nausea	9 (42)	3 (14)	0	0	0
Peripheral neuropathy	8 (38)	0	0	0	0
Vomiting	6 (29)	2 (10)	0	0	0
Dizziness	4 (19)	2 (10)	0	0	0
Thrombo- cytopenia	0	1 (5)	0	0	0
Neutropenia	0	0	0	0	0
Pruritus	4 (19)	1 (5)	0	0	0
Tremor	4 (19)	0	0	0	0
Constipation	3 (14)	1 (5)	0	0	0
Headache	4 (19)	0	0	0	0
Leukopenia	0	0	1 (5)	3 (14)	0

TEAEs in > 1 patient with any relation to APR-246 only, n (%)					
	Gr 1	Gr 2	Gr 3	Gr 4	Gr 5
Nausea	3 (14)	0	0	0	0
Peripheral neuropathy	6 (29)	0	0	0	0
Dizziness	2 (10)	1 (5)	0	0	0
Tremor	3 (14)	0	0	0	0
Edema	1 (5)	1 (5)	0	0	0


G3/4 hematologic TEAEs by APR-246 dose level, n (%)

	Phase lb DL1	Phase lb DL2	Phase lb DL3	Phase II
Febrile neutropenia	1 (33)	0	3 (50)	2 (10)
Neutropenia	2 (66)	3 (100)	1 (17)	2 (10)
Thrombocytopenia	1 (33)	2 (66)	2 (33)	1 (5)
Leukopenia	2 (66)	1 (33)	1 (33)	1 (5)
Anemia	1 (33)	0	2 (33)	0

- No DLTs experienced to date
- No correlation of TEAE frequency, severity with increasing APR-246 dose
- No increase in grade 3/4 hematologic TEAEs above that expected for AZA

Sallman. ASH 2018. Abstr 3091.

APR-246 plus Azacitidine: Efficacy

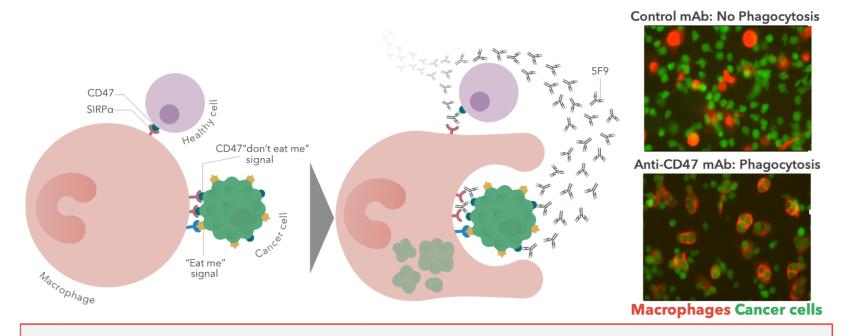
		Dest ne	sponse at out	511		
	Phase Ib	Phase II	MDS	AML	Total	AZA Historical
Evaluable patients, n	11	9	15	5	20	
ORR, %	100	89	93	100	95	30-50
CR, %	82	56	67	80	70	20-30

APR-246 plus Azacitidine: Conclusions

- The combination of APR-246 and Azacitidine is well tolerated in patients with mTP53 MDS and AML
- Responses have been achieved in 95% of patients overall including 70% with CR
- Median OS and PFS not reached
- Normalization of p53 positivity by IHC and TP53 mutations by NGS along with MRD responses by ddPCR were seen
- Transcriptional activation of p53 targets, including pathways involved in cell cycle arrest, apoptosis, DNA repair and regulation of TP53 activity, were observe
- The phase II portion of the trial is ongoing

The First-in-Class Anti-CD47 Antibody Hu5F9-G4 is Well Tolerated and Active Alone or with Azacitidine in AML and MDS Patients: Initial Phase 1b Results

David A Sallman¹, William Donnellan², Adam Asch³, Daniel Lee⁴, Monzr Al Malki⁵, Guido Marcucci^{5,} Daniel Pollyea⁶, Suman Kambhampati⁷, Rami Komrokji¹, Joanna Van Elk⁸, Ming Lin⁸, James Y Chen⁸, Jens-Peter Volkmer⁸, Chris Takimoto⁸, Mark Chao⁸, Paresh Vyas⁹

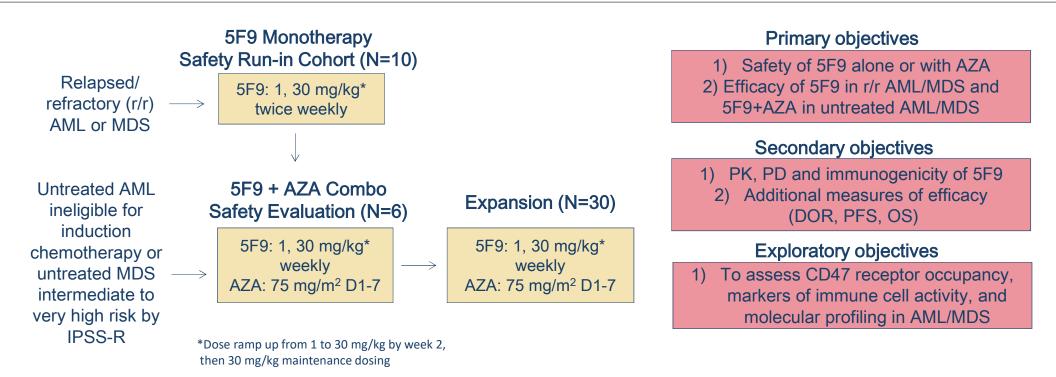

¹Moffitt Cancer Center, Tampa, FL; ²Sarah Cannon Research Institute, Nashville, TN; ³University of Oklahoma, Oklahoma City, OK, City of Hope, Duarte, CA; ⁴Columbia University, New York, NY; ⁵City of Hope, Duarte, CA; ⁶University of Colorado, Denver, CO; ⁷Healthcare Midwest, Kansas City, MO; ⁸Forty Seven, Inc., Menlo Park, CA; ⁹University of Oxford, Oxford, UK

Sallman. Hemasphere. 3:394. June 2019.

Slide credit: 9 Forty Seven ¹⁸

5F9 is a First-in-class Macrophage Immune Checkpoint Inhibitor Targeting CD47

o 5F9 was well tolerated in a UK Phase 1 trial in r/r AML with no MTD reached (Vyas et al., EHA abs 2018)

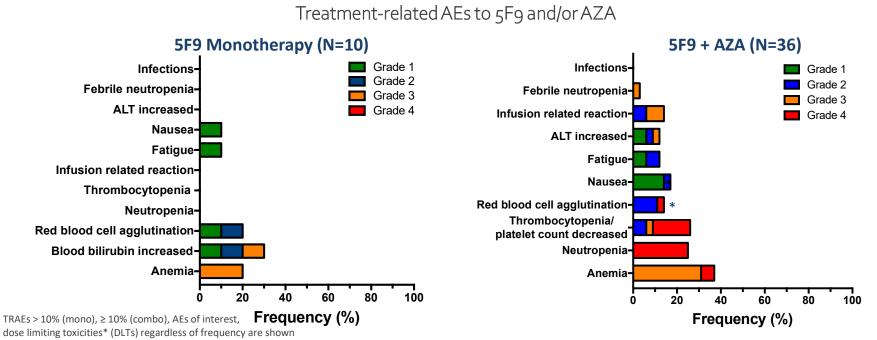

• Aza induces "eat me" signals on cancer cells and synergizes with 5F9 in AML xenograft models

UCDAVIS HEALTH

Sallman et al. Hemasphere. 3:394. June 2019; Feng et al., ASH Abs 2018.

Slide credit: **9** Forty Seven ¹⁹

5F9005 Study: Design


- A 5F9 priming dose (1 mg/kg) and dose ramp up was utilized to mitigate on target anemia
- 5F9 monotherapy safety was confirmed in r/r AML/MDS patients prior to 5F9+AZA combination

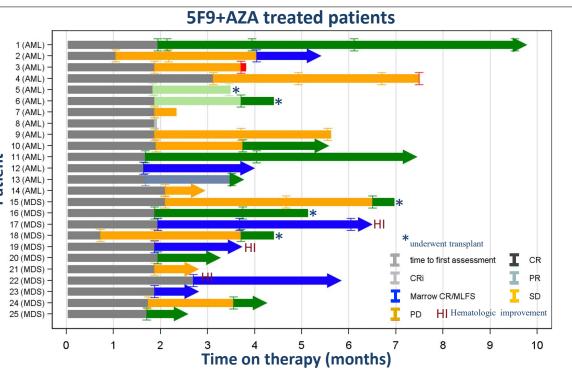
Sallman. Hemasphere. 3:394. June 2019.

Slide credit: **9** Forty Seven ²⁰

5F9005 Study: Safety

All patients dosed with 5F9 are shown

- No MTD reached with 5F9 alone or in combo; 5F9+AZA profile consistent with AZA monotherapy
- 1 DLT observed with 5F9+AZA: G4 hemagglutination: patient with IRR symptoms/extremity tremulousness on first dose, with peripheral smear agglutination, resolved after 24 hours, neurologic work-up was negative
- o No significant cytopenias, infections, or autoimmune AEs occurred (most patients cytopenic at baseline)
- o No study deaths observed within the first 60 days of treatment on 5F9+AZA
- o Treatment discontinuation due to AE occurred in only 1 of 46 (2%) in all patients treated with 5F9



Sallman. Hemasphere. 3:394. June 2019.

5F9005 Study: Efficacy

Best Overall Response	R/R AML/MDS 5F9 mono N=10	1L AML 5F9+AZA N=14	1L MDS 5F9+AZA N=11	
ORR	1 (10%)	9 (64%)	11 (100%)	
CR	0	5 (36%)	6 (55%)	
CRi	0	2 (14%)	-	Patient
PR	0	0	0	Pat
MLFS/ marrow CR	1 (10%)	2 (14%)	4 (36%) 2 with marrow CR+HI	
Hematologic improvement (HI)	-	-	1 (9%)	
SD	7 (70%)	5 (36%)	0	
PD	2 (20%)	0	0	

Response assessments per 2017 AML ELN criteria and 2006 IWG MDS criteria; Patients

with at least one post-treatment response assessment are shown "-" not applicable

• Median time to response is more rapid (1.9 months) than AZA alone

Sallman. Hemasphere. 3:394. June 2019.

Slide credit: **9** Forty Seven ²²

5F9005 Study: Conclusions

- 5F9 is a first-in-class antibody targeting the macrophage checkpoint CD47 and is a promising novel immunotherapy in AML and MDS
- 5F9 is well tolerated alone or in combination with AZA with no MTD achieved
- On target anemia is transient and mitigated by priming/maintenance dosing with hemoglobin improving on therapy
- Encouraging efficacy is observed with 5F9+AZA (ORR 100% in MDS, 64% in AML)
- No responding patient has progressed on therapy, with a median follow up of 3.8 months
- 5F9 + AZA eliminates putative LSCs in responding patients
- Expansion cohorts have been initiated in AML and MDS (NCT03248479)

Venetoclax in MDS

- Preclinical data suggest activity of venetoclax in higher risk MDS
- No significant clinical evidence for safety and efficacy to date
- Two ongoing trials, results of which are eagerly anticipated (? ASH 2019)
 - NCT02966782 Phase 1b study of venetoclax alone or in combination with azacitidine for higher risk *de novo* MDS with excess blasts with prior HMA failure
 - NCT02942290 Phase 1b study of venetoclax plus azacitidine for untreated higher risk *de novo* MDS with excess blasts not candidates for intensive chemotherapy or allo-HCT

Fong et al, ASCO 2019 Abstract #TPS7082. 24

Summary and Conclusions

- MDS is heterogeneous group of BM failure syndromes
- Variable clinical presentation and course
- Choice of therapy is primarily based on prognostic scoring systems, symptoms, age and comorbidities
- Understanding of pathogenesis, prognostication and treatment is evolving
- Novel molecularly targeted therapies are being evaluated
- Luspatercept may receive FDA approval in 2020 for LR MDS with RS