Stereotactic Radiotherapy for Metastatic Cancer – Adding to Survival?

Radiation Oncology

UT Southwestern Medical Center

Local Therapy for Advanced Disease

Puneeth Iyengar, MD, PhD Assistant Professor of Radiation Oncology Leader of Thoracic Radiation Oncology Program UT Southwestern Medical Center Dallas, TX, USA

NOSCM 2019

Radiation Oncology

Disclosures:

None

Radiation Oncology

UTSouthwestern Medical Center

Historical Dogma for Stage IV Cancers:

Systemic Therapy

Radiation Therapy for Palliation

Radiation Oncology

UTSouthwestern Medical Center Δ

This dogma has begun to change because data suggests that local therapies can improve survival in metastatic solid tumor patient populations.

Radiation Oncology

UT Southwestern Medical Center Areas of Greatest Research Efforts into Local Therapy Benefits for Stage IV Disease

1. Brain Metastases treated with radiation or/and surgery

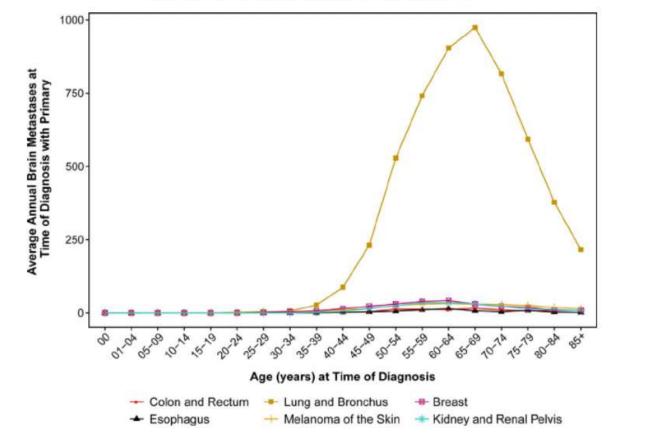
2. Oligometastatic Colorectal Cancer, Sarcoma, etc. treated with radiation or/and surgery

3. Oligometastatic NSCLC treated with radiation a. Consolidation

- b. Oligoprogression
- c. Abscopal Response

Radiation Oncology

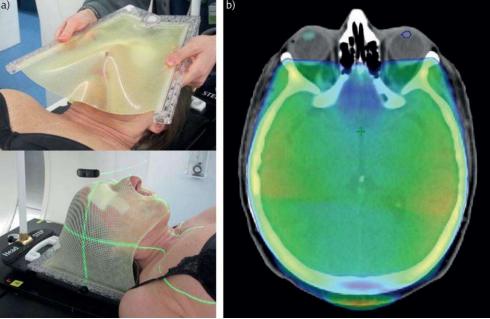
UT Southwestern Medical Center


Brain Metastases

Incidence & Epidemiology

- Brain metastases most common intracranial malignancy
- ~200,000 cases annually and rising
- Disproportionately affects older population
- Intracranial control will become more important as extracranial treatments improve

Incidence & Epidemiology


BRAIN METASTASES: EPIDEMIOLOGY

Radiation Oncology

UT Southwestern Medical Center

Whole brain radiation therapy (WBRT) for palliation (avoid brain tumor morbidity) and to improve intracranial brain dx control

Radiation Oncology

UTSouthwestern Medical Center

WBRT ± Surgery

- Entry criteria: single brain met, h/o systemic ca ≤5yrs of dx, KPS≥70
- Exclusion criteria: unresectable brain lesions, leptomeningeal mets, h/o Crl, need for immediate tx to prevent acute neuro deterioration, or radiosensitive tumors (SCLC, GCTs, lymphoma, leukemia, MM)
- Intracranial w/u: HCT and MRI
- systemic w/u: CXR, heme/chem labs, CT a, radionuclide liver-spleen scan, bone scan
- Decadron 4mg Q6 throughout course of WBRT
- Stratified by location of tumor (supratentorial vs infratentorial), extent of dz (brain met, brain met + primary site, brain met + primary site + ≥1 additional site), type of primary
- S: total resection confirmed by contrast HCT postop d 2-5 (none)
- WBRT: 36 Gy/12 fxns stereotactic bx of supratentorial lesions to confirm ca
- F/U: Q3mo neuro exam, MRI/contrast CT

Patchell et al. NEJM 322(8):494-500

WBRT ± S

- Conclusion: S+WBRT results in longer survival and QOL than WBRT alone as a result of better LC translating into a decrease in neurologic morbidity/mortality
- No excess mortality due to S over WBRT alone (4%)
- Comment: only 20% of brain mets are single and only 50% of those are surgically accessible
- Pts most likely to benefit from S have a single met w/ no systemic dz, and life expectancy ≥2mo

Patchell et al. NEJM 322(8):494-500

Radiation Oncology

UT Southwestern Medical Center

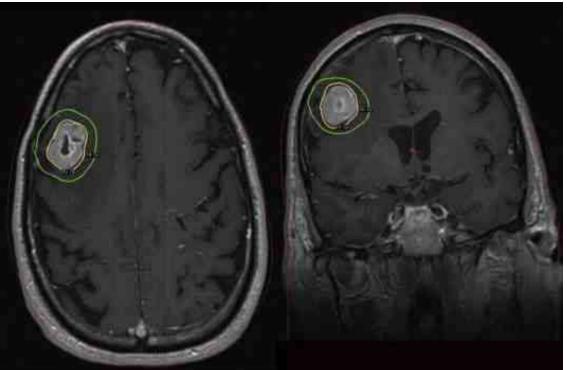
Neurotoxicity of WBRT

- Retrospective report of 12,370 pts who developed delayed complications of WBRT w/o evidence of intracranial dz
- 7pts died of progressive neuro deterioration

Number of patients	Total dose (cGy)	Fractionation (cGy $ imes$ days)	NSD	Neuret
1	2,500	500 imes 5	1,423	1,151
1	3,000	$500 \times 3,300 \times 5$	1,414	1,046
6	3,000	$600 \times 3,400 \times 3$	1,552	1,204
2	3,000	300 imes 10	1,313	938
1	3,600	300 imes 12	1,462	1,021
1	3,900	500 $ imes$ 3, 300 $ imes$ 8	1,606	1,146

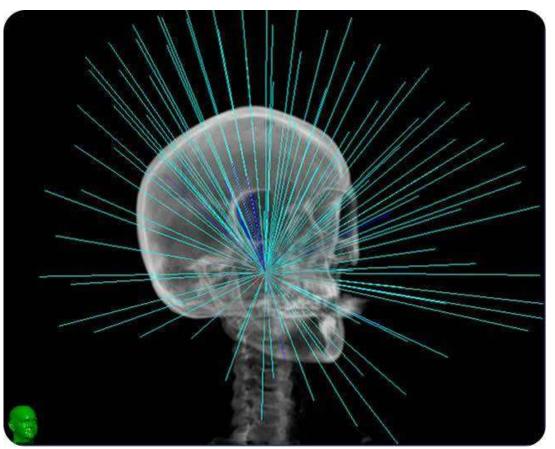
DeAngelis et al. Neuro 39:789-96

Radiation Oncology


UT Southwestern Medical Center

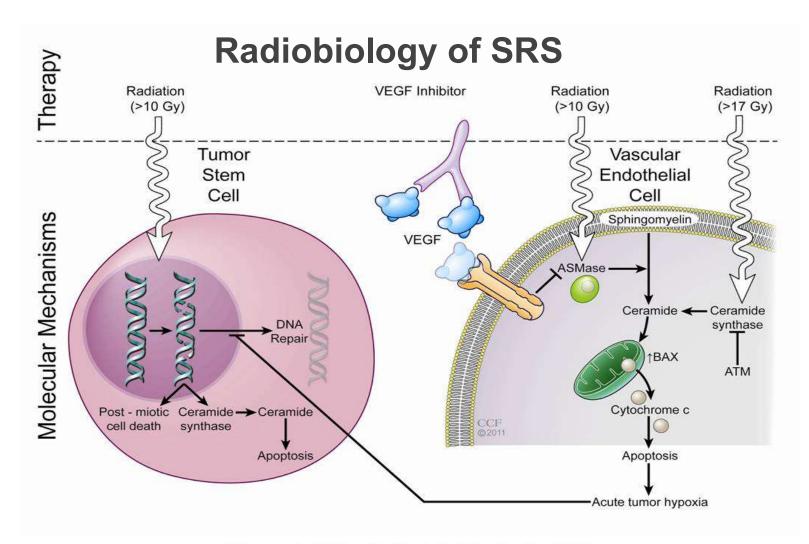
WBRT Summary

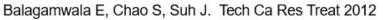
- WBRT improves both local and distant brain control
- WBRT is associated with neurocognitive decline and decreased quality of life
- No evidence that WBRT improves overall survival
 - If extracranial disease controlled, intracranial control more important


The Rise of Stereotactic Radiation (SRS)



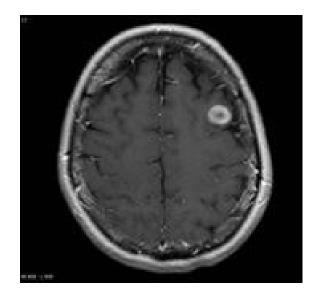
Radiation Oncology


UTSouthwestern Medical Center



Radiation Oncology

UT Southwestern Medical Center



Optimal Characteristics of patients eligible for SRS

- •Controlled extracranial disease, life expectancy >3 months
- •Radiographically distinct on T1 post contrast
- •No implanted devices
- •Non-infiltrative
 - Clear border between tumor and normal brain
- •Distant to sensitive brain structures
 - Chiasm, optic nerves, brainstem
- •Size at presentation ≤3 cm
- •Pseudospherical shape?
 - Surface area adjacent to normal brain

Treatment options for Brain Metastases

- Supportive care
 - Corticosteroids alone (QUARTZ)
- Radiation therapy
 - Whole brain RT
 - SRS
 - Whole brain + SRS
- Surgical Resection
- Systemic therapy

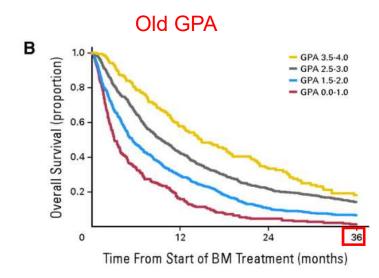
UT Southwestern Medical Center

JAMA Oncology | Brief Report

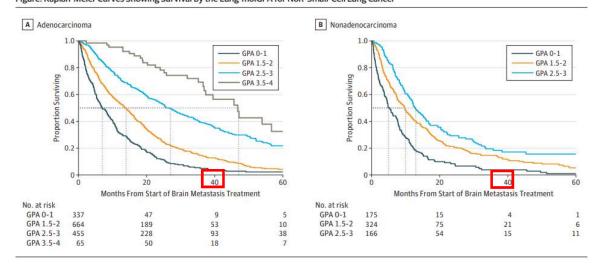
Estimating Survival in Patients With Lung Cancer and Brain Metastases

An Update of the Graded Prognostic Assessment for Lung Cancer Using Molecular Markers (Lung-molGPA)

Table 2. Updated DS-GPA for NSCLC With Brain Metastases (Lung-molGPA) Scoring Chart and Worksheet to Estimate Survival


	GPA Scoring Criteria ^a				
Prognostic Factor	0	0.5	1.0	 Patient Score^b 	
Age, y	≥70	<70	NA		
KPS	<70	80	90-100		
ECM	Present		Absent		
Brain metastases, No.	>4	1-4	NA		
Gene status	EGFR neg/unk and ALK neg/unk	NA	EGFR pos or ALK pos		
Total	NA	NA	NA		

Abbreviations: DS, diagnosis-specific; ECM, extracranial metastases; GPA, graded prognostic assessment; KPS, Karnofsky Performance Status; MS, median survival; NA, not applicable; neg/unk, negative or unknown; NSCLC, non-small-cell lung cancer; pos, positive.


^a Adenocarcinoma MS in months by GPA: 0-1.0 6.9; 1.5-2.0, 13.7; 2.5-3.0, 26.5;

and 3.5-4.0, 46.8; nonadenocarcinoma MS in months by GPA: 0-1.0, 5.3; 1.5-2.0, 9.8; 2.5-3.0, 12.8.

^b Evaluating clinician completes this column.

Radiation Oncology

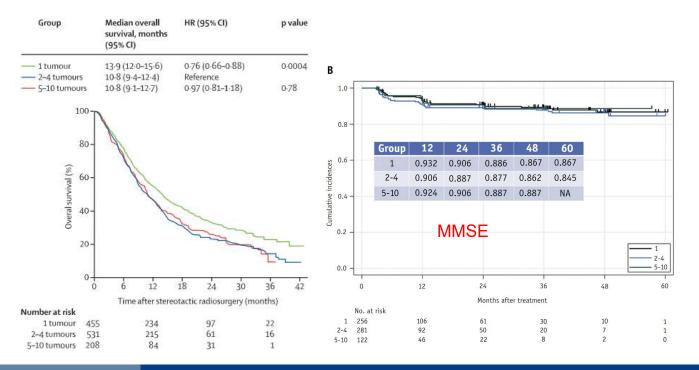
UTSouthwestern

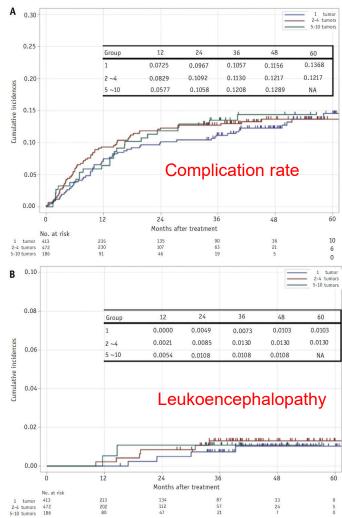
Dose escalation trial: RTOG 90-05

- N=156, non-brainstem brain tumor ≤4cm diameter, 36% with recurrence primary tumor (median prior dose 60Gy);64% recurrent brain metastasis (median prior dose 30Gy);
- Dose escalated in 3Gy increments providing Grade 3-5 toxicities <20% in 3 months.
- Results:

Size (mm)	Initial dose	MTD (Gy)
<20	18 Gy	24 (not true MTD)
21-30	15 Gy	18 Gy
31-40	12 Gy	15 Gy

- The MTD for tumors <20 mm was actually not reached, but investigator did not increase the dose beyond 24 Gy;
- 2 yr incidence of local progression was 50% and radio-necrosis was 11%;
- Grade 3-5 neurotoxicity is associated with tumor size, dose and KPS.


Table 5. Incidence of Gi	rade 3, 4, and 5 CNS toxicity by tumor
size	and treatment arm


	Arm	Dose	No. of patients	% of Patients With Toxicity		
Tumor size*				Acute	Chronic	Total
$\leq 20 \text{ mm}$						
(3.6 cc)	1	18 Gy	12	0	8	8
	4	21 Gy	18	0	11	11
	47	24 Gy	10	0	10	10
21-30 mm						
(6.6 cc)	2	15 Gy	15	7	7	13
	5	18 Gy	15	0	20	20
	8	21 Gy	13	8	31	38
	11	24 Gy	12	33	25	58
31-40 mm						
(17.9 cc)	3	12 Gy	21	5	5	10
0120101 01012	6	15 Gy	22	0	14	14
	9	18 Gy	18	17	33	50

* Maximum tumor diameter.

IJROBP, 2000 May 1;47(2):291-8

UT Southwestern Medical Center A Multi-institutional Prospective Observational Study of Stereotactic Radiosurgery for Patients With Multiple Brain Metastases (JLGK0901 Study Update): Irradiation-related Complications and Long-term Maintenance of Mini-Mental State Examination Scores

Radiation Oncology

UTSouthwestern Medical Center

Ultimately, every conceivable combination was tested with SRS on brain mets:

- 1) In dose escalation (as shown previously in one of earliest papers)
- 2) WBRT -/+ SRS
- 3) SRS -/+ WBRT
- 4) Surgery/SRS -/+ WBRT
- 5) Surgery -/+ SRS
- 6) SRS for Multiple Mets (previous slide)

Higher biological WBRT doses versus control

The HR for OS with higher biological WBRT doses as compared with control (3000 cGy in 10 daily fractions) was 0.97 (95% CI 0.83 to 1.12; P = 0.65; moderate-certainty evidence). The HR for NFI was 1.14 (95% CI 0.92 to 1.42; P = 0.23; moderate-certainty evidence).

WBRT and radiosensitisers

The addition of radiosensitisers to WBRT did not confer additional benefit for OS (HR 1.05, 95% CI 0.99 to 1.12; P = 0.12; moderatecertainty evidence) or for brain tumour response rates (odds ratio (OR) 0.84, 95% CI 0.63 to 1.11; P = 0.22; high-certainty evidence).

Radiosurgery and WBRT versus WBRT alone

The HR for OS with use of WBRT and radiosurgery boost as compared with WBRT alone for selected participants was 0.61 (95% CI 0.27 to 1.39; P = 0.24; moderate-certainty evidence). For overall brain control at one year, the HR was 0.39 (95% CI 0.25 to 0.60; P < 0.0001; high-certainty evidence) favouring the WBRT and radiosurgery boost group.

Radiosurgery alone versus radiosurgery and WBRT

The HR for local brain control was 2.73 (95% CI 1.87 to 3.99; P < 0.00001; high-certainty evidence)favouring the addition of WBRT to radiosurgery. The HR for distant brain control was 2.34 (95% CI 1.73 to 3.18; P < 0.00001; high-certainty evidence) favouring WBRT and radiosurgery. The HR for OS was 1.00 (95% CI 0.80 to 1.25; P = 0.99; moderate-certainty evidence). Two trials reported worse neurocognitive outcomes and one trial reported worse quality of life outcomes when WBRT was added to radiosurgery.

Overall Survival is never improved with SRS or WBRT. Better brain tumor control with treatment.

If survival is the same what is more likely to affect QOL?

SRS alone	Whole Brain
Morbidity of new brain mets (new mets can be symptomatic – may lead to more steroid use, anticonvulsants, etc)	Neurocognitive decline, side effects, more fractions
Requires more follow up MRIs, "Scan Anxiety"	Worse control of larger mets, certain histologies
Possible delay in radiation	Possible delay in systemic therapy

Areas of Greatest Research Efforts into Local Therapy Benefits for Stage IV Disease

1. Brain Metastases treated with radiation or/and surgery

2. Oligometastatic Colorectal Cancer, Sarcoma, etc. treated with radiation or/and surgery

Oligometastatic NSCLC treated with radiation

 a. Consolidation
 b. Oligoprogression
 c. Abscopal Response

Radiation Oncology

UT Southwestern Medical Center

Current Statistics

An estimated 230,000 new cases of lung cancer are expected in 2019 in the United States

Approximately <u>50-60%</u> of patients with NSCLC present with stage IV disease

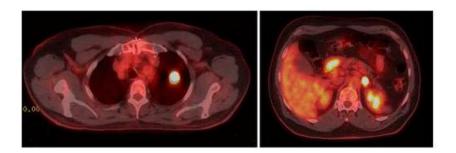
SOC (at least FDA approval) now encompasses multiple regimens (20% vs 20% vs 60%?):

- Cytotoxics: 4-6 cycles, traditional OS of approx 1 year

- Single Agent IO: Pembro
- IO + Cytotoxics Pembro + Pem/Platinum

Always trying to improve OS in these patients!!!!!

Radiation Oncology



Limited Metastatic Disease

"The evolution of metastatic capacity has intermediate states in which spread may be limited to specific organs and metastases might be present in limited numbers."

Hellman and Weichselbaum, 1990's

Radiation Oncology

UTSouthwestern Medical Center

Biology

We know that biology effectuates NSCLC outcomes:

EGFR/ALK positive disease vs wild type KRAS vs non-KRAS Adeno vs Squam PD-L1 expressing vs non-expressing Resistance Mechanisms and Patterns Limited metastatic vs widely metastatic?

Rationale – Local Tx for Mets

Development and widespread availability of modern systemic therapies

Systemic therapies are improving outcomes but cannot stand alone

Modern diagnostic tools allow the detection of early metastatic disease

Is there a "potentially chronic or curable" subset?

Radiation Oncology

Rationale – Local Tx for Mets

Up to <u>70%</u> of patients with stage IV NSCLC achieve either a partial response or stable disease to first line systemic therapy (Capuzzo et al).

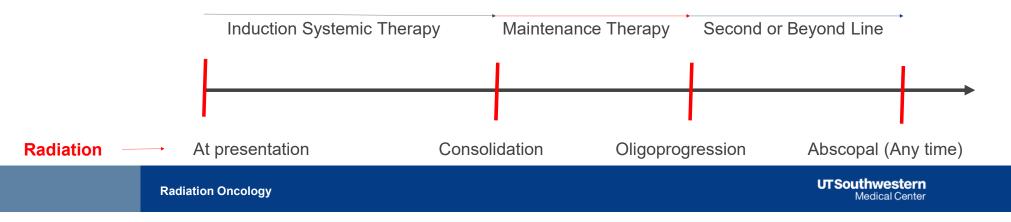
Progression occurs within median of 3-4 months after last cycle.

In those patients who do show progression of disease, up to 64% progress only at sites present prior to the start of first line chemotherapy (Mehta et al, Rusthoven et al).

There similar patterns of failure for IO-treated patients.

Limited Metastatic Disease Data Suggest:

- 1. Metastases are not always widely disseminated
- 2. Metastases do not always progress in multiple sites
- 3. Patients with limited sites of metastases may not progress or progress only in sites of initial disease
- 4. Therefore there may be a role for local therapy in these selected patients



Indications/Timing for Local Therapy

1) Consolidation

2) Oligoprogression

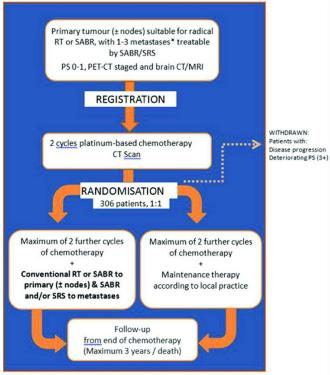
3) Abscopal Effects

Consolidation for NSCLC

- 1) Retrospective/Single arm prospective evaluations **too many to review**
- 1) Earliest prospective randomized attempts 2 failed to accrue
- 2) Smaller randomized efforts Canada/Europe MDACC/W Ontario/U of Colo UTSW PFS good, what about OS in homogenous NSCLC pt population?

3) NRG LU002 (International) and SARON (UK) - We will see

Radiation Oncology



Study Authors	Year	Type of Study	Patient Eligibility	Arms of Study	Primary Endpoint
De Ruysscher et al.	2012	Single Arm Ph2 CON	Oligometastatic NSCLC <5 mets	Chemo with Surgery or Radiation for Mets	Median OS 13.6 months
Collen et al.	2014	Single Arm Ph2 CON	Oligometastatic NSCLC <=5 mets	Chemo followed by SBRT or SBRT alone	Median OS 23 months
lyengar et al	2014	Single Arm Ph2 SALVAGE	Limited Metastatic NSCLC <= 5 mets, failed at least one line of systemic therapy	Erlotinib with SBRT	OS 20.4 months Median PFS 14.7 months
Palma/Senan	2016 – Closed to Accrual	RPh2 CON	Oligometastatic Cancers	Chemo vs SBRT + Chemo	Median OS 28 months vs 41 months
Gomez et al	2016	RPh2 CON	Oligometastatic NSCLC (Mut Pos or Neg) <=3 mets	Chemo/Obs vs XRT/Surgery + Chemo/Obs	Median PFS 3.9 months vs 11.9 months Median OS 17 months vs 41 months
lyengar et al	2017	RPh2 CON	Oligometastatic NSCLC <=5 mets	Chemo vs SBRT + Chemo	Median PFS 3.5 months vs 9.7 months

Study	Year	Type of Study	Patient Eligibility	Arms of Study	Primary Endpoint
NRG LU 002 NCT0313777 1	2017 CON	RPh3	Oligometastati c NSCLC <= 3 mets	Systemic Therapy vs SBRT + Systemic Therapy (IO Permitted)	OS
SARON NCT0241766 2	2016 CON	RPh3	Oligometastati c NSCLC <= 3 mets	Chemo vs SBRT + Chemo	OS

Schema of Phase III Study SARON

*Brain metastases can be included if at least one extra-cranial metastasis is also present.

NRG-LU002

Maintenance Systemic Therapy Versus Local Consolidative Therapy (LCT) Plus Maintenance Systemic Therapy For Limited Metastatic Non-Small Cell Lung Cancer (NSCLC): A Randomized Phase II/III Trial

Puneeth Iyengar MD, PhD, UT Southwestern	PI
Daniel Gomez MD, MDAnderson Cancer Center (MDACC)	Co-PI
Robert Timmerman MD UT Southwestern Hak Choy MD, UT Southwestern Clifford Robinson MD, Washington University of St. Louis Charles Simone MD, Maryland Proton Center	Co-Chairs
David Gerber MD, <i>UT Southwestern</i> Saiama Waqar MD, <i>Washington University of St. Louis</i>	Med Oncology
Michael Weldon MSc, DABR, <i>Ohio State University</i> Jackie Wu PhD, <i>Duke</i>	Physics
Ben Movsas MD, Henry Ford Hospital	Quality of Life
Kirk Jones MD, University of California at San Francisco	Pathology
Adam Dicker MD, PhD, <i>Jefferson</i> Max Diehn MD, PhD, <i>Stanford</i> John Heymach, MD, MDACC	Translational
Chen Hu, PhD, Johns Hopkins University/NRG Oncology	Statistics

Schema of Phase II/III Study

Patients with				
metastatic NSCLC				
having completed 4				Arm 1:
cycles or courses of		Histology:		Maintenance systemic therapy
first-line/induction		123	R	alone**
systemic therapy			Α	
	S	Squamous vs.	N	
Restaging studies	Т	Non-squamous	D	Arm 2:
reveal no evidence	R	10	0	SBRT or SBRT and Surgery to all
of progression and	Α	Systemic Therapy:	M	sites of metastases (≤ 3 discrete
limited (≤ 3 discrete	Т	Immunotherapy*	Ι	sites) plus irradiation (SBRT or
sites) metastatic	Ι	vs Cytotoxic	Z	hypofractionated RT) of the
disease, all of which	F	Chemotherapy	E	primary site followed by
must be amenable to	Y	201000		maintenance systemic therapy. All
SBRT +/- Surgery				Arm 2 patients, even if treated with
				Surgery, must have one site of
				disease (metastasis or primary)
				treated with radiation.**
				** As noted in Section 5

* Acceptable immunotherapy for LU002 is pembrolizumab.

** Randomization will be 2:1 between Arm 2 and 1.

Indications for Local Therapy

1) Consolidation

2) Oligoprogression

3) Abscopal Effects

Radiation Oncology

Oligoprogression

1)UTSW/U Colorado experience

2) Canadian/David Palma study

3) HALT Study – Fiona McDonald

SBRT for Oligoprogression

VOLUME 32 · NUMBER 34 · DECEMBER 1 2014

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Phase II Trial of Stereotactic Body Radiation Therapy Combined With Erlotinib for Patients With Limited but Progressive Metastatic Non–Small-Cell Lung Cancer

Puneeth Iyengar, Brian D. Kavanagh, Zabi Wardak, Irma Smith, Chul Ahn, David E. Gerber, Jonathan Dowell, Randall Hughes, Ramzi Abdulrahman, D. Ross Camidge, Laurie E. Gaspar, Robert C. Doebele, Paul A. Bunn, Hak Choy, and Robert Timmerman

Survival

iyengar

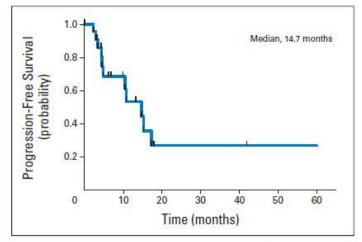


Fig 1. Kaplan-Meier analysis of progression-free survival (PFS) in months for all 24 patients enrolled on the study.

PFS 14.7 months

OS 20.4 months

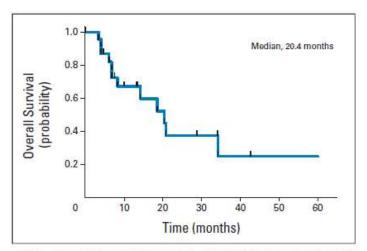
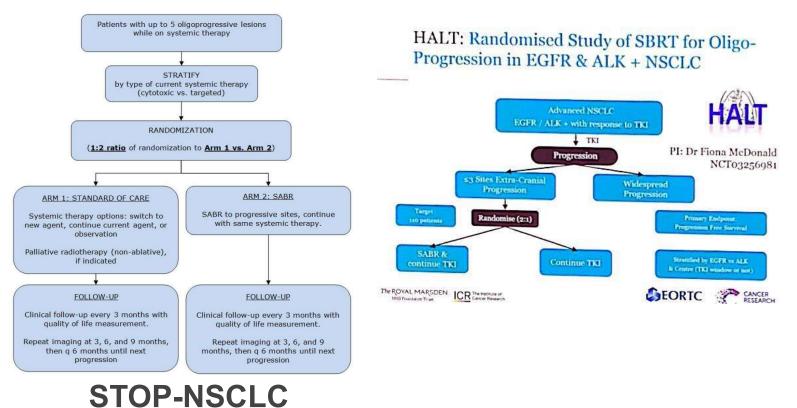
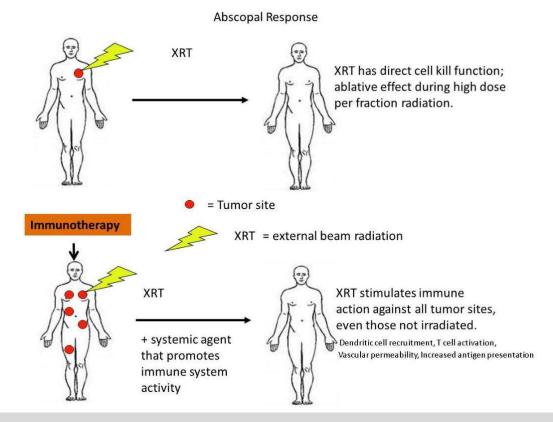



Fig 2. Kaplan-Meier analysis of overall survival (OS) in months for all 24 patients enrolled on the study.

RCT for NSCLC Oligo-progression

Radiation Oncology

Indications for Local Therapy


1) Consolidation

2) Oligoprogression

3) Abscopal Effects

Radiation Oncology

Abscopal Effect

Abscopal Response

Historically agreed that widely metastatic NSCLC would only receive local treatment in the form of radiation as palliation.

Should we be reassessing this view in light of abscopal responses in other disease sites

- 1) NEJM case report for melanoma
- 2) Abscopal responses from RCC
- 3) An increased interest in this phenomenon
- 4) Formenti trial
- 5) Science Translational Medicine study

How should we really define oligometastatic disease?

3 mets vs 5 mets vs 1 met?

Locations of mets matter?

Volume/Size of mets matter?

Should patients with N1 or N2 disease be included?

Don't know when optimally to use local therapy? (sequence vs disease burden)

Up front

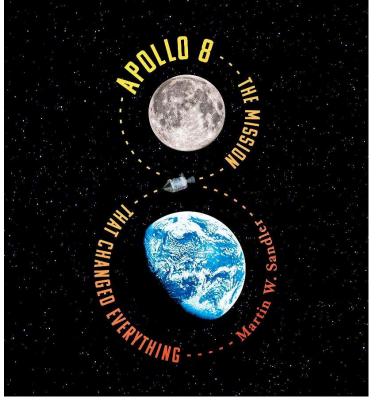
Consolidation

Oligoprogression

In abscopal state

At multiple time points

After other metrics are established – tumor burden by imaging, tumor activity by imaging, after certain finding in circulating tumor DNA values, etc.


48

Conclusion

- Local therapy is being added to stage IV pts for:
- 1. Controlling brain mets
- Extracranially to improve OS at

 a) initial diagnosis/up front, b) in
 consolidation, c) oligoprogression all
 for oligometastatic dx, or d) abscopal

Whole Brain Radiation Therapy Systemic Therapy

SBRT SRS Systemic Therapy

Radiation Oncology