

WHAT LIES BEYOND EGFR, ALK AND ROS1 TARGETED THERAPIES?

Melissa L. Johnson, MD Associate Director, Lung Cancer Research Program Sarah Cannon Research Institute Nashville, TN

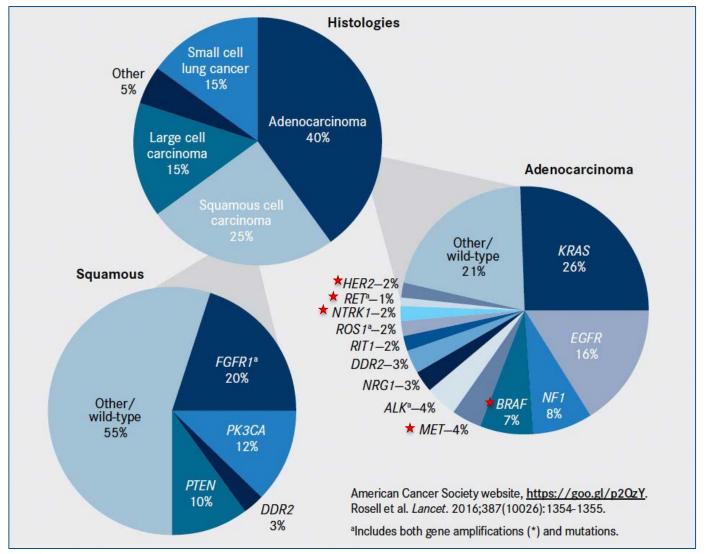
MELISSA JOHNSON, MD

NOVEL CARCINOGENIC PATHWAYS AND NOVEL THERAPIES FOR METASTATIC NSCLC (EXCEPT EGFR, ALK, ROS-1)

RELEVANT FINANCIAL RELATIONSHIPS IN THE PAST TWELVE MONTHS BY PRESENTER OR SPOUSE/PARTNER.

GRANT/RESEARCH SUPPORT: BERGENBIO, LILLY, EMD SERONO,
JANSSEN, MIRATI THERAPEUTICS, GENMAP, PFIZER,
ASTRAZENECA, GENENTECH, STEMCENTRIX, NOVARTIS,
CHECKPOINT THERAPEUTICS, ARRAY BIOPHARMA, REGENERON,
APEXIGEN, ABBVIE, TARVEDA, ADAPTIMMUNE, SYNDAX,
NEOVIA, BIPI, SANOFI, HENGRUI THERAPEUTICS, INC., MERCK,
DAIICHI-SANKYO, LYCERA, G1 THERAPEUTICS, DYNAVAX
CONSULTANT: ASTELLAS, OTSUKA PHARMACEUTICALS (SPOUSE),
GENENTECH, CELGENE, BIPI, SANOFI, MIRATI, LOXO

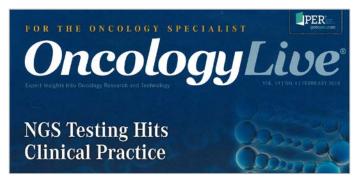
THE SPEAKER WILL DIRECTLY DISCLOSURE THE USE OF PRODUCTS FOR WHICH ARE NOT LABELED (E.G., OFF LABEL USE) OR IF THE PRODUCT IS STILL INVESTIGATIONAL.



OVERVIEW—"NEW" MOLECULAR SUBTYPES IN NSCLC

- Precision medicine focuses attention on broad molecular testing
- Advances in targeted therapies in 2018:
 - RET
 - MET
 - EGFR/HER2 EXON 20 insertion
 - NTRK
 - BRAF
- Interplay between targeted therapies and IO




LUNG CANCER SUBTYPES AND MOLECULAR DRIVERS

COMPREHENSIVE MOLECULAR PROFILING IN THE NEWS

Next-Generation Sequencing Proves Cost-Effective in Metastatic NSCLC

05/17/18

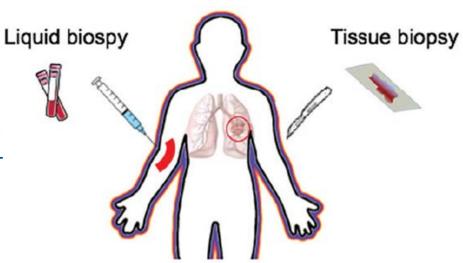
An economic model comparing different types of genetic testing in metastatic non-small cell lung cancer (NSCLC) showed that next-generation sequencing (NGS) is more costeffective than testing for one or a limited number of genes at a given time.

Next-Generation Sequencing for Metastatic NSCLC Associated With Substantial Cost Savings

Angelica Welch Published Online:5:05 PM, Wed May 16, 2018

Forbes

All Cancer Patients Should Have Access To Genomic Testing


Days after Thanksgiving, the FDA approved Foundation Medicine's comprehensive genetic test for evaluating cancer. The idea—and practice—of testing tumors for specific DNA or protein abnormalities is not new. Previously, the agency listed several dozen approved companion diagnostic tests; these earlier tools check one or a few molecules to inform the cancer subtype, prognosis, and likelihood of response to treatments.

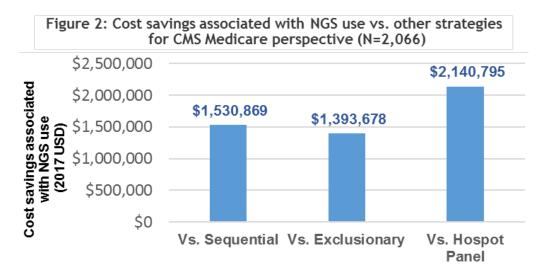
COMPREHENSIVE GENOMIC PROFILING—LIQUID OR TISSUE

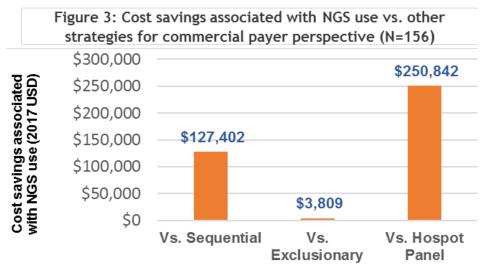
Liquid Biopsy

- Non-invasive blood test
- "Summation" of tumor heterogeneity
- Potential for periodic monitoring for response or resistance
- Speed

Tissue Biopsy

- Gold standard
- Invasive procedure
- Tissue accessibility
- Limited to biopsied tissue only
- Clinical complications
- Cost
- Time

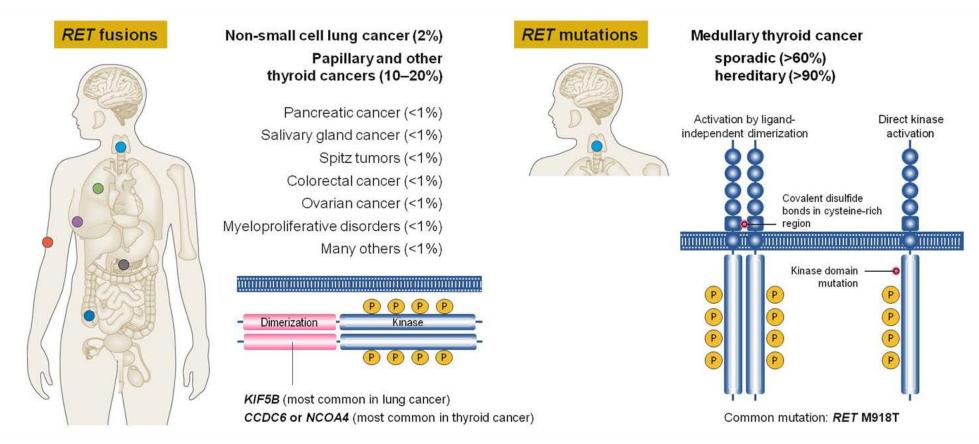

NGS TESTING IN NSCLC SAVES CMS PAYER \$1.4M TO \$2.1M, AND PROPORTIONATE COMMERCIAL PAYER SAVINGS, WITH FASTER TURN AROUND TIME


Total payer test costs:

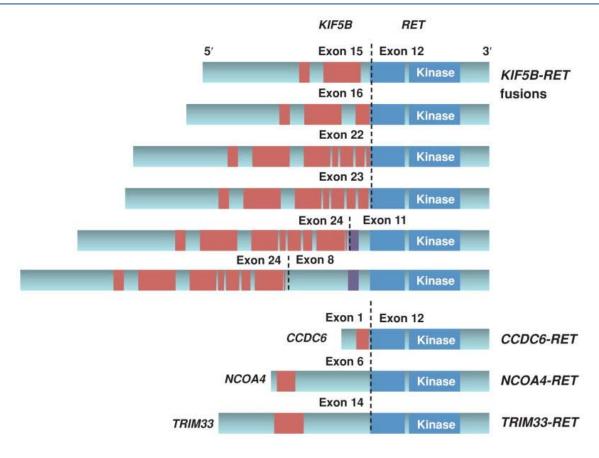
- **CMS** (2,066 patients): \$2,190,499 (NGS); \$3,721,368 (Sequential); \$3,584,177 (Exclusionary); and \$4,331,295 (Hotspot panel).
- Commercial (156 patients): \$620,369 (NGS); \$747,771 (Sequential); \$624,178 (Exclusionary); and \$871,211 (Hotspot panel).

Time to appropriate therapy:

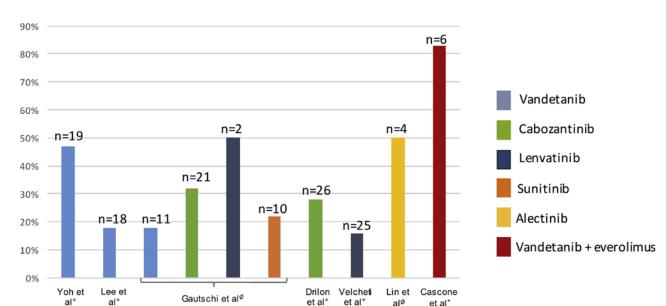
- With NGS and Hotspot panel, patients initiate appropriate therapy 2.8 and 2.7 weeks faster that sequential and exclusionary, respectively.
- Patients with alterations with FDA approved therapies: NGS identifies 2.3% > sequential, and 5.9% > exclusionary
- Patients with alterations without FDA approved therapies: NGS identifies 43.7% > sequential and 32.2% > exclusionary, and 36.1% > Hotspot panel testing.
- If 50% instead of 25% of NSCLC patients are NGS tested payer save \$492,250 (CMS, n=2,066) and \$52,421 (commercial, n=156).



<u>CONCLUSION: Upfront NGS testing in metastatic NSCLC patients yields substantial savings for US payers whilst promptly enabling the identification of the right patient for right treatment. NGS testing ought to be used more widely in metastatic NSCLC patients.</u>

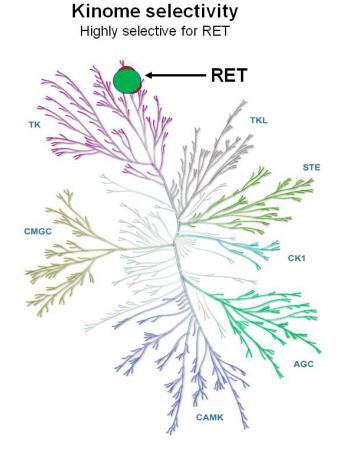

RET [REARRANGED DURING TRANSFECTION] ACTIVATED BY TWO MAJOR MECHANISMS

- In NSCLC, RET fusions are present in 1% to 2% of cases.
- Increases substantially in never-smokers with lung adenocarcinomas lacking other known driver oncogenes.

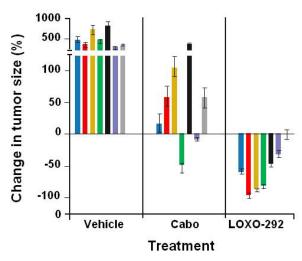

RET FUSIONS

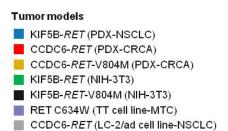
- RET fusions reported in the literature are depicted including major recurrent KIF5B—RET fusions, CCDC6—RET, NCOA4—RET and the novel TRIM33—RET.
- All fusions encode an intact RET kinase domain as shown in blue. Regions encoding coiled-coil domains that mediate dimerization are shown in red (the N-terminal NCOA4 coiled-coil domain is not well defined).
- Part of the RET transmembrane domain encoded by RET exon 11 is shown in purple.

RET INHIBITION IN NSCLC

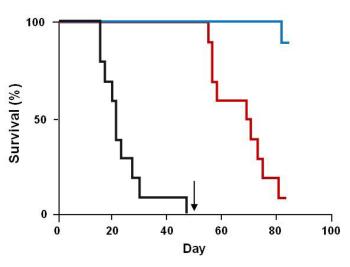


Type of RET Inhibitor	Study	No. of Patients	ORR	mPFS (mo)	mOS (mo)
Vandetanib	Yoh et al. (2016) LURET	19	47%	4.7	11.1
	Lee et al. (2017)	18	18%	4.5	11.6
	Gautschi et al. (2017) GLORY	11	18%	2.9	10.2
	Platt et al. (2015)	3	0%	NA	NA
Cabozantinib	Drilon et al. (2016)	26	28%	5.5	9.9
	Gautschi et al. (2017) GLORY	21	32%	3.6	4.9
Lenvatinib	Velcheti et al. (2016)	25	16%	7.3	NA
	Gautschi et al. (2017) GLORY	2	50%	NA	NA
Sunitinib	Gautschi et al. (2017) GLORY	10	22%	2.2	6.8
Alectinib	Lin et al. (2016)	4	50%	NA	NA
	Gautschi et al. (2017) GLORY	2	0%	NA	NA
Sorafenib	Gautschi et al. (2017) GLORY	2	0%	NA	NA
	Horiike et al. (2016)	3	0%	NA	NA
Ponatinib	Gautschi et al. (2017) GLORY	2	0%	NA	NA
Vandetanib + everolimus	Cascone et al. (2016)	6	83%	NA	NA




RET: LOXO-292

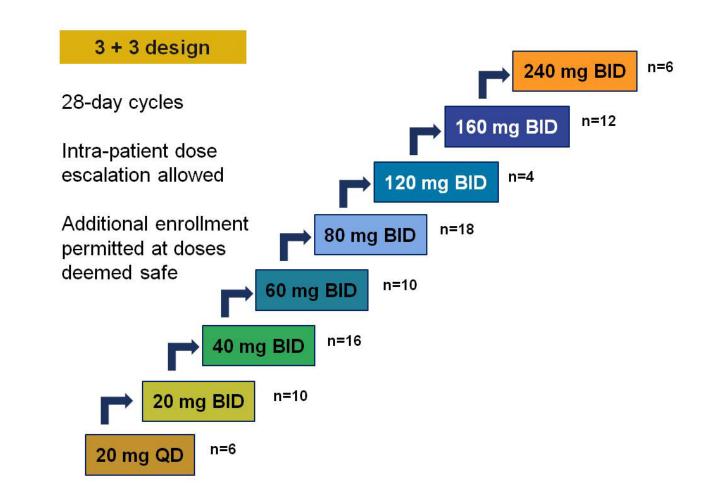
LOXO-292 is a potent and selective RET inhibitor





Orthotopic brain model

CCDC6-RET orthotopic brain PDX


LIBRETTO-001- PHASE 1 DOSE ESCALATION WITH LOXO-292

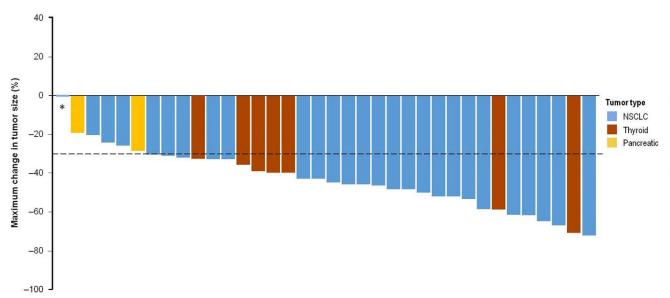
Eligibility

- Age ≥12 years
- ECOG 0–2
- Patients with locally advanced or metastatic solid tumors refractory or intolerant to standard therapy
- Any number of prior therapies
- RET alteration not required initially ('triggered' by adequate PK)

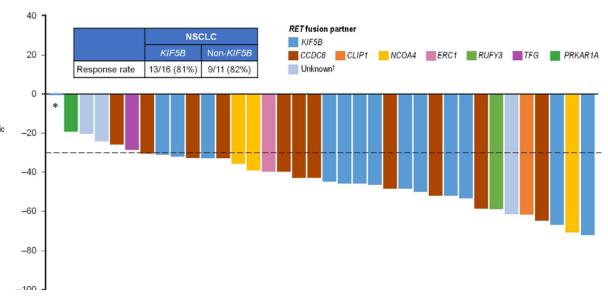
Key endpoints

- Determine MTD or recommended dose
- Safety/tolerability
- PK
- Overall response rate (RECIST v1.1)
- · Duration of response

CLINICAL ACTIVITY OF LOXO-292 IN RET-ALTERED CANCERS

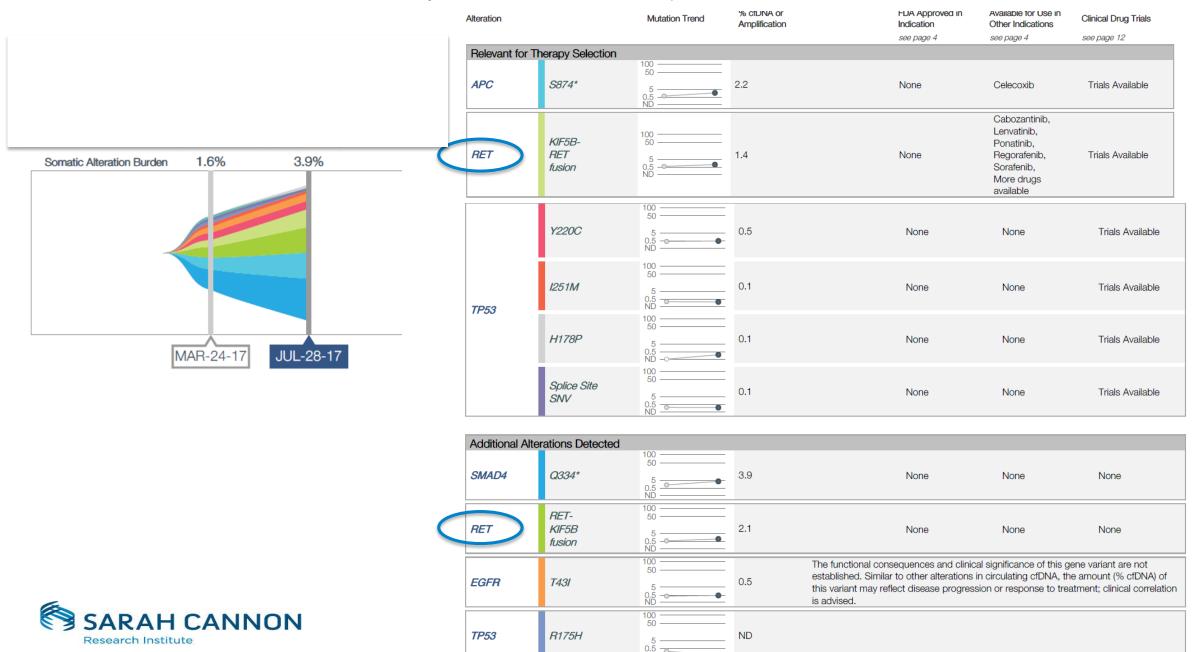

	RET fusion-positive cancers			<i>RET</i> -mutant	No known	
	All	NSCLC	Other ¹	мтс	activating <i>RET</i> alteration	
Enrolled	49	38	11	29	4	
Eligible for response evaluation ²	39	30	9	22	3	
Overall Response Rate (95% CI) ³	77% (61% – 89%)	77% (58% – 90%)	78% (40% – 97%)	45% (24% – 68%)	0% (0% – 71%)	
Confirmed Overall Response Rate ^{3,4}	74%	74%	71%	33%	0%	
CR	-	_		1	-	
uCR⁵	0 0	-	1 - 1	1	x -	
PR	25	20	5	5	_	
uPR⁵	5	3	2	3	_	
SD	6	4	2	9	2	
PD	=		100 - 100 100 - 100	2	1	
Not evaluable ⁶	3	3	_	1	_	

^{1.} Patients eligible for response evaluation include thyroid cancer (n=7), pancreatic cancer (n=2). 2. Excludes patients recently enrolled that remain on treatment, but have not had a first post-baseline response assessment. 3. Response status per RECIST 1.1. Overall response rate = CR+uCR+PR+uPR. Overall response rate, Confirmed overall response rate: all RET fusion-positive (30/39, 25/34), RET fusion-positive NSCLC (23/30, 20/27), RET fusion-positive other (7/9, 5/7), RET-mutant MTC (10/22, 6/18). 4. Excludes patients with unconfirmed CR/PR pending confirmation at time of data cut-off. 5. Unconfirmed responses in patients that remain on treatment awaiting a confirmatory response assessment. 6. Patients that discontinued treatment prior to a first post-baseline response assessment.

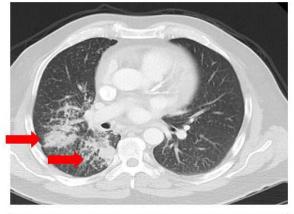


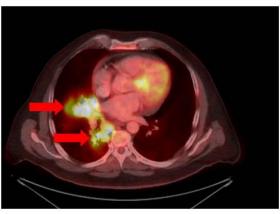
EFFICACY OF LOXO-292

RET FUSION-POSITIVE CANCERS



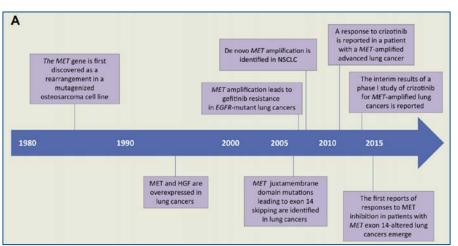
ACROSS RET FUSION PARTERS

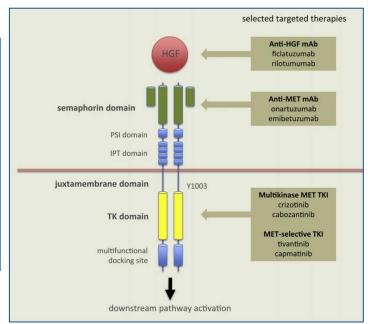


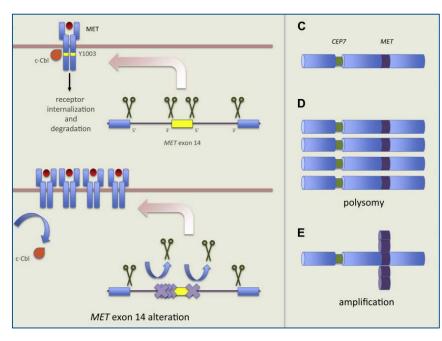

73 YO M NEVER-SMOKER ATTORNEY S/P CHEMORADIATION, PEMBROLIZUMAB AND PRIOR RET INHIBITOR

KIF5B-RET FUSION-POSITIVE NSCLC RESPONSE TO LOXO-292

Baseline

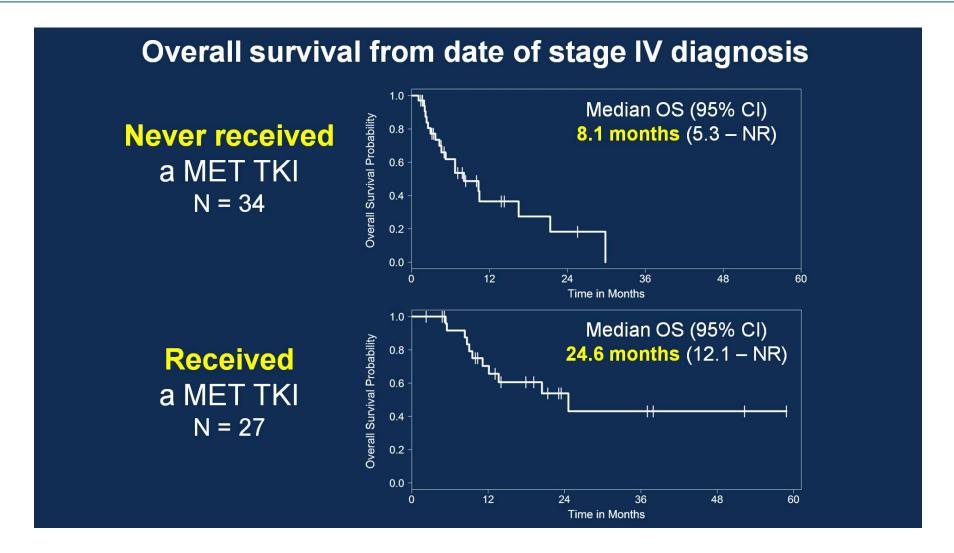

Week 4


- Initiated LOXO-292 at 80 mg BID, currently 160 mg BID (escalated at C4D1)
- Rapid improvement in shortness of breath and cough within a few days
- RECIST PR observed at his first response assessment at C2D1, confirmed at C3D1 (maximum tumor reduction-67%)
- Remains in response and on study in month 4



MET: MESENCHYMAL EPITHELIAL TRANSITION FACTOR RECEPTOR

MET Alterations: MET exon 14 skipping mutations and MET amplification


Impact of MET inhibitors on survival among patients with *MET* exon 14 mutant non-small cell lung cancer

Mark M. Awad,¹ Giulia C. Leonardi,¹ Sasha Kravets,¹ Suzanne E. Dahlberg,¹ Alexander Drilon,² Sinead A. Noonan,³ D. Ross Camidge,³ Sai-Hong Ignatius Ou,⁴ Daniel B. Costa,⁵ Shirish M. Gadgeel,⁶ Conor E. Steuer,⁷ Patrick M. Forde,⁸ Viola W. Zhu,⁹ Yoko Fukuda,¹⁰ Jeffrey W. Clark,¹¹ Pasi A. Jänne,¹ Tony Mok,¹² Lynette M. Sholl,¹³ Rebecca S. Heist¹¹

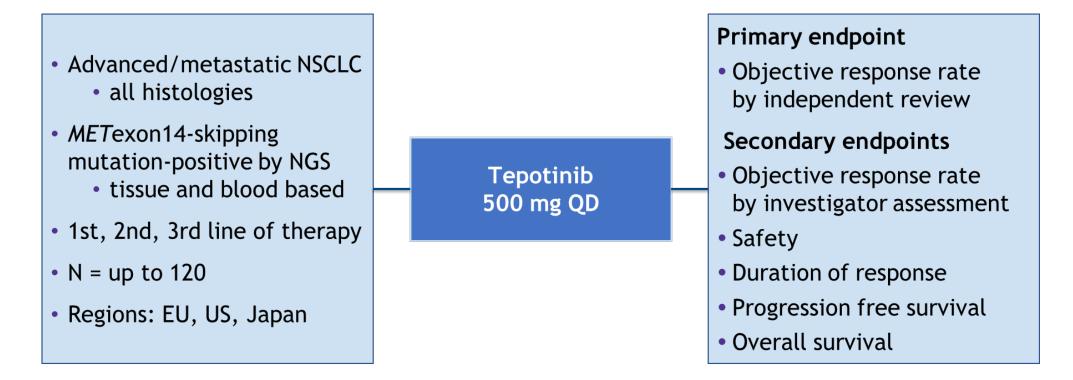
¹Dana-Farber Cancer Institute, Boston, MA; ²Memorial Sloan-Kettering Cancer Center, New York, NY; ³University of Colorado, Aurora, CO; ⁴University of California Irvine School of Medicine, Orange, CA; ⁵Beth Israel Deaconess Medical Center, Boston, MA; ⁶Karmanos Cancer Institute, Detroit, MI; ⁷Winship Cancer Institute, Atlanta, GA; ⁸Johns Hopkins Kimmel Cancer Center, Baltimore, MD; ⁹University of California San Francisco, Fresno, CA; ¹⁰Frisbie Memorial Hospital, Rochester, NH; ¹¹Massachusetts General Hospital Cancer Center, Boston, MA; ¹²Chinese University of Hong Kong, Hong Kong, China; ¹³Brigham and Women's Hospital, Boston, MA.

Clinical Science Symposium: Old Targets, New Drugs: HER2 and MET, June 4, 2017, 8:36 AM, Abstract #8511

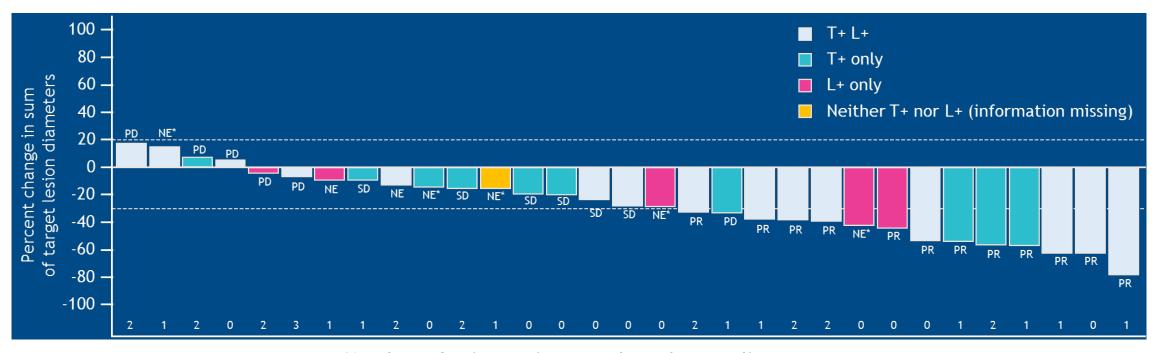
Tepotinib in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) Harboring MET Exon 14-Skipping Mutations: Phase II Trial

E. Felip¹, L. Horn², J.D. Patel³, H. Sakai⁴, J. Scheele⁵, R. Bruns⁵, P.K. Paik⁶, on behalf of the VISION Study Group

¹Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain: ²Thoracic Oncology Program, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ²Section of Pulmonary Medicine, University of Chicago Medical Center, Chicago, L., USA; "Department of Respiratory Medicine, Saitama Cancer Center, Saitama, Japan; Merck KGaA, Darmstadt, Germany: Memorial Sloan Kettering Cancer Center, New York, USA


All the case the secure to at the section

PRESENTED BY: Dr E. Felip


VISION: A PHASE II, SINGLE-ARM TRIAL TO INVESTIGATE TEPOTINIB IN ADVANCED NSCLC WITH *MET* EXON14-SKIPPING ALTERATIONS

Single-arm, open-label, Phase II trial conducted at ~90 sites in Belgium, France, Germany, Italy,
 Japan, Poland, Spain, and the USA

EFFICACY: CHANGE IN SUM OF TARGET LESION DIAMETER: (INDEPENDENT REVIEW)

Number of prior anticancer drug therapy lines

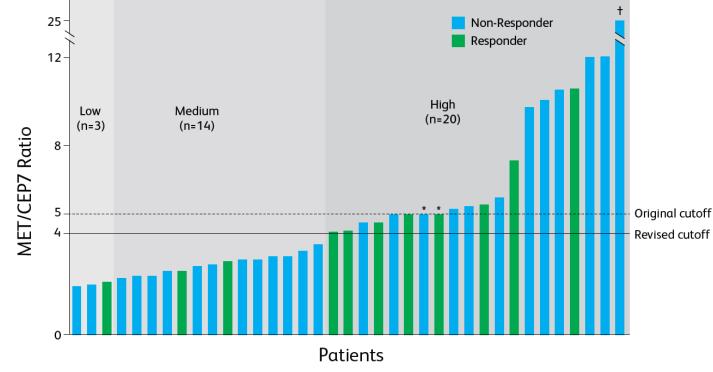
n=31. Seven patients were excluded due to baseline/on-treatment measurement not being available.

BOR displayed at the end of the bar.

NE*, BOR non-evaluable where ongoing patient has not had 2 post-baseline tumor assessments.

BOR, best overall response; CR, complete response; L, liquid biopsy; NE, non-evaluable; PD, progressive disease; PR, partial response; SD, stable disease; T, tumor biopsy.

MET AMPLIFICATIONS: CRIZOTINIB IN PATIENTS WITH MET-AMPLIFIED NSCLC

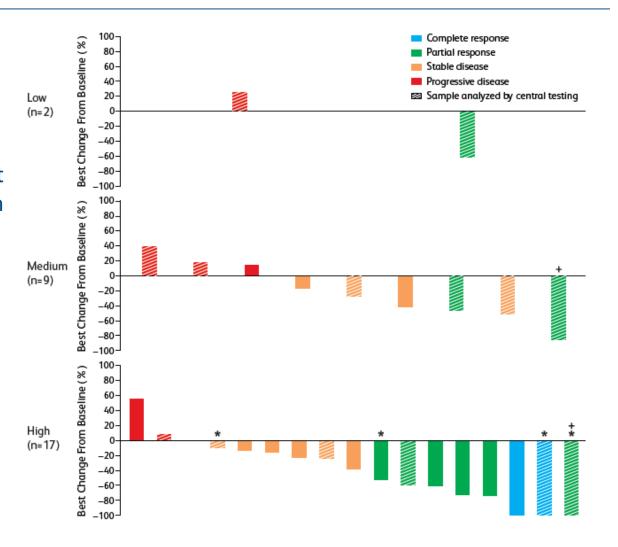


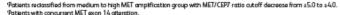
Crizotinib in Patients With MET-Amplified Non-Small Cell Lung Cancer: Updated Safety and Efficacy Findings From a Phase 1 Trial

D. Ross Camidge, Gregory A. Otterson, Jeffrey W. Clark, Sai-Hong Ignatius Ou, Jared Weiss, Steven Ades, Umberto Conte, Yiyun Tang, Sherry Wang, Danielle Murphy, Keith D. Wilner, Liza Cosca Villaruz

University of Colorado, Auroro, CO, USA; ²The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA; ²Massachusetts General Hospital Cancer Center, Boston, MA, USA; ⁴School of Medicine, University of North Carolino-Chapel Hill, Onopel Hill, NC, USA; ⁵The University of Vermont Medical Center, Burlington, VT, USA; ⁷Pfizer Oncology, New York, NY, USA; ⁴Pfizer Oncology, La Jollo, CA, USA; ⁵Univision of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

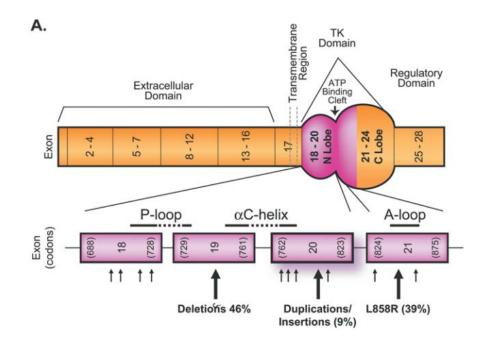
- MET amplification has been reported in a subset of patients with non-small cell lung cancer (NSCLC), with frequency depending on the definition used.
- Crizotinib (XALKORIR), an ALK/ROS1/MET inhibitor approved in ALKor ROS1-positive NSCLC, has also shown clinical activity in cases of MET-amplified NSCLC.
- Preliminary analysis of a cohort of patients with MET-amplified NSCLC (N=14) enrolled in a phase 1 study of crizotinib (A8081001) was presented in 2014 using MET/CEP7 ratio cutoffs of \geq 1.8– \leq 2.2, >2.2–<5.0 and \geq 5.0 to define low, medium and high levels of MET amplification, respectively.
 - In March 2017, the MET/CEP7 ratio cutoffs for the medium and high amplification levels were revised to >2.2—<4.0 and ≥4.0, respectively, in order to enrich the high MET group with potential responders

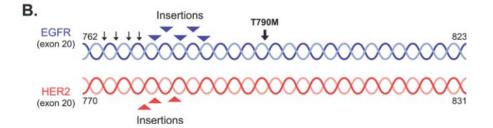



*For 2 patients with a MET/CEP7 ratio reported as ">5.0," 5.0 was imputed as the ratio value. For 1 patient with a MET/CEP7 ratio reported as ">25:1," 25.0 was imputed as the ratio value.

TUMOR RESPONSE IN THE RESPONSE-EVALUABLE POPULATION BY MET AMPLIFICATION **GROUP**

- Waterfall plot displays the best percent changes in target lesion size from baseline by derived tumor assessment in the response-evaluable population
- Tumor shrinkage was seen in all 3 MET amplification groups, and most patients in the high group had some degree of tumor shrinkage





EGFR/HER2 EXON 20 INSERTIONS

 The epidermal growth factor receptor (EGFR) family is subclass I of the receptor TK superfamily, and consists of four members, EGFR (ErbB1), HER2 (ErbB2), EGFR3 (ErbB3), and EGFR4 (ErbB4).

First Report of Safety, Pharmacokinetics, and Preliminary Antitumor Activity of the Oral EGFR/HER2 Exon 20 Inhibitor TAK-788 (AP32788) in Non–Small Cell Lung Cancer

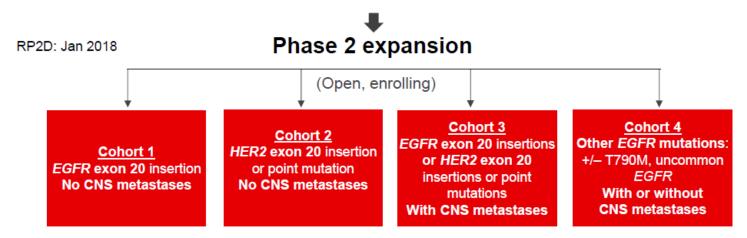
Robert C Doebele,¹ Gregory J Riely,² Alexander Spira,³ Leora Horn,⁴ Zofia Piotrowska,⁵ Daniel B Costa,⁶ Joel W Neal,⁷ Steven Zhang,⁸ William Reichmann,⁸ David Kerstein,⁸ Shuanglian (Lian) Li,⁸ Pasi A Jänne⁹

¹University of Colorado Cancer Center, Aurora, CO; ²Memorial Sloan Kettering Cancer Center, New York, NY; ³Virginia Cancer Specialists, Fairfax, VA; ⁴Vanderbilt-Ingram Cancer Center, Nashville, TN; ⁵Massachusetts General Hospital, Boston, MA; ⁶Beth Israel Deaconess Medical Center, Boston, MA; ⁷Stanford Cancer Institute, Stanford University, Stanford, CA; ⁸Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited; ⁹Dana-Farber Cancer Institute, Boston, MA

Presented at the 54th Annual Meeting of the American Society of Clinical Oncology June 1–5, 2018; Chicago, Illinois Poster 9015

SCHEMA OF FIRST IN HUMAN TRIAL OF ORAL TAK-788

A phase 1/2, open-label, multicenter trial (NCT02716116)


FPI: Jun 2016 Phase 1 escalation

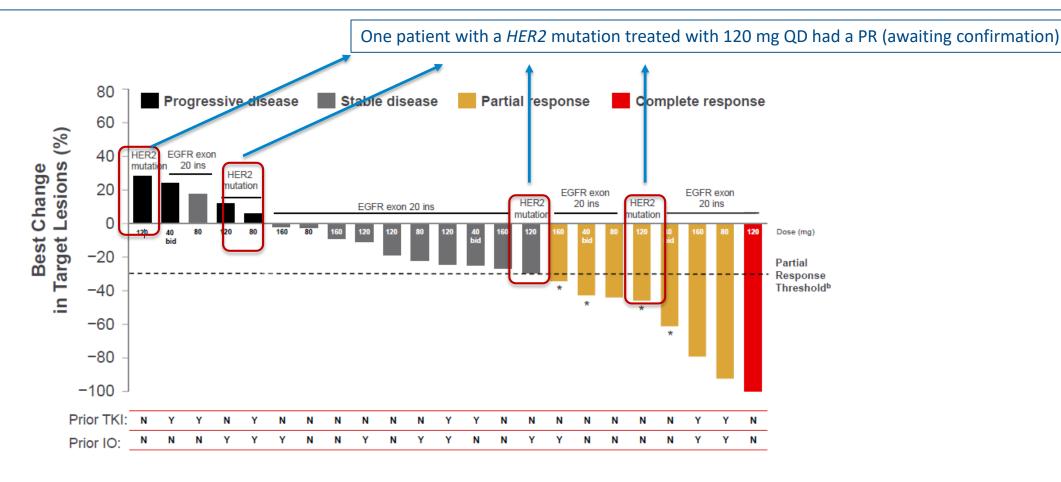
Dose escalation: 3+3 design
Locally advanced or metastatic NSCLC

(Preferentially enrolled patients with EGFR exon 20/HER2 mutations)

Primary endpoint: RP2D

Secondary endpoints: MTD, safety, tolerability, DLTs, PK parameters + active metabolites

Each cohort (n=20)


Primary endpoint: Investigator-assessed ORR (by RECIST v1.1) **Secondary endpoints**: safety, tolerability, PK, IRC-assessed ORR, best overall response, best target lesion response, duration of response, disease control rate, PFS, OS

FPI, first patient in

A Trial of AP32788 in Non-Small Cell Lung Cancer. https://clinicaltrials.gov/ct2/show/NCT02716116. Accessed Feb 16, 2018

ANTITUMOR ACTIVITY OF TAK-788

alncludes 40 mg bid, 80 mg qd, 60 mg bid, 120 mg qd, and 160 mg qd dose groups

₀Per RECIST v1.1

* Response awaiting confirmation

The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers

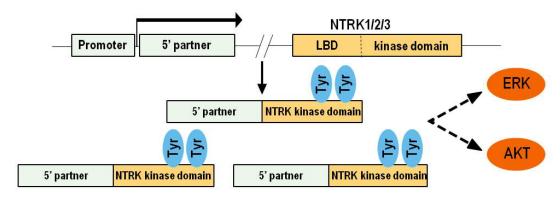
Hyman DM,¹ Laetsch TW,² Kummar S,³ DuBois SG,⁴ Farago AF,⁵ Pappo AS,⁶ Demetri GD,⁷ El-Deiry WS,⁸ Lassen UN, Dowlati A, Dowlati A, Brose MS, Boni V, Lassen UN, Nagasubramanian R, Cruickshank S, Lassen UN, Dowlati A, Dow Cox MC, 15 Ku NC, 15 Hawkins DS, 16 Hong DS, 17 Drilon AE1

¹Memorial Sloan Ketterina Cancer Center, New York, NY: ²University of Texas Southwestern, Dallas, TX: ³Stanford University School of Medicine, Palo Alto, CA: ⁴Dana-Farber Cancer Institute/Boston Children's Cancer and Blood Disorders Center, Boston, MA; ⁵Massachusetts General Hospital, Boston, MA; ⁶St. Jude Children's Research Hospital, Memphis, TN; ⁷Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA; ⁸Fox Chase Cancer Center, Philadelphia, PA; 9Rigshospitalet, Copenhagen, Denmark; 10 UH Cleveland Medical Center, Cleveland, OH; 11 Department of Otorhinolaryngology: Head and Neck Surgery, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA; 12START Madrid CIOCC, Hospital HM Universitario Sanchinarro, Madrid, Spain; ¹³Cincinnati Children's Hospital Medical Center, Cincinnati, OH; ¹⁴Nemour's Children's Hospital, Orlando, FL; ¹⁵Loxo Oncology, Inc., San Francisco, CA; ¹⁶Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA; ¹⁷The University of Texas MD Anderson Cancer Center, Houston, TX

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17

NTRK: NEUROTROPHIC RECEPTOR TYROSINE KINASE

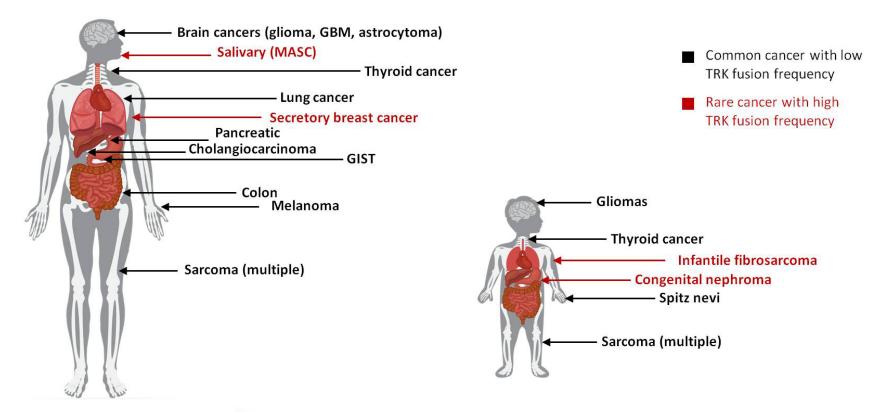
Neurotrophin family of receptors


TRKA (NTRK1) Pain, thermoregulation

TRKB (NTRK2) — Movement, memory, mood, appetite, body weight

TRKC (NTRK3) --> Proprioception

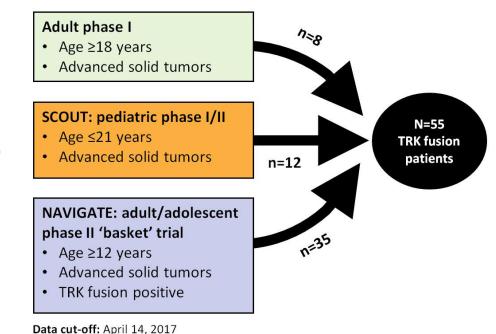
TRK fusions


- Ligand binding domain (LBD) replaced by 5' fusion partner
- Drives overexpression and ligand-independent activation

TRK uncommonly expressed in normal tissues or cancer Fusion drives abnormally high expression and activation of TRK kinase domain

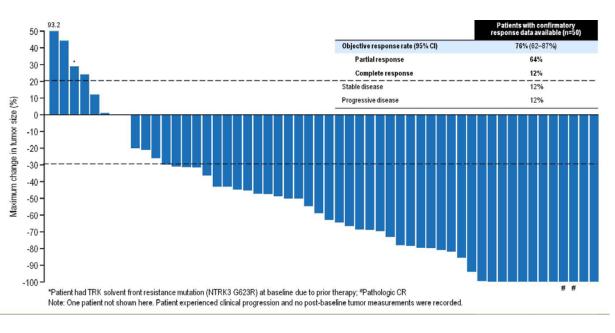
TRK FUSIONS IN CANCER

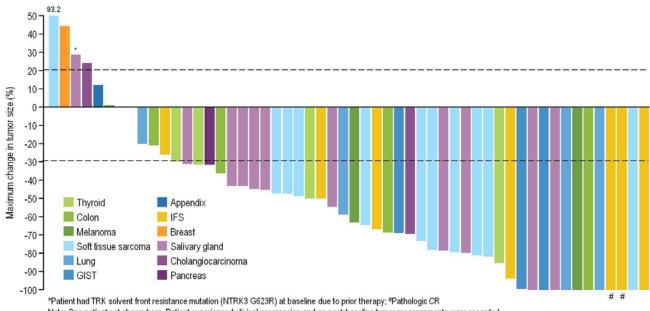
Estimated 1,500–5,000 patients harbor TRK fusion-positive cancers in the United States annually


THE EFFICACY OF LAROTRECTINIB (LOXO-101), A SELECTIVE TROPOMYOSIN RECEPTOR KINASE (TRK) INHIBITOR, IN ADULT AND PEDIATRIC TRK FUSION CANCERS

Larotrectinib

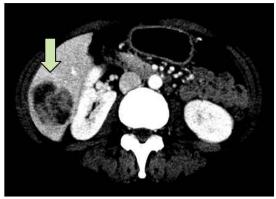
- First and only selective pan-TRK inhibitor in clinical development
- Potent against TRKA, TRKB, TRKC: 5-11 nM IC₅₀


Development Timeline:

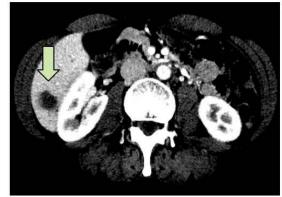

- March 2015: 1st TRK-fusion patient treated
- July 2016: Breakthrough therapy designation
- February 2017: Pivotal enrollment complete

- TRK fusion status determined by local CLIA (or similarly accredited) laboratories
- · Primary endpoint
 - Best objective response rate (ORR)
 - RECIST v1.1 per investigator assessment
- Secondary endpoints
- Duration of response (DOR)
- Progression-free survival (PFS)
- Safety
- Dosing
 - Single-agent larotrectinib, administered predominantly at 100 mg BID continuously
 - Treatment beyond progression permitted if patient continuing to benefit

EFFICACY OF LAROTRECTINIB IN NTRK1/2/3 FUSION CANCERS



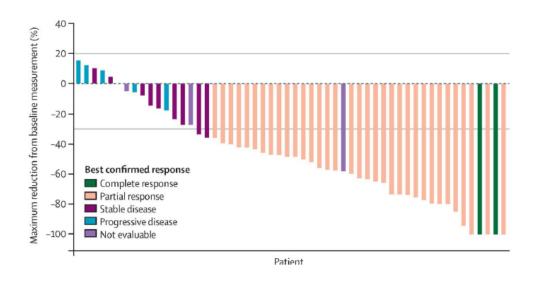
Note: One patient not shown here. Patient experienced clinical progression and no post-baseline tumor measurements were recorded.


SQSTM1-NTRK1 LUNG CANCER PATIENT

Baseline

Cycle 4

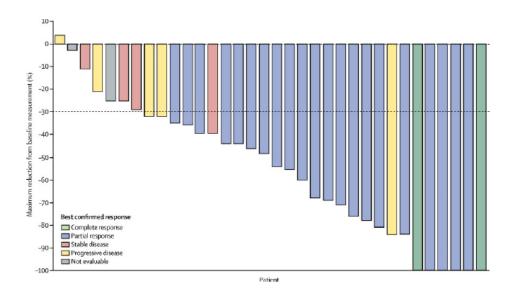
45F NSCLC & paraneoplastic hypertrophic osteoarthropathy


Prior therapy: platinum/pemetrexed

Larotrectinib ongoing in month 8, resolution of paraneoplastic symptoms

BRAF V600E

Dabrafenib/trametinib in previously treated BRAF V600E patients



ORR 63% DCR 75.4% mPFS 8.6 mo (independent assessment, n=57)

Planchard et al. Lancet Oncol. 2016 Jul;17(7):984-993

Dabrafenib/trametinib in previously untreated BRAF V600E patients

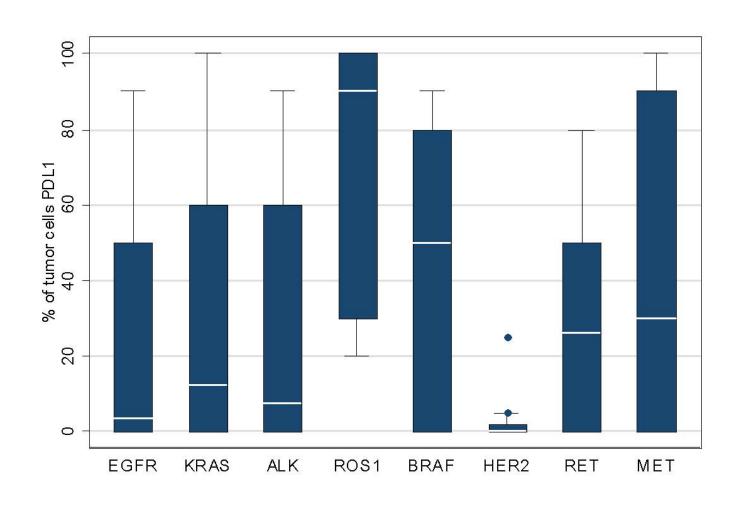
ORR 64%
DCR 72%
mPFS 14.6 mo
(independent review, n=36)

Planchard et al. Lancet Oncol. 2017 Oct;18(10):1307-1316.

Efficacy of immune-checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC) patients harboring activating molecular alterations (ImmunoTarget).

Julien MAZIERES, Alexander DRILON, Laurent MHANNA, Julie MILIA, Amelie LUSQUE, Alexis CORTOT, Laura MEZQUITA, Alesha THAI, Sébastien COURAUD, Remi VEILLON, Celine MASCAUX, Robert SCHOUTEN, Joel NEAL, Terry NG, Martin FRUEH, Nir PELED, Valérie GOUNANT, Sanjay POPAT, Viola ZHU, Oliver GAUTSCHI, for the IMMUNOTARGET group.

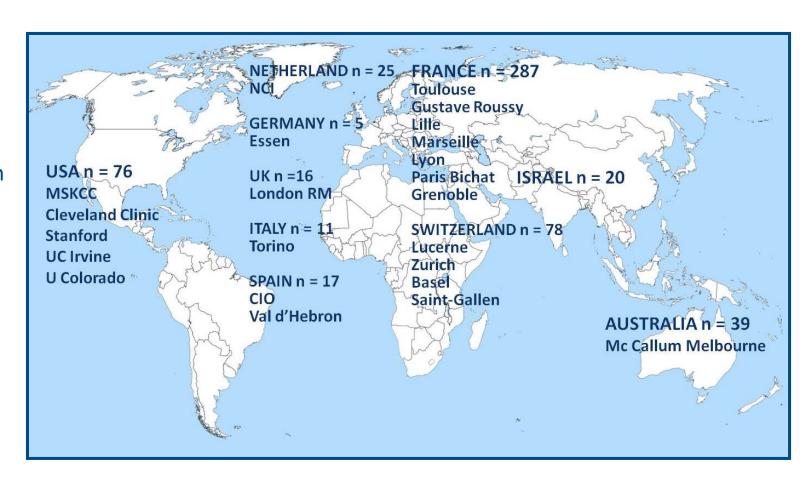
Academic Funding: Toulouse Universitary Hospital and Lucerne Cantonal Hospital


#ASCO18
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Julien MAZIERES

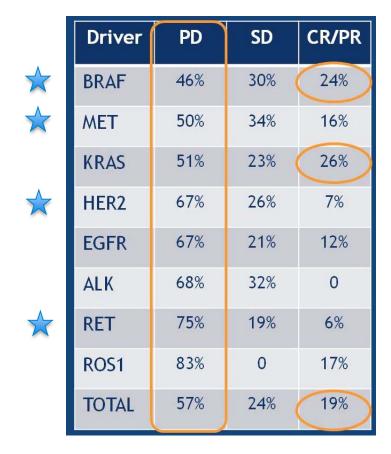
IMMUNOTARGET COHORT: PDL1 STATUS

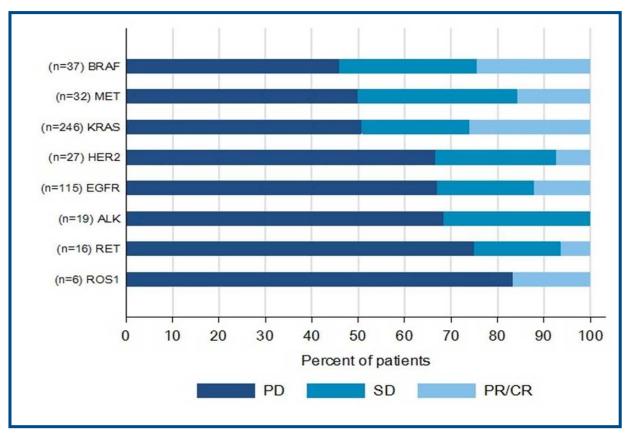
- PDL1 expression analyzed by IHC in each center.
- Median of PDL1 expression for each driver (median and standard deviation).



IMMUNOTARGET COHORT

Retrospective multicenter cohort


Inclusion:


- Patients with known activating mutation
- Treated with ICI monotherapy (any line)
- **Primary objective**: PFS under ICI
- **Secondary objectives**: RR, OS, PFS ratio
- **Exploratory objective**: PDL1 expression

IMMUNOTARGET COHORT

CONCLUSIONS

- NGS Testing (Plasma or Tissue) increasingly recognized as important for assigning treatment options
- More therapies targeting driver oncogenes are rapidly approaching FDA approval
- Sequencing these agents with immunotherapy may be effective depending on the patient and driver oncogene but should likely be considered after conventional therapies

