Advances in the Treatment of Triple-Negative Metastatic Breast Cancer

Mohammad Jahanzeb, MD, FACP

Chief Medical Oncology Scientific and Strategic Advisor, 21st Century Oncology Founder and Managing Partner, Florida Precision Oncology R&C, LLC Boca Raton | Aventura | Miramar

Who gets triple negative breast cancer?

- 15% of patients in the US
- Young women
- African American women
- BRCA1 positive

(Any woman can get any type of breast cancer)

Triple-negative phenotype and molecular sybtypes.

Printed by mohammad jahanzeb on 7/11/2019 10:55:38 AM. For personal use only. Not approved for distribution. Copyright @ 2019 National Comprehensive Cancer Network, Inc., All Rights Reserved.

NCCN Guidelines Version 2.2019 Invasive Breast Cancer

NCCN Guidelines Index Table of Contents Discussion

CHEMOTHERAPY REGIMENS FOR RECURRENT OR STAGE IV (M1) DISEASE^{a,b}

	HER2-Negative	HER2-Positive ^g	
Preferred regimens • Anthracyclines • Doxorubicin • Liposomal doxorubicin • Liposomal doxorubicin • Taxanes • Paclitaxel • Anti-metabolites • Capecitabine • Gemcitabine • Microtubule inhibitors • Vinorelbine • Eribulin		Preferred regimens • Pertuzumab + trastuzumab + docetaxel (category 1) ^h • Pertuzumab + trastuzumab + paclitaxel ^g Other recommended regimens: • Ado-trastuzumab emtansine (T-DM1) • Trastuzumab + paclitaxel ^h ± carboplatin • Trastuzumab + docetaxel ^h • Trastuzumab + vinorelbine ^h • Trastuzumab + capecitabine • Lapatinib + capecitabine • Trastuzumab + lapatinib (without cytotoxic therapy)	
Other recommended regime • Cyclophosphamide • Docetaxel • Albumin-bound paclitaxe	ens ^c • Epirubicin • Ixabepilone	^f Randomized clinical trials in metastatic breast cancer document that the addition of bevacizumab to some first- or second-line chemotherapy agents modestly improves time to progression and response rates but does not improve overall survival. The time-to- progression impact may vary among cytotoxic agents and appears	
 Useful in certain circumsta AC (doxorubicin/cyclophe EC (epirubicin/cyclophos CMF (cyclophosphamide/ methotrexate/fluorouracil 	nces ^c osphamide) • Docetaxel/capecitabine phamide) • GT (gemcitabine/paclitaxel) • Gemcitabine/carboplatin • Paclitaxel/bevacizumab ^f	 ⁹ Trastuzumab and hyaluronidase-oysk injection for subcutaneous use may be substituted for trastuzumab. It has different dosage and administration instructions compared to intravenous trastuzumab. D not substitute trastuzumab and hyaluronidase-oysk for or with ado- trastuzumab emtansine. 	

U.S. Department of Health and Human Services					
FDA U.S. FOOD & DRUG			A to Z Index Follow FDA En Español		pañol
	N		Search FDA		
E Home Food Drugs M	Medical Devices Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetics	Tobacco Products
Drugs					
Home > Drugs > Drug Approvals and Databases > Approved Drugs					
Approved Drugs FDA approves atezolizumab for PD-L1 positive					
Hematology/Oncology (Cancer) Approvals & Safety Notifications unresectable locally advanced or metastatic triple-negative breast cancer			atic		

f SHARE Y TWEET IN LINKEDIN 1 PIN IT SEMAIL

Drug Information Soundcast in

Clinical Oncology (D.I.S.C.O.)

Y

Approved Drug Products

Equivalence Evaluations

with Therapeutic

(Orange Book)

On March 8, 2019, the Food and Drug Administration granted accelerated approval to atezolizumab (TECENTRIQ, Genentech Inc.) in combination with paclitaxel protein-bound for adult patients with unresectable locally advanced or metastatic triple-negative breast cancer (TNBC) whose tumors express PD-L1 (PD-L1 stained tumor-infiltrating immune cells [IC] of any intensity covering \geq 1% of the tumor area), as determined by an FDA-approved test.

🔒 PRINT

Atezolizumab and chemotherapy

Atezolizumab: Restores anti-cancer immunity,¹ with activity further enhanced by chemotherapy-induced antigen exposure

 Atezolizumab (anti–PD-L1) monotherapy is approved in the United States, Europe and elsewhere for certain types of metastatic urothelial carcinoma and lung cancer⁴

MUNICH ES

- In a Phase I study, atezolizumab monotherapy was active in multiple cancers, including TNBC,^{5,6} with greater activity in patients whose tumours had PD-L1 IC ≥ 1%⁶
- The addition of chemotherapy can enhance atezolizumab's anti-tumour activity^{7,8}
 - In a Phase Ib study in mTNBC, concurrent administration of *nab*-paclitaxel did not inhibit atezolizumab-mediated immunodynamic effects⁸

DC, dendritic cell.

1. Chen Immunity 2013. 2. Zitvogel Immunity 2013. 3. Emens CIR 2015. 4. TECENTRIQ US PI/SmPC 2018. 5. Herbst Nature 2014. 6. Emens JAMA Oncol 2018. 7. Jotte ASCO 2018. 8. Pohlmann AACR 2018. Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR http://bit.ly/2DMhayg

- Co-primary endpoints were PFS and OS in the ITT and PD-L1+ populations^d
 - Key secondary efficacy endpoints (ORR and DOR) and safety were also evaluated

IC, tumour-infiltrating immune cell; TFI, treatment-free interval. ^a ClinicalTrials.gov: NCT02425891. ^b Locally evaluated per ASCO–College of American Pathologists (CAP) guidelines. ^c Centrally evaluated per VENTANA SP142 IHC assay (double blinded for PD-L1 status). ^d Radiological endpoints were investigator assessed (per RECIST v1.1).

Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

ongress

IMpassion130 baseline characteristics

Characteristic	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)	
Median age (range), y	55 (20-82)	56 (26-86)	
Female, n (%)	448 (99%)	450 (100%)	
Race, n (%)ª			
White	308 (68%)	301 (67%)	
Asian	85 (19%)	76 (17%)	
Black/African American	26 (6%)	33 (7%)	
Other/multiple	20 (4%)	26 (6%)	
ECOG PS, n (%) ^{b,c}			
0	256 (57%)	270 (60%)	
1	193 (43%)	179 (40%)	
Prior (neo)adjuvant treatment, n (%)	284 (63%)	286 (63%)	
Prior taxane	231 (51%)	230 (51%)	
Prior anthracycline	243 (54%)	242 (54%)	

Characteristic	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)		
Metastatic disease, n (%)	404 (90%)	408 (91%)		
No. of sites, n (%) ^d				
0-3	332 (74%)	341 (76%)		
≥ 4	118 (26%)	108 (24%)		
Site of metastatic disease, n (%)				
Lung	226 (50%)	242 (54%)		
Bone	145 (32%)	141 (31%)		
Liver	126 (28%)	118 (26%)		
Brain	30 (7%)	31 (7%)		
Lymph node only ^d	33 (7%)	23 (5%)		
PD-L1+ (IC), n (%)	185 (41%)	184 (41%)		

Data cutoff: 17 April 2018. ^a Race was unknown in 12 patients in the Atezo + nab-P arm and 15 in the Plac + nab-P arm. ^b Of n = 450 in each arm. ^c ECOG PS before start of treatment was 2 in 1 patient per arm. ^d Of n = 450 in the Atezo + nab-P arm and n = 449 in the Plac + nab-P arm arm.

Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

IMPASSION130: PDL1+ COHORT

IMpassion 130: Overall Survival Update

- Second interim OS analysis with median followup 18 mos with 60% of OS events
- Median OS ITT: 21 mos nP/atezo vs 18.7 mos nP/placebo
 HR 0.86 (0.72, 1.02) p= 0.078
- PD-L1+ Median OS: 25 mos nP/atezo vs 18 mos nP/placebo
 HR 0.71 (0.54, 0.93) 2-year OS 51% nP/atezo vs 37% nP/placebo
- Safety nP/atezo/nP/placebo: Steroid use 14%/6%; hypothyroid 18%/5%; hyperthyroid 5%/1%; pneumonitis 4%/<1%
- Clinically meaningful improvement in OS in PD-L1+ population with atezolizumab and no new safety signals/concerns

Schmid P et al. ASCO 2019 Abst 1003 Schneeweiss A et al. ASCO 2019 Abst 1068

Can targeted agents improve response?

- The MEK pathway is active in TNBC
- Activation suppresses inflammatory responses to T cells, leading to reduced antigen presentation and PD-L1 expression
- Combining MEK inhibitors with anti-PD-L1 inhibitors may improve antigen presentation while blocking PD-L1mediated suppression

PRESENTED AT: 2019 ASCO ANNUAL MEETING #ASCO19 Side or th Presented By Justin Balko at 2019 ASCO Annual Meeting

Loi et al...Balko, CCR 2016

Can targeted agents improve response?

 Phase II COLET Study: Atezolizumab + Cobimetinib + Paclitaxel/nabpaclitaxel as First-line Treatment for Patients with Locally Advanced or Metastatic Triple-negative breast Cancer (Brufsky et al)

PRESENTED AT: 2019 ASCO ANNUAL MEETING #ASCO19 Sides or th Presented By Justin Balko at 2019 ASCO Annual Meeting

Phase II COLET Study: Atezolizumab + Cobimetinib + Paclitaxel/nab-paclitaxel

- Safety
 - 2 grade 5 events in P arm
 - Diarrhea and rash obvious changes from A + nP (i130)
- Outcomes positive
- Comparison to IM130?

#ASCOPresented By Justin Balko at, 2019 ASCO Annual Meeting

Brufsky et al, ASCO 2019

PD-L1 IC status in COLET

- Generally higher response rates in PD-L1 IC+ tumors
- Does MEKi enhance activity in PD-L1 IC- tumors? What about PD-L1-IC+?
- Biomarkers
 - On-therapy biopsies do not appear to have been collected
 - Open question as to whether MEKi is 'working'
 6 months P

6 months PFS 55% vs 20% in PDL1+ vs PDL-1-(65% had received neo/adjuvant therapy)

N=63

50%

44%

PD-L1 IC+ PD-L1 IC-

PRESENTED AT: 2019 ASCC ANNUAL MEETING

SCO AFETING AFETING AFETING

stites are th Presented By Justin Balko at 2019 ASCO Annual Meeting

Brufsky et al, ASCO 2019

MEKi versus AKTi: Phase Ib of ipatasertib, atezo and P/nab-P

Results being confirmed in IPATunity130

#ASCOPresented By Justin Balkosat, 2019 ASCO Annual Meeting

Are high TMB patients better responders to ICI?

- Pembrolizumab in Patients with Metastatic Breast Cancer with reported High TMB (TAPUR) (Alva et al)
 - Advanced MBC without standard treatment options.
 - Single-arm study (pembro).

#ASCO19

ilides are the property of the author

2019 ASCO

PRESENTED AT:

- High TMB platform dependent
- Primary endpoint is objective response (OR) or stable disease (SD) at 16+ wks.
- Secondary endpoints are progression-free survival (PFS), overall survival (OS) and toxicity per CTCAE.

PRESENTED BY

Pembrolizumab in Patients with Metastatic Breast Cancer with reported High TMB (TAPUR)

- ~10% of highest TMB mBC patients
- HR status currently unknown
- Activity, particularly in HER2patients
- No study-internal association with TMB
- Difficult to identify a 'control'

#ASCO19

Slides are the property of the author permission required for reuse.

2019 ASCO

PRESENTED AT:

Clinical Outcomes			
DC (OR or SD 16+wks) N (%), [90% CI]	10 (37%), [24%, 46%]		
OR (CR or PR) N (%), [95% Cl]	6 (21%), [8%, 41%]		
mPFS, wks, (95% CI)	10.6 (7.7, 21.1)		
mOS, wks, (95% CI)	31.6 (11.9, inf)		
-= 0 	12 9 13 37 11 t reports for 2 pts did not report Muts/Mb.		
- ₈₀ _			

PRESENTED BY: Justin M. Balko

Ajjai et al, ASCO 201

Presented By Justin Balko at 2019 ASCO Annual Meeting

TAPUR: Percent Change in Size from Baseline

N=28

Response to single agent anti-PD-L1/PD-1

Anti-PD-L1/PD-1 single agent in mTNBC ≥1L, PD-L1+/-

Small group of TNBC with transformative benefit but unable to define subgroup

Synergistic effect of chemotherapy and anti-PD-L1 treatment in vivo

- 1. Reduce T-regulatory cell activity
- 2. Enhance cross-presentation of tumour antigens
- 3. Chemo to increase tumour PD-L1 expression/infiltration of CD8+ T cells

Post NAC residual disease: SWOG 1418

1:1

Ы

٠

٠

TNBC with >/=1 cm residual invasive breast cancer or any + LN after neoadjuvant chemotherapy N=1000

Pembrolizumab 200 mg IV q 3 weeks x 1y

Observation

- · Registration:
 - Central PD-L1 testing

Stratification:

- Nodal stage ypNo vs ypN+
- Residual tumor ≥2 vs < 2cm
- PD-L1 pos vs neg
- Prior adjuvant chemo yes vs no

- Hypothesis:
 - Pembrolizumab reduces IDFS by 33% c/w observation alone
- Primary Endpoint:
 - Invasive DFS in PD-L1-positive and overall cohort
- Secondary Endpoints:
 - Toxicity
 - OS
 - DRFS
 - QOL (PROMIS, PRO-CTCAE forms, inflammatory markers)
 - Tissue banking

IMpassion030: Phase III randomized, open label adjuvant TNBC trial (Alliance/BIG)

Candidate Biomarkers for Immunotherapy

Antibody-Drug Conjugates (ADCs)

Components of ADC

Selective Delivery of Toxic Payload

Nagayama, A, Ellisen L, Chabner B, Bardia A. Target Oncol. 2017

Another Mechanism of Action: Activation of ADCC?

Sacituzumab Govitecan (IMMU132): ADC Targeting *trop-2* in TNBC

Sacituzumab Govitecan: ADC

Bardia et al. 2017 SABCS. Abstract GS1-07.

Clinical Results in mTNBC

Single-Arm, Open-Label Study Design

Jul 2013 and Feb 2017. Data cutoff date of June 30, 2017.

Key eligibility criteria

- Female or male, ≥18 years of age, ECOG PS 0-1
- ≥2 prior therapies or >1 therapy for patients who progressed within 12 months of adjuvant therapy
- · Prior taxane therapy
- Measurable disease

Evaluations

- Response evaluation by investigators
- Blinded independent central review of all CRs, PRs and ≥20% tumor reductions
- Other evaluations: safety, immunogenicity, Trop-2 expression

Sacituzumab Govitecan: Demographics and Patient Characteristics

Characteristic	Patients (N=108)
Sex — no. (%)	
Female	107 (99.1)
Male	1 (0.9)
Median age (range) — yr	55 (31-80)
Race or ethnic group no. (%)*	
White	82 (75.9)
Black	8 (7.4)
Asian	3 (2.8)
Other or not specified †	15 (13.9)
ECOG performance-status score — no. (%):	
0	31 (28.7)
1	77 (71.3)
Previous anticancer regimens median no. (range)	3 (2-10)
Previous use of taxanes or anthracyclines for metastatic or nonmetastatic disease — no. (%)	
Taxanes	106 (98.1)
Anthracyclines	93 (86.1)
Previous use of chemotherapy drugs for metastatic disease 	
Cyclophosphamide	20 (18.5)
Platinum agents	74 (68.5)
Gemcitabine	59 (54.6)
Fluoropyrimidine agents	56 (51.9)
Eribulin	49 (45.4)
Vinorelbine	17 (15.7)
Previous use of checkpoint inhibitors - no. (%)	18 (16.7)

Sacituzumab Govitecan: AEs in ≥10% of Patients by Worst CTCAE Grade

	mTNBC Population (N=108)			
Adverse Event	All Grades no. (%)	Grade 3 no. (%)	Grade 4 no. (%)	
Any adverse event	108 (100)	71 (66)	21 (19)	
Gastrointestinal disorders	102 (94)	21 (19)	0	
Nausea	72 (67)	7 (6)	0	
Diarrhea	67 (62)	9 (8)	0	
Vomiting	53 (49)	7 (6)	0	
Constipation	37 (34)	1 (1)	0	
Abdominal pain*	27 (25)	1 (1)	0	
Mucositis [†]	15 (14)	0	0	
General disorders and administration-site conditions	82 (76)	10 (9)	0	
Fatigue and asthenia	59 (55)	9 (8)	0	
Peripheral edema	17 (16)	0	0	
Pyrexia	13 (12)	0	0	
Blood and lymphatic system disorders	80 (74)	25 (23)	15 (14)	
Neutropenia [‡]	69 (64)	28 (26)	17 (16)	
Anemia	54 (50)	12 (11)	0 Bardia et al. NE./M. 2019	

Sacituzumab Govitecan: Tumor Response to Treatment

Sacituzumab Govitecan: Response Onset and Durability (n = 36)

Sacituzumab Govitecan: Time on Treatment for All Patients (N = 110)

Last prior treatment time calculated as last dose date – first dose date. Sacituzumab govitecan time on treatment calculated as (date off study or data cut off date) – first dose date. If more than 1 agent is given in the regimen, the time of the regimen treatment is taken as the longest time for any one of the agents used

Sacituzumab Govitecan: Progression-Free Survival

ASCENT Phase III Study of Sacituzumab Govitecan: Overview

- Clinical trials number: NCT02574455
- Presented at: New Agents and Strategies; December 7, 2017(abstract# 733)

Ladiratuzumab Vedotin: ADC Targeting LIV1

LIV1 is a transmembrane cell adhesion molecule highly expressed in metastatic breast cancer

Mech. of Action:

- 1. Binds to antigen
- Complex internalized and trafficked to lysosome
- 3. Release of MMAE payload
- 4. Microtubule disruption
- 5. Cell cycle arrest/disruption

Ladiratuzumab Vedotin: ADC Targeting LIV1

Shanu et al. SABCS. 2017

SUMMARY

- Treatment of triple-negative MBC is finally becoming individualized with atezolezomab gaining approval
- PDL-1 testing should become part of the workup for such patients
- ADCs have shown promise and may be the next approval
- It is becoming increasingly clear that PDL-1 is an imperfect biomarker and there are other markers to select patients; perhaps a combination of biomarkers will emerge to better define optimal candidates
- Incorporation in curative settings is eagerly awaited