Immunotherapy in Kidney and Bladder Cancers

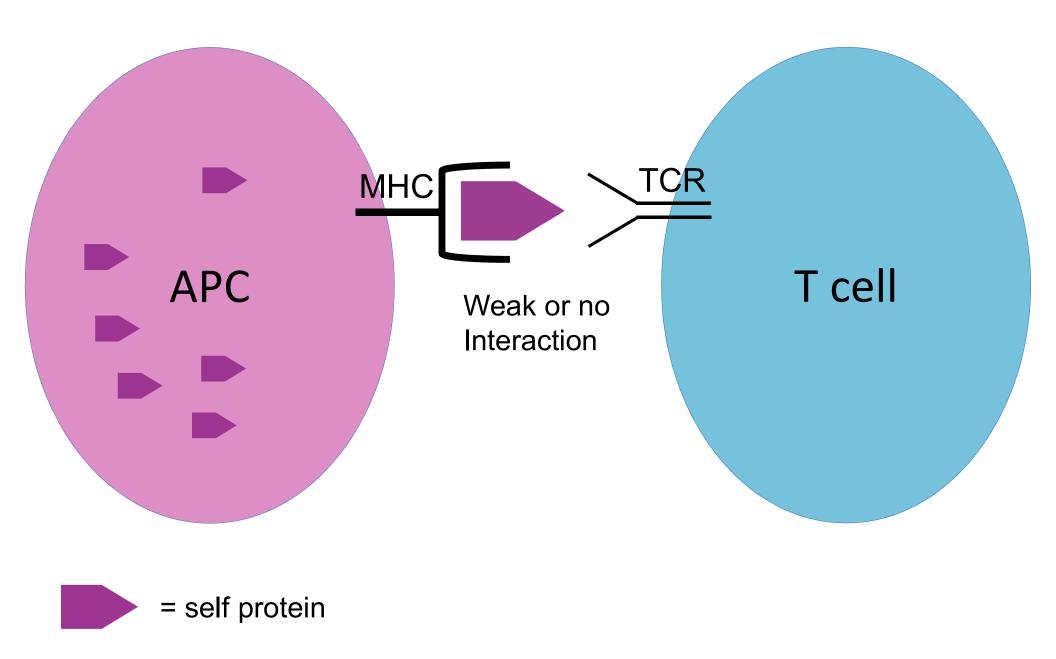
Mike Hurwitz, MD, PhD Yale Cancer Center July 19, 2019

Financial disclosures

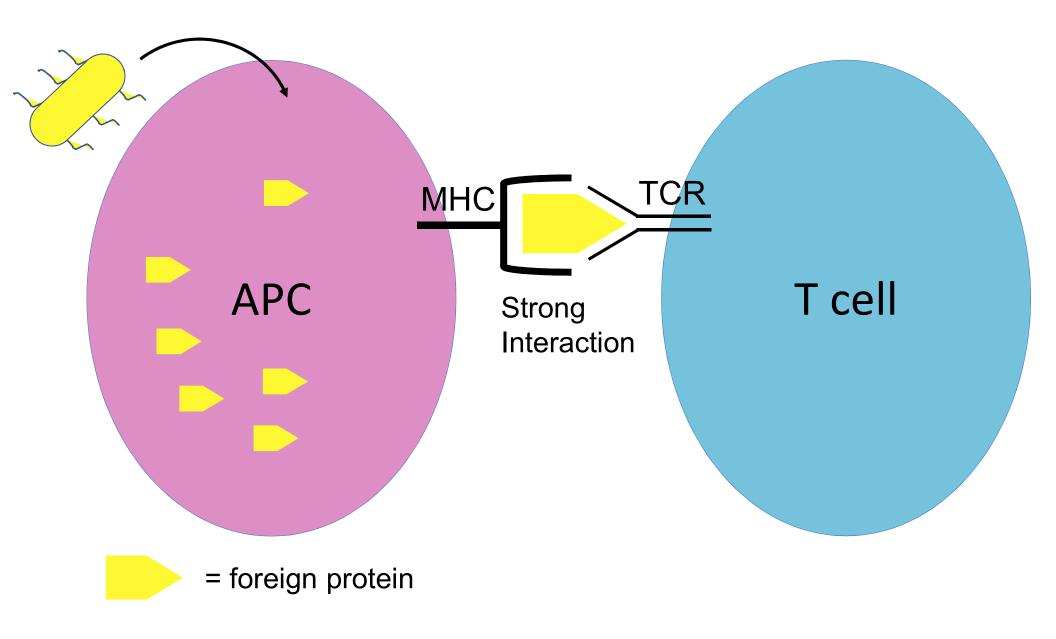
Advisory Boards: Nektar Therapeutics, Janssen Pharmaceuticals, CRISPR Therapeutics

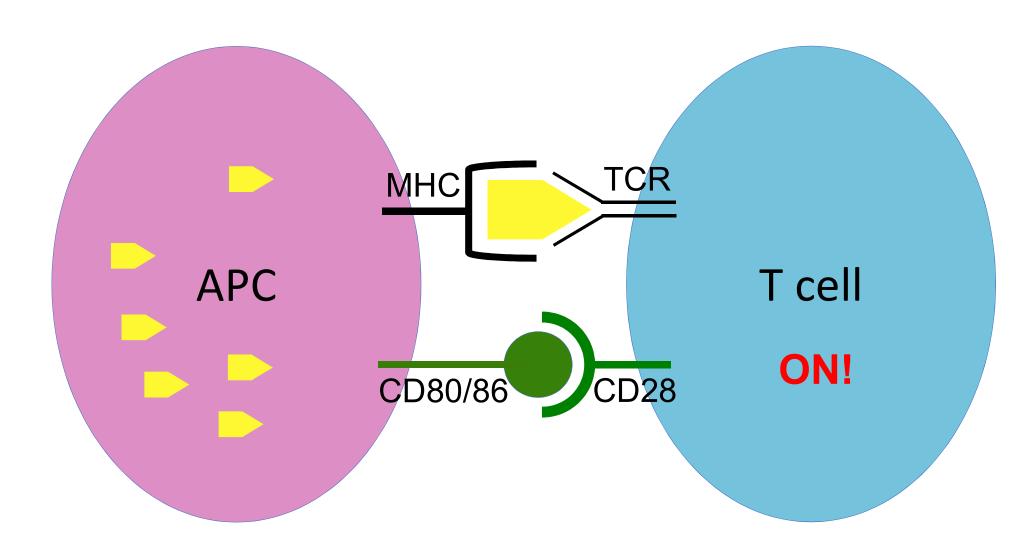
Research: Apexigen, Astellas, AstraZeneca, Bayer, Bristol Myer Squibb, Clovis, Corvus, Eli Lilly, Endocyte, Genentech, Genmab, Innocrin, Iovance, MedImmune, Merck, Nektar Therapeutics, Novartis, Pfizer, Progenics, Roche Laboratories, Sanofi Aventis, Seattle Genetics

Other: Gamida Cell

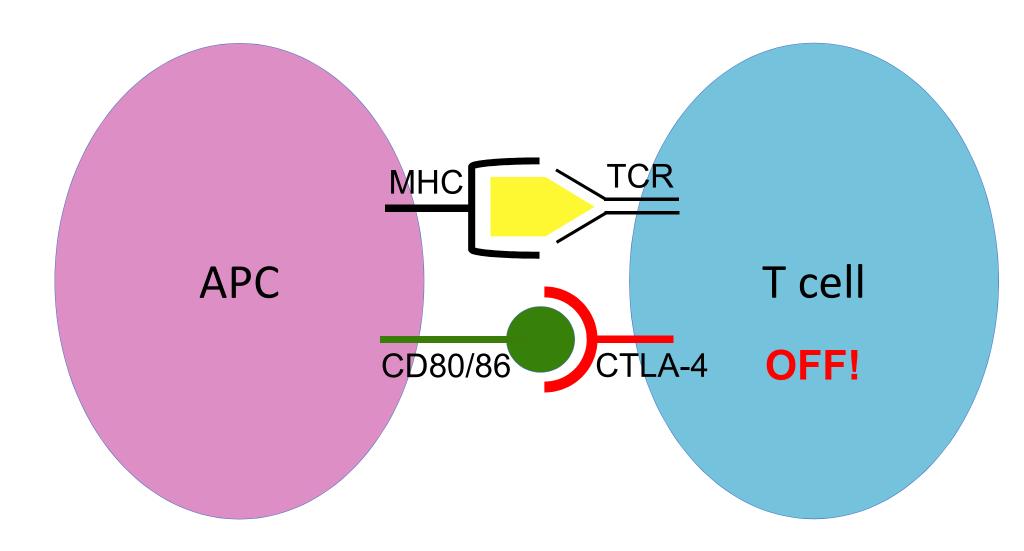

Talk outline

- Immunotherapy basics
- Bladder Cancer
- Kidney Cancer


T cell activation: self-recognition

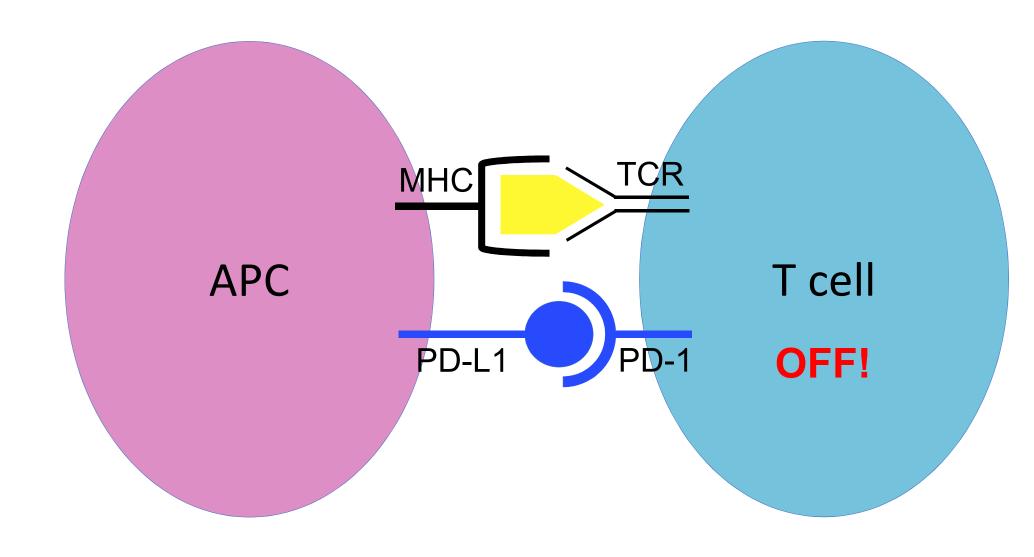

T cell activation: foreign recognition

T cell activation: costimulation

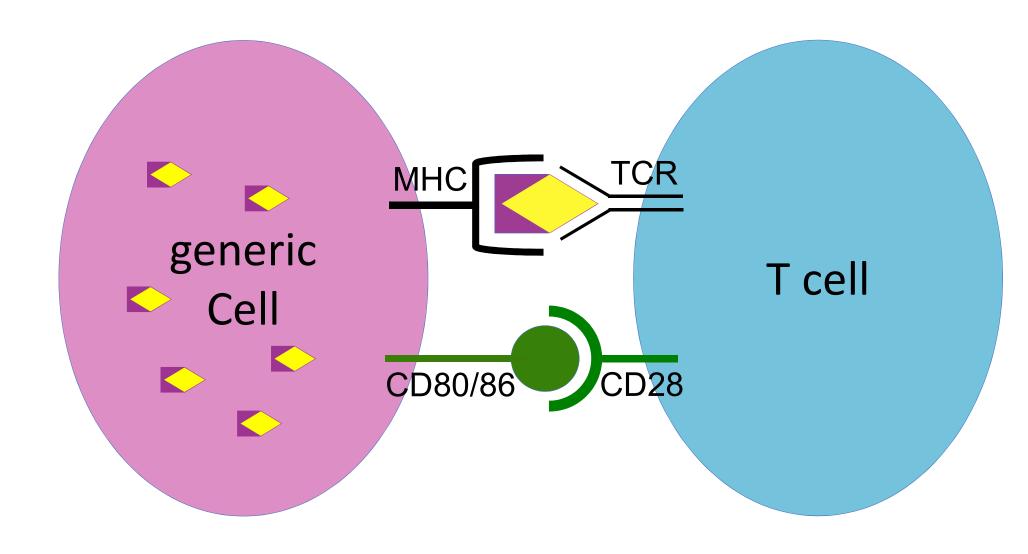


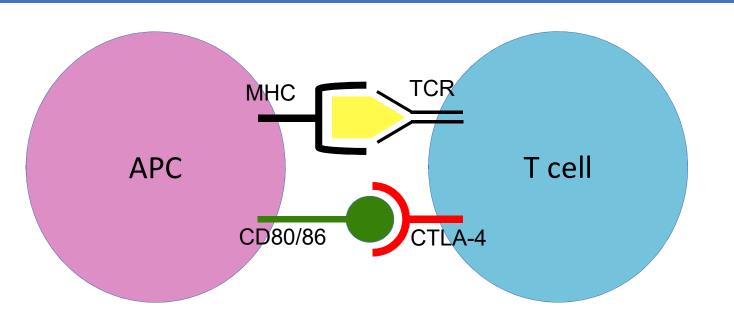
COSTIMULATION!

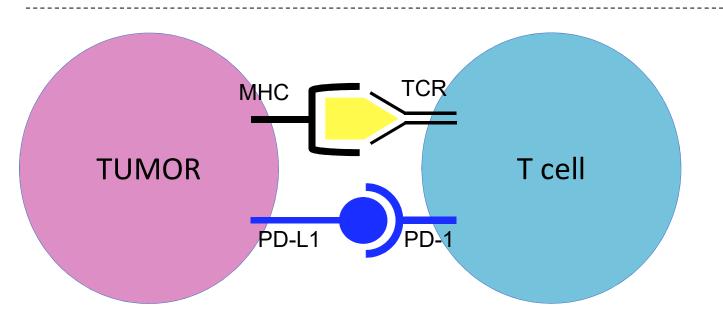
T cell inhibition: CTLA-4



IMMUNE CHECKPOINT!


T cell inhibition: PD1 axis


T cell activation: cancer



CTLA-4 vs PD-1/PD-L1

BLOCKS: ACTIVATION?

CELL: T_{reg}, T_{eff}

BLOCKS: ACTIVATION/ MAINTENANCE

CELL: T_{eff}

Immune checkpoint inhibitor side effects

System	Symptom/abnormality
General	Fatigue/asthenia
Skin	pruritis
	rash
GI	colitis: diarrhea, GI bleed
	nausea/vomiting
	decreased appetite/dysgeusia
	increased enzymes: LFTs/pancreatic
	Stomatitis/muscosal inflammation
Endocrine	hypothyroidism
	adrenal insufficiency
	type I diabetes mellitus
Cardiac	pericardial inflammation
	myocardial damage
Pulmonary	pneumonitis/fibrosis
Renal	nephritis
Nervous System	guillain-barre-like syndrome
Hematologic	Any lines decreased/aplastic anemia
	hemophagocytic syndrome

PD1/PDL1 inhibitors alone:

- 50-60% all grades AEs
- 10-20% ≥ grade 3

PD1/CTLA4 combination:

- >90% all grades Aes
- 50-70% ≥ grade 3

Treatment

- Prednisone 1-2 mg/kg or equivalent with slow taper
- infliximab (not for liver)
- MMF
- IVIg, anti-IL6, etc
- Endocrinopathies are not reversible
- Side effects in red have been lethal

Bladder Cancer Treatment Basics

- Localized disease:
 - Non-muscle invasive bladder cancer (NMIBC)
 - Muscle-invasive bladder cancer (MIBC)
- Metastatic disease:
 - 1st line cisplatin eligible (GC or ddMVAC)
 - 1st line cisplatin ineligible (no standard)
 - 2nd line (no standard) or erdafitinib for FGFR mutant/overexpressed

How is immunotherapy used in each of these disease states?

Checkpoint Inhibitors Approved for Use in Urothelial Carcinoma

7 US FDA Approvals May 2016-May 2017

Setting	Antibody	Approval Status		
First-line	Atezolizumab	Accelerated approval granted in April 2017.		
(cisplatin-ineligible)	Pembrolizumab	Accelerated approval granted in May 2017.		
	Atezolizumab	Accelerated approval granted in May 2016.		
		In May 2017, the subsequent phase 3 IMvigor211		
		trial did not meet primary endpoint of overall survival.		
Platinum-	Nivolumab	Accelerated approval granted in February 2017.		
pretreated	Durvalumab	Accelerated approval granted in May 2017.		
	Avelumab	Accelerated approval granted in May 2017.		
	Pembrolizumab	Full approval granted in May 2017.		

TCC selected single arm studies

Study name	Agent	n	ORR (%)	CR (%)	PFS	med OS	12 mo OS	DCR	DoR - % ongoing	median DoR	median TTR	ORR based on PD-L1 expression	Toxicity (Any Grade)	Toxicity (Grade 3-4)	Ref
JAVELIN	Avelumab	44	18.2	2.3	11.6 wks	13.7 mo	54.3%	52.3%	37% at 14.5 wks	36.4 wk	12 wks	<1% in TC: 4.5% ≥1% in TC: 50%	68%	9.1%	1
IMvigor210 (cohort 1; 1st line platinum ineligible)	Atezolizumab	119	23.0	9.0	2.7 mo	15.9 mo	57.0%	56.0%	75% at 14.4 mo	NR	2.1 mo	ICO: 21% IC1: 23% IC2/3: 28%	66%	15.0%	2
IMvigor210 (cohort 2) Rx beyond ->	Atezolizumab	310	16.0	7.0	NR	7.9 mo	37.0%	49.0%	71% at 17.5 mo	NR	2.1 mo	IC0/1: 10% IC2/3: 28%	70%	16.0%	3
progresson ->		126	19.0			11.4 mo	50%	47.0%							
Study 1108	Durvalumab	42	31.0	4.7	NR	NR	NR	>64%	92.3% at 26 wk	Not reached	~7 wks	TC and IC-: 0% TC and IC+: 46%	64%	5.0%	4
Checkmate 275	Nivolumab	265	19.0	2.0	NR	8.74 mo	NR	61%%	NR	Not reached	1.48 mo	<1%: 16.1% ≥1%: 23.8% ≥5%: 28.4%	63%	18.0%	5
Keynote-052	Pembrolizumab	370	29.0	7.0	NR	NR	52.9%	47.0%	82% at 6 mo	Not reached	2 mo	CPS <10%: 23% CPS ≥10%: 51%	66%	19.0%	6

NR = not reported; TC = PD-L1 expression on tumor cells, IC = PD-L1 expression on immune cells, IC0/1 = low expression by IHC, IC2/3 = high expression by IHC.

- ORR 16-29%
- CR < 10%
- DCR 47-61%
- OS 7.9 mo NR
- Some long durations of response

- Role of PDL1 status complex
- Toxicity
 - 63-70% all grades
 - 5-19% ≥ grade 3
- 19% ORR post progression (Imvigor210)

^{1.} Apolo et al, JCO 2017 2. Balar et al, Lancet 2017 3. Rosenberg et al, Lancet 2016 4. Massard et al, JCO 2016 5. Sharma et al, Lancet Onc 2017 6. O'Donnell et al, ASCO 2017

PD-1/PD-L1 Inhibitors for NMIBC: Selected Trials

Trial ID	Phase	Regimen	Population
NCT02844816 (SWOG 1605)	II	Atezolizumab IV Infusion	BCG-resistant
NCT02625961 (Keynote 057)	II	Pembrolizumab IV Infusion	BCG-resistant
NCT02901548	II	Durvalumab IV Infusion	BCG-resistant CIS
NCT03317158 (ADAPT-Bladder)	1/11	Durvalumab IV Infusion Durvalumab + BCG Durvalumab + XRT	BCG-resistant
NCT03106610	I	Nivolumab IV Infusion	BCG-resistant
NCT02792192	I	Atezolizumab +/- BCG	BCG-naïve (or resistant)
Pending	1/11	Durvalumab + BCG	BCG-naive

KEYNOTE-057 Phase 2 Trial of Pembrolizumab for Patients With High-Risk Non-Muscle-Invasive Bladder Cancer Unresponsive to Bacillus Calmette-Guérin: Updated Interim Results

A. V. Balar¹; G. S. Kulkarni²; E. Uchio³; J. L. Boormans⁴; L. Mourey⁵; L. Krieger⁶; E. A. Singer⁷; D. Bajorin⁸; A. Kamat⁹; P. Grivas¹⁰; H. K. Seo¹¹; H. Nishiyama¹²; B. Konety¹³; K. Nam¹⁴; E. Kapadia¹⁴; T. Frenkl¹⁴; R. de Wit⁴

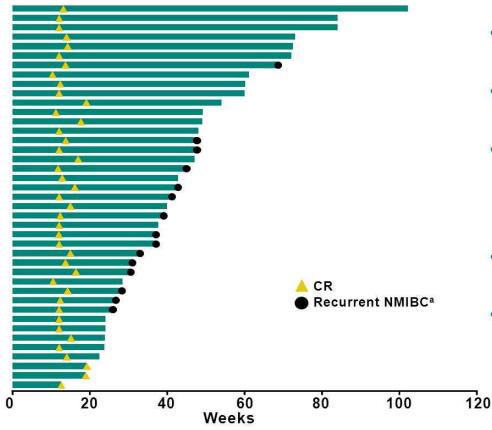
¹Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA; ²UHN Princess Margaret Cancer Center, University of Toronto, Toronto, ON, Canada; ³UC Irvine Health, Orange, CA, USA; ⁴Erasmus University Medical Center, Rotterdam, Netherlands; ⁵Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France; ⁶Royal North Shore Hospital, Northern Cancer Institute, St Leonards, NSW, Australia; ⁷Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; ⁸Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹⁰University of Washington, Seattle, WA, USA; ¹¹National Cancer Center, Goyang, Republic of Korea; ¹²University of Tsukuba, Tsukuba, Ibaraki, Japan; ¹³University of Minnesota, Minneapolis, MN, USA; ¹⁴Merck & Co., Inc., Kenilworth, NJ, USA

Presented By Arjun Balar at 2019 Genitourinary Cancers Symposium

Keynote-057: Overall Response Rate at month 3

Decrease	To	otal Population (N = 102)
Response	n	%	95% CI
CR	41	40.2	30.6-50.4
Non-CR	57	55.9	45.7-65.7
Persistent ^b	41	40.2	30.6-50.4
Recurrent ^c	6	5.9	2.2-12.4
NMIBC stage progression ^d	9	8.8	4.1-16.1
Non-bladder malignancy ^e	1	1.0	0.0-5.3
Progression to T2	0	0	NA-NA
Nonevaluable ^f	4	3.9	1.1-9.7

aSummary of overall responses of HR NMIBC per central assessment at month 3 in all patients who received ≥1 dose of trial treatment, had baseline evaluations, and also had ≥1 postbaseline disease assessment. Defined as patients with CIS at baseline who at month 3 also had CIS ± papillary tumor. Defined as pathologically confirmed appearance of papillary tumor (high-grade Ta or T1) without CIS at month 3.d Increase in stage from CIS and/or high-grade Ta at baseline to T1 disease. Defined as presence of lesions suspicious for locally advanced or metastatic bladder cancer on imaging. Patient developed new liver lesions, as seen on imaging, and was later found to have a second primary malignancy of pancreatic cancer. Subsequent review of the baseline scan showed subtle findings that, in retrospect, could be attributed to pancreatic cancer. Patients whose protocol-specified efficacy assessments were missing or who discontinued from the trial for reasons other than progressive disease were considered not evaluable for efficacy. Database cutoff: September 14, 2018.


Presented By Arjun Balar at 2019 Genitourinary Cancers Symposium

Keynote-057: time to response and recurrence

Time to CR and Development of Recurrent HR NMIBC

- Median follow-up for those in CR, 16.7 months (range, 5.9-28.2 months)
- 24 (58.5%) of complete responders had an ongoing response at time of data cutoff^b
- 1 patient not represented in this figure was nonevaluable at week 12 but subsequently had confirmed CR beginning at week 24, with >12 months durability
- 15 (36.6%) of CRs subsequently experienced recurrent NMIBC after CR
- No patient developed muscle-invasive or metastatic disease

aReappearance of HR NMIBC (CIS and/or high-grade Ta and/or T1 disease) after a disease-free interval (at each month or afterward). Done patient had ≥2 non-evaluable assessments. This patient discontinued after week 12 (censored at week 12) because of ongoing AEs and therefore did not complete the subsequent required efficacy assessments. Another patient with locally assessed CR underwent cystectomy. Database cutoff: September 14, 2018.

Presented By Arjun Balar at 2019 Genitourinary Cancers Symposium

Adjuvant PD-1/PD-L1 inhibitor phase III trials

		Trial ID	Phase	Regimen	Primary Endpoint
	힞	NCT03294304	П	GC-Nivolumab	pCR
<u>+</u>	Chemo-IO	NCT02690558	П	GC-Pembrolizumab	pCR
van	S	NCT02365766	1/11	G/GC-Pembrolizumab	Feasibility, pCR
Neo-adjuvant	0	NCT02451423	II	Atezolizumab	pCR, immune response
eo-6		NCT02736266	II	Pembrolizumab	pCR
Ž	01-01	NCT02812420	11	Durvalumab + Tremelimumab	Feasibility
	의	NCT02845323	П	Nivolumab +/- Urelumab	Immune response
		Pending	I	Durvalumab +/- CD73i	Feasibility, Immune response

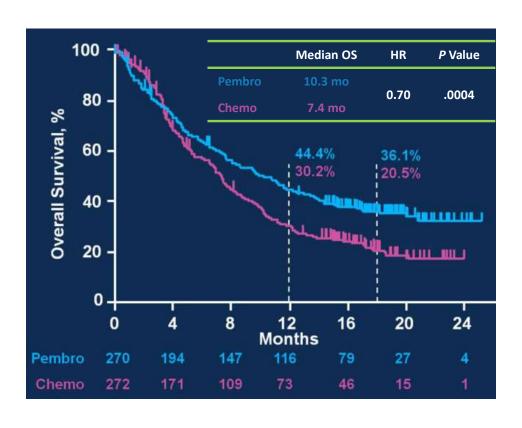
+
\subseteq
/a
\leq
<u>:</u>
ם [']
\triangleleft

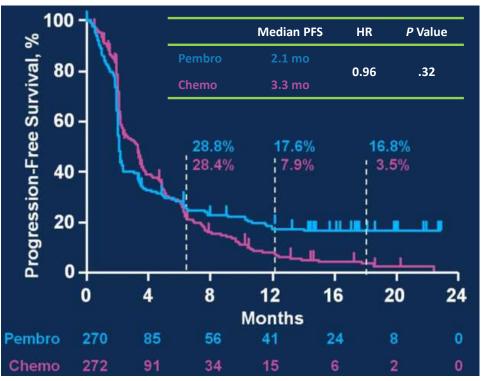
Population	Control Arm	Experimental Arm	Primary Endpoint
Prior NAC- ≥pT2, no AC ≥pT3	No therapy	Atezolizumab	PFS
Prior NAC- ≥pT2, no AC ≥pT3	Placebo	Nivolumab	PFS
Prior NAC- ≥pT2, no AC ≥pT3	No therapy	Pembrolizumab	PFS/OS

PI: Apolo; SWOG PI: Sonpavde; ECOG PI: Srinivas.

First line chemotherapy + checkpoint therapy trials

CT ID	Phase	Target	Experimental Arm(s)	Standard Arm
NCT02807636	Ш	PD-L1	Atezo	Placebo +
IMvigor130			OR	Gem-Plat
			Atezo + Gem-Plat	
NCT02853305	Ш	PD-1	Pembro	Gem-Plat
KEYNOTE-361			OR	
			Pembro + Gem-Plat	
NCT02516241	Ш	PD-L1 +/- CTLA-4	Durvalumab	Gem-Plat
DANUBE			OR	
			Durva + Treme	
NCT03036098	Ш	PD-1 + CTLA	Nivo + Ipi*	Gem-Plat
CM-901				


^{*}This trial includes a substudy for cisplatin-eligible patients comparing gemcitabine + cisplatin +/- nivolumab.

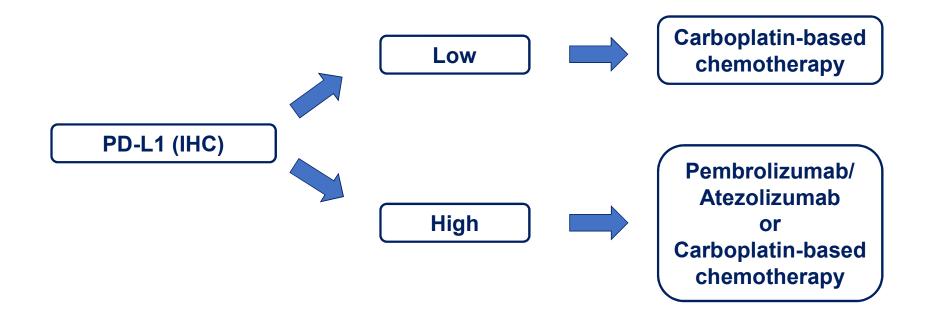


Keynote-045 (n = 542): Randomized phase III post cisplatin

Arm	ORR (%)	PFS (mo)	1 yr PFS (%)	OS (mo)	1 yr OS (%)	DoR (mo)	All gr AEs (%)	Gr 3 AE (%)
Pembrolizumab	21.1	2.1	16.8	10.3	43.9	Not Reached	60.9	15
Chemotherapy	11.4	3.3	6.2	7.4	30.7	4.3	90.2	49

Chemotherapy = single agent therapies - docetaxel, paclitaxel or vinflunine

Bellmunt et al, NEJM 2017



PD-L1 expression to select therapy in cis-ineligible patients

5/18/2018

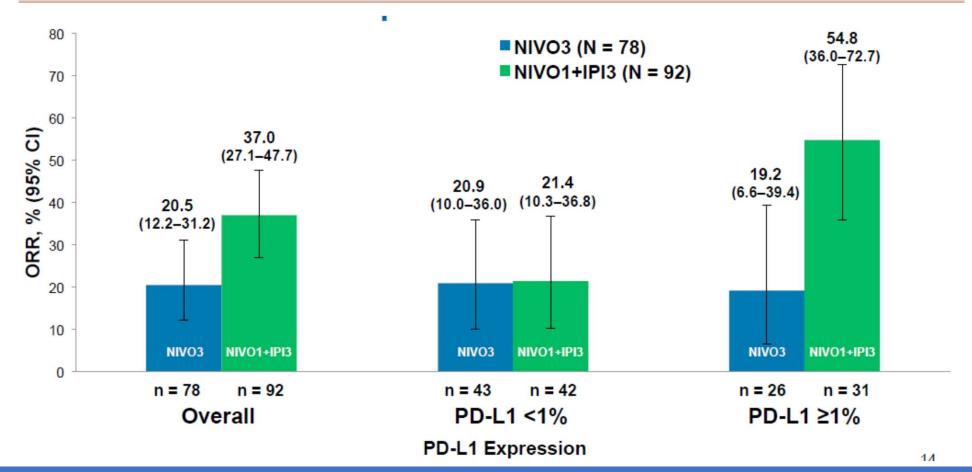
FDA Alert

- •In two ongoing clinical trials (KEYNOTE-361 and IMVIGOR-130), the Data Monitoring Committees' (DMC) found patients in the monotherapy arms of both trials with PD-L1 low status had decreased survival compared to patients who received cisplatin- or carboplatin-based chemotherapy.
- •Both trials have stopped enrolling patients whose tumors have PD-L1 low status to the Keytruda or Tecentriq monotherapy arms.
- •The monotherapy arms remain open only to patients whose tumors have PD-L1 high status.

For cis-ineligible: carbo/gem or PD-1/PD-L1 inhibitor?

	Gem-Carbo (Ph III) ¹	Atezolizumab (Ph II) ²	Pembrolizumab (Ph II) ³
Number of patients	119	119	370
% with PS 2	44.5%	20%	42%
% CrCl <60 mL/min	55.5%ª	70%	49%
% PS 2 + CrCl <60 mL/min	26.9% ^a	7%	9%
ORR	41.2%	23%	24%
Median PFS	5.8 mo	2.7 mo	2 mo; 3 mo on therapy
Median OS	9.3 mo	15.9 mo	Not reported
Duration of response	Not reported	Not reached (median f/u 17.2 mo)	Not reached (78% ≥6 months)

aGFR 30-60 mL/min.


^{1.} De Santis M, et al. J Clin Oncol. 2012;30(2):191-199; 2. Balar AV, et al. Lancet. 2017;389(10064):67-76; 3. Balar AV; et al. Lancet Oncol. 2017; 18:1483-1492.

Checkmate 032: nivolumab vs ipilimumab/nivolumab

Arm	ORR	PFS	os
Nivolumab 3 mg/kg	26%	2.8 mo	9.9 mo
Nivo 1 mg/kg and lpi 3 mg/kg	27%	2.6 mo	7.4 mo
Nivo 3 mg/kg and lpi 1 mg/kg	38%	4.9 mo	15.3 mo

Randomized double-blind phase II study of maintenance pembrolizumab versus placebo after first-line chemotherapy in patients with metastatic urothelial cancer: HCRN GU14-182

Matthew D. Galsky, Sumanta K. Pal, Amir Mortazavi, Matthew I. Milowsky, Saby George, Sumati Gupta, Mark T. Fleming, Long H. Dang, Daniel M. Geynisman, Radhika Walling, Robert S. Alter, Erwin L. Robin, Jue Wang, Shilpa Gupta, David D. Chism, Joel Picus, George Philips, David I. Quinn, Noah M. Hahn, Menggang Yu

Icahn School of Medicine at Mount Sinai; City of Hope National Medical Center, Duarte, CA; Ohio State University; University of North Carolina at Chapel Hill School of Medicine; Roswell Park Cancer Institute; Huntsman Cancer Institute-University of Utah Health Care; Virginia Oncology Associates; University of Florida; Fox Chase Cancer Center; Community Cancer Center; John Theurer Cancer Center at Hackensack University Medical Center; University of Arizona Cancer Center at Dignity Health St. Joseph's Hospital and Medical Center; Masonic Cancer Center, University of Minnesota; Vanderbilt University Medical Center; Washington University School of Medicine; Georgetown University Hospital; USC Norris Comprehensive Cancer Center; Johns Hopkins University School of Medicine; University of Wisconsin; Hoosier Cancer Research Network

#ASCO19

Slides are the property of the author, permission required for reuse.

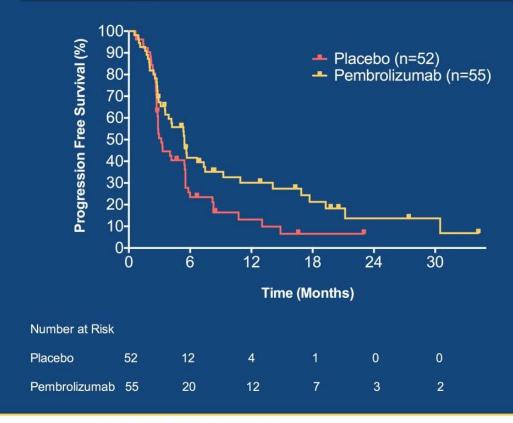
PRESENTED BY: Matthew D. Galsky, MD

HCRN GU14-182

Metastatic UC
At least stable
disease
≤ 8 cycles of
platinum-based
chemotherapy

Randomized Stratification Lymph-node only metastases (Y/N) Response to 1st line chemo (CR/PR vs SD) Placebo q3 weeks x up to 24 months

Pembrolizumab 200 mg IV q3 weeks x up to 24 months


PRESENTED AT:

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Matthew D. Galsky, MD

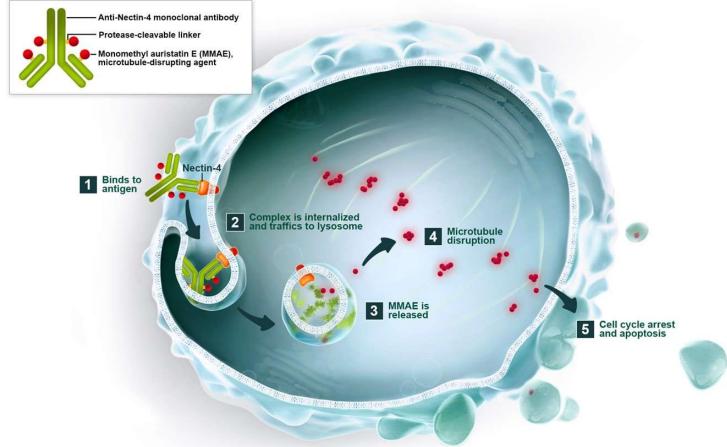
Progression-free Survival

Median PFS and 95% CI Placebo: 3.2 (2.8, 5.5) Pembrolizumab: 5.4 (3.6, 9.2)

Hazard Ratio: 0.64 (0.41, 0.98)

Log rank p = 0.038

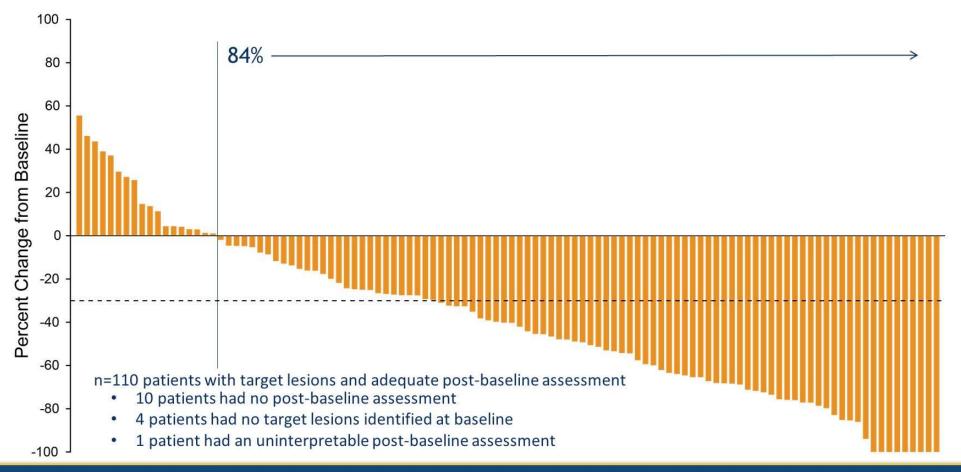
PRESENTED AT:


#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Matthew D. Galsky, MD

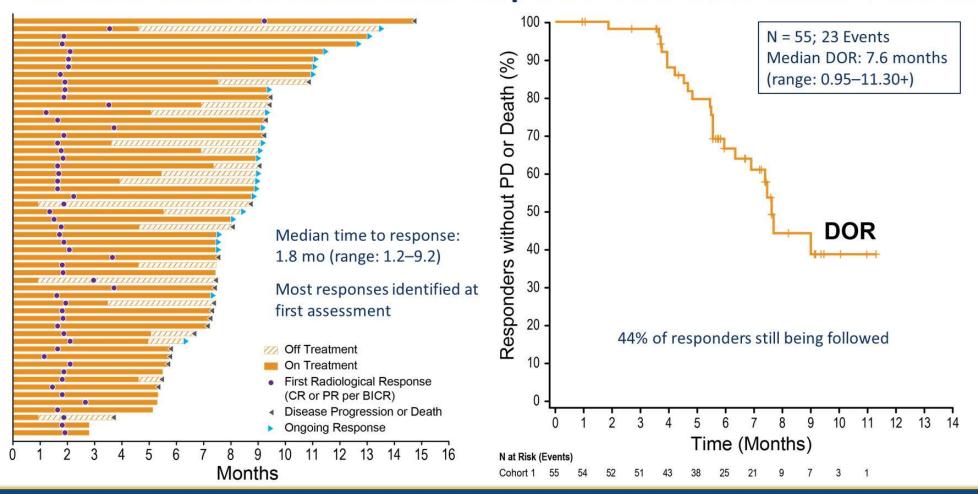
EV-201: Results of Enfortumab Vedotin Monotherapy for Locally Advanced or Metastatic Urothelial Cancer Previously Treated with Platinum and Immune Checkpoint Inhibitors (NCT03219333)

Daniel P. Petrylak, Arjun V. Balar, Peter H. O'Donnell, Bradley A. McGregor, Elisabeth I. Heath, Evan Y. Yu, Matthew D. Galsky, Noah M. Hahn, Elaina M. Gartner, Juan M. Pinelli, Shang-Ying Liang, Amal Melhem-Bertrandt, and Jonathan E. Rosenberg


Enfortumab Vedotin: Nectin-4 Targeted Therapy Proposed Mechanism of Action

Enfortumab vedotin (ASG-22ME) is an investigational agent, and its safety and efficacy have not been established.

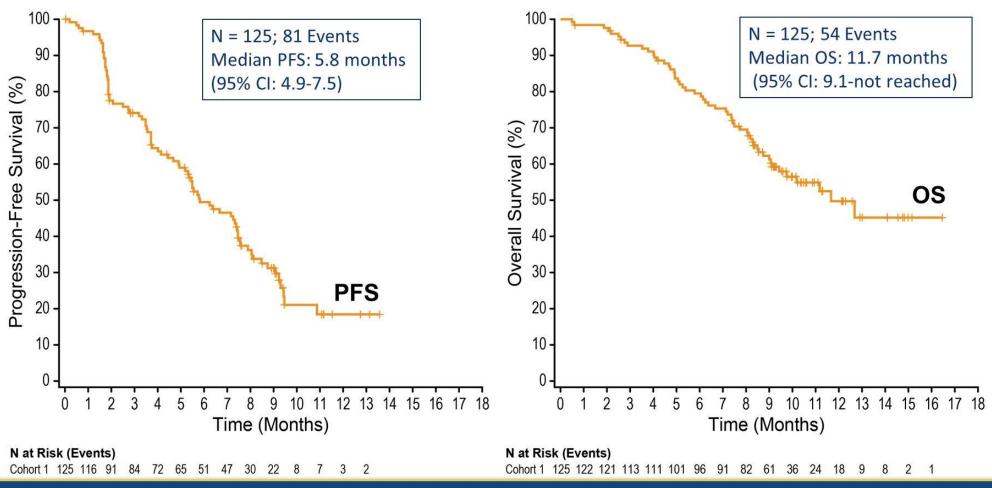
Enfortumab vedotin is being developed in collaboration with Astellas Pharma Inc. ©2018 Seattle Genetics, Inc. All rights reserved.


EV-201: Cohort 1 Change in Tumor Measurements per BICR

T: 2019 ASCO ANNUAL MEETING

#ASCO19
Slides are the property of the author, permission required for reuse.

EV-201: Cohort 1 Duration of Response with Enfortumab Vedotin



PRESENTED AT: 2019 ASCO ANNUAL MEETING

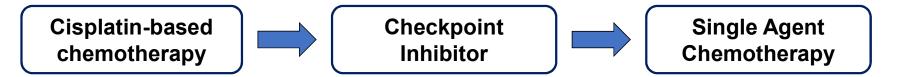
#ASCO19
Slides are the property of the author permission required for reuse.

PRESENTED BY: Daniel P. Petrylak

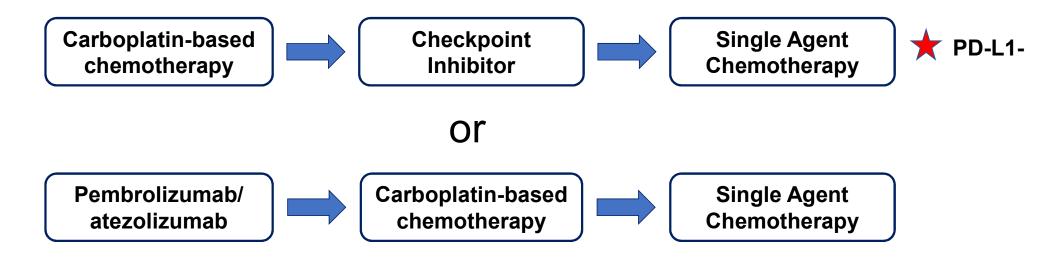
EV-201: Cohort 1 Kaplan-Meier Estimates of Survival

PRESENTED AT: 2019 ASCO ANNUAL MEETING

Slides are the property of the author permission required for reuse. PRESENTED BY: Daniel P. Petrylak


EV-201: Cohort 1 Treatment-Related Adverse Events

Treatment-related AEs by preferred term in ≥20% of patients (any Grade) or ≥5% (≥Grade 3)	Patients (N=125) n (%)	
	Any Grade	≥Grade 3
Fatigue	62 (50)	7 (6)
Alopecia	61 (49)	_
Decreased appetite	55 (44)	1 (1)
Dysgeusia	50 (40)	
Peripheral sensory neuropathy	50 (40)	2 (2)
Nausea	49 (39)	3 (2)
Diarrhea	40 (32)	3 (2)
Dry skin	28 (22)	0
Weight decreased	28 (22)	1 (1)
Rash maculo-papular	27 (22)	5 (4)
Anemia	22 (18)	9 (7)
Neutropenia	13 (10)	10 (8)


- Treatment-related AEs led to few discontinuations (12%)
 - Peripheral sensory neuropathy was the most common (6%)
- 1 treatment-related death reported by the investigator
 - · Interstitial lung disease
 - Confounded by high-dose corticosteroid use and suspected pneumocystis jiroveci pneumonia

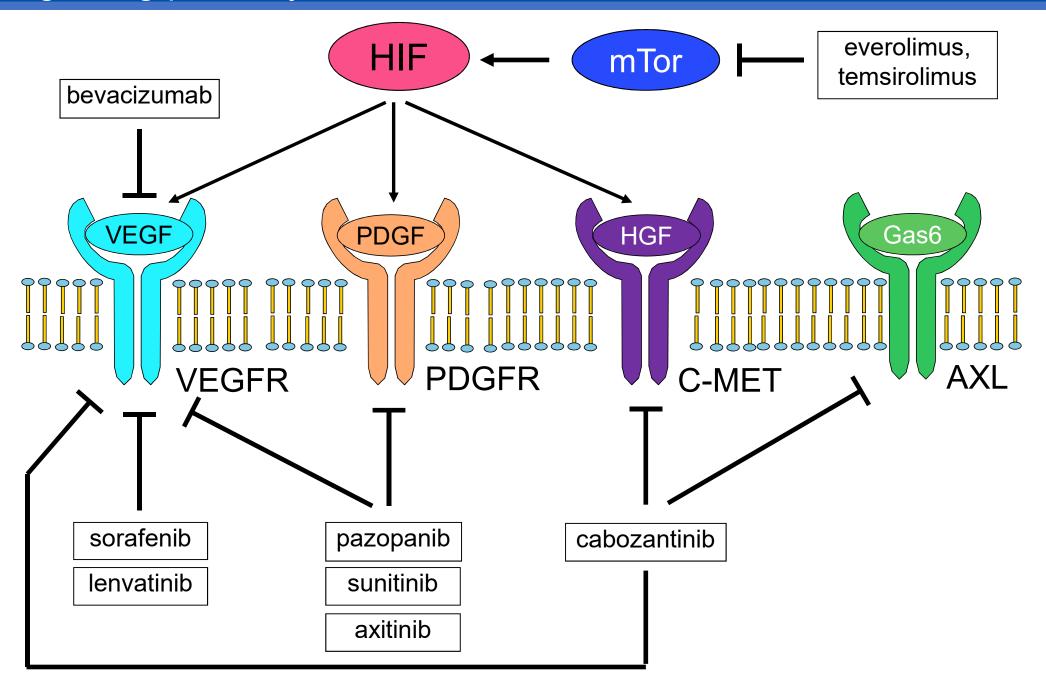
Sequencing therapies in bladder cancer

for Cisplatin-Eligible Patients:

for Cisplatin-Ineligible Patients:

For PD-L1+ cisplatin-ineligible patients, choice is comorbidity/patient choice-directed (no validated biomarkers)

Kidney Cancer Treatment Basics


- Localized disease:
 - Nephrectomy (partial or radical)

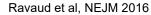
- Metastatic disease:
 - Cytoreductive nephrectomy?
 - Systemic therapies
 - Clear cell vs non-clear cell

How is immunotherapy used in each of these disease states?

Signaling pathways and inhibitors in RCC

Adjuvant therapy

RCC Adjuvant Trials


Clinical Trial	Study Intervention	Duration (years)	N	Clear Cell	Patient Population	Primary Endpoint	Time	Stratification during Study	Imaging	NCT Identifier
ASSURE	Sunitinib vs. sorafenib vs. placebo	1	1943	Or necRCC	pT1b (G3-4), pT2-4, pN+	DFS	Apr 2006- Sep 2010	Histology, Surgery, ECOG PS, Risk	q4.5mo x 1 yr, then q6mo x 2 yr, then q12mo	NCT00326898
S-TRAC	Sunitinib vs placebo	1	615	Only	pT3-4, pN+	DFS	Jul 2007- Nov 2015	UISS Risk, ECOG PS, Country of residence	q3mo x 3 yr,then q6mo	NCT00375674
ARISER	Girentuximab vs. placebo	0.5	864	Only	pT1b-2 (G3-4), pT3-4, pN+	DFS + OS	Jun 2004- Apr 2013	UISS Risk, Region of the world	q3mo x 2 yr,then q6mo x 2 yr,then q12mo	NCT00087022
PROTECT	Pazopanib vs. placebo	1	1540	Only	pT2 (G3-4), pT3-4, pN+	DFS	Nov 2010- Oct 2015	Surgery, Risk	~q4mo x 1 yr,then q6mo x 4 yr,then q12mo	NCT01235962
EVEREST	Everolimus vs. placebo	1	1545	Or neeRCC	pT1b (G3-4), pT2-4, pN+	DFS	Apr 2011- Oct 2021	Histology, ECOG PS, Risk	q4mo x 1yr,then q6mo x 2yr,then q12mo	NCT01120249
SORCE	Sorafenib (1 vs 3 y) vs. placebo	1	1656	OrincoRCC	Intermediate- or high-risk RCC (Leibovich score, 3-11)	DFS	Jun 2007- Aug 2012	Yes (factors N/A)	q6mo x 3 yr	NCT00492258
ATLAS	Axitinib vs. placebo	3	700	Only	pT2-4, pN+	DFS	Apr 2012- Jun 2017	N/A	N/A	NCT01599754
IMmotion 010	Atezolizumab vs. placebo	1	664	Or sarcomatoid dedifferentiation	pT2 (G3-4), pT3a (G4), pT3b-4, pN+, NED after mets surgery	DFS	Jan 2017- Jun 2024	Risk, Region of the world, PD-L1 IHC	q3mo x 3 yr, then q6mo	NCT03024996
PROSPER	Nivolumab (neoadj+adj) vs. observation	0.8	766	Or necRCC	cT2-4, cN+	RFS	Feb 2017- July 2022	Histology, cT, cN	q4.5mo twice, then q6mo x 1 yr,then q12mo	NCT 030550 13

PRESENTED AT: 2017 Genitourinary Cancers Symposium | #GU17 Slides are the property of the author. Permission required for reuse.

Adjuvant Therapy of Renal Cell Carcinoma: Current Controversies – Presented by: Jose A. Karam, MD, FACS

- Only positive study is S-TRAC and only for PFS (not for OS): 6.8 vs 5.6 mo
- Ongoing adjuvant trials with immunotherapy

Cytoreductive nephrectomy

Treatment	n	Response Rate	Overall Survival	Ref
IFN alfa-2B IFN alfa-2B + nephrectomy	85	12% 19%	7 mo 17 mo	1
IFN alfa-2B IFN alfa-2B + nephrectomy	120	3.6% 3.3%	8.1 mo 11.1 mo	2
IFN alfa-2B IFN alfa-2B + nephrectomy	331	5.7% 6.9%	7.8 mo 13.6 mo	3
IL-2 + nephrectomy (retrospective)	89		16.7 mo	4
Sunitinib Sunitinib + nephrectomy	450	29.1% 27.4%	18.4 mo 13.9 mo	5, 6

- Given newest data, cytoreductive nephrectomy should only be done after multidisciplinary discussion with experienced RCC team
- MD Anderson experience⁷: for ≥4 risk factors, no benefit over systemic therapy alone – albumin <normal, symptoms present, liver mets, RP adenopathy, supradiaphragmatic adenopathy, tumor ≥T3, LDH > normal
- Unclear how this relates to immunotherapy which is now the standard of care!

^{1.} Mickisch et al, Lancet 2001, 2. Flanigan et al, NEJM 2001, 3. Flanigan et al, J. Urol 2004, 4. Pantuck et al, NEJM 2001, 5. Méjean et al, NEJM 2018, 6. Motzer and Russo, NEJM 2018, 7. Culp et al, Cancer 2010

Systemic therapy

- Cytokines (IL-2, IFNα)
- Tyrosine kinase inhibition (VEGFR and MET)
- mTor inhibition
- Immune checkpoint inhibition
- Chemotherapy: doesn't work (high MDR expression)

Risk stratification: MSKCC and IMDC criteria

Risk factors	MSKCC	IMDC
Hgb <normal< td=""><td>+</td><td>+</td></normal<>	+	+
Karnofsky < 80	+	+
Corrected Ca > normal	+	+
Time from dx to rx < 1 yr	+	+
LDH > 1.5x normal	+	-
Neutrophils > normal	-	+
Platelets > normal	-	+

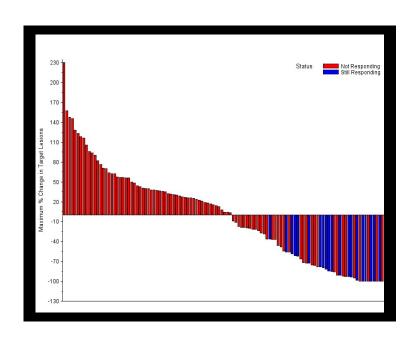
	# of risk	Overall survival (med/2 yr)					
Risk	factors	MSKCC (med)	IMDC (med)	IMDC (2 yr)			
Favorable	0	30 mo	Not reached	75%			
Intermediate	1-2	14 mo	27 mo	53%			
Poor	>2	5 mo	8.8 mo	7%			

- MSKCC criteria were for cytokine era; IMDC for TKI era
- There are other risk factors: eg bony, liver metastases

Motzer et al, JCO 2002; Heng et al, JCO 2009

Cytokine therapies: interleukin-2 and interferon alfa-2B

- Both drugs have broadly activating effects on innate and adaptive immunity
- Both drugs cause flu-like syndromes at low doses
- IL-2 has multiple other effects at high doses
- Rarely used anymore


1. Muss et al, JCO 1987; 2. Minasian et al, JCO 1993; 3. Fyfe et al, JCO 1995; 4. Fyfe et al, JCO 1996; 5. Fisher et al, Cancer J Sci Am 1997; 6. Negrier et al, NEJM 1998; 7. MRCRCC, Lancet 1999; 8. Yang et al, JCO 2003; 9. Negrier et al, Cancer 2007 10. McDermott et al, Clin Cancer Res 2015

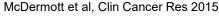
IL-2 trials

Treatment	n	RR	os	notes	Ref
High dose IL-2	255	14%	16.3 mo	4% toxicity-related death Responses at all dz sites	1-3
High dose IL-2 Low dose IL-2 Low dose SQ IL-2	400	21% 13% 10%	No sig diff	Durability of CR responses better w/ HD (p = 0.04)	4
High dose IL-2	120	28%	42.8 mo	7% CR 18% durable responders	5

CWG trial

- 70% MSKCC intermediate risk
- No difference in RR by risk group
- 11% disease free at 3 years

1. Fyfe et al, JCO 1995; 2. Fyfe et al, JCO 1996; 3. Fisher et al, Cancer J Sci Am 1997; 4. Yang et al, JCO 2003; 5. McDermott et al, Clin Cancer Res 2015



IL-2 treatment and toxicity

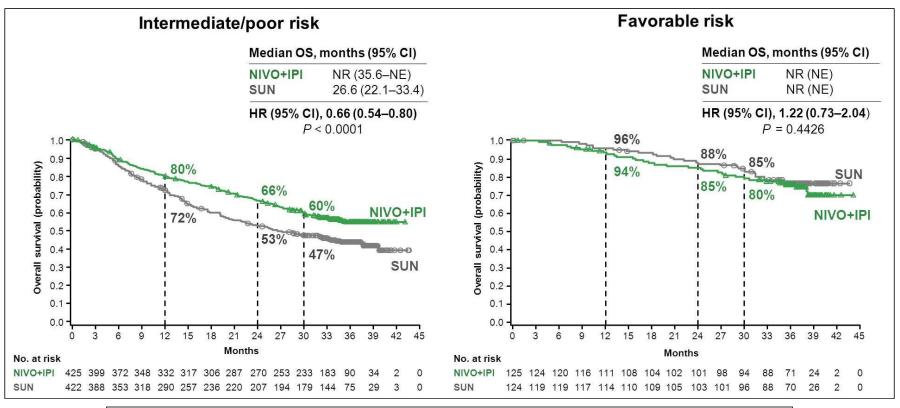
- Given as inpatient:
 - 600,000 or 720,000 IU/kg over 15 minutes q8h
 - Up to 14 doses, skip doses for tolerance
 - Repeat in 5-9 days
 - New cycle q8-12 weeks
- Highly toxic: should only be given at experienced centers
- Toxicities:
 - Capillary leak syndrome
 - Sepsis
 - Hypotension
 - renal failure
 - Confusion/neurotoxicity
 - Cardiac disease

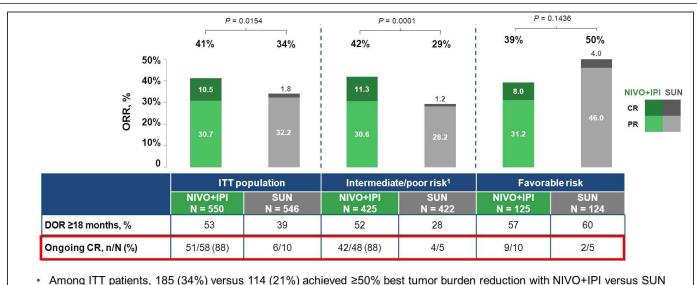
30-Month Follow-Up of the Phase 3 CheckMate 214 Trial of First-Line Nivolumab Plus Ipilimumab or Sunitinib in Patients With Advanced Renal Cell Carcinoma

Nizar M. Tannir,¹ Osvaldo Arén Frontera,² Hans J. Hammers,³ Michael Carducci,⁴ David F. McDermott,⁵ Pamela Salman,⁶ Bernard Escudier,⁷ Benoit Beuselinck,⁸ Asim Amin,⁹ Camillo Porta,¹⁰ Saby George,¹¹ Sergio Bracarda,¹² Scott S. Tykodi,¹³ Thomas Powles,¹⁴ Brian I. Rini,¹⁵ Yoshihiko Tomita,¹⁶ M. Brent McHenry,¹⁷ Sabeen Mekan,¹⁷ Robert J. Motzer¹⁸

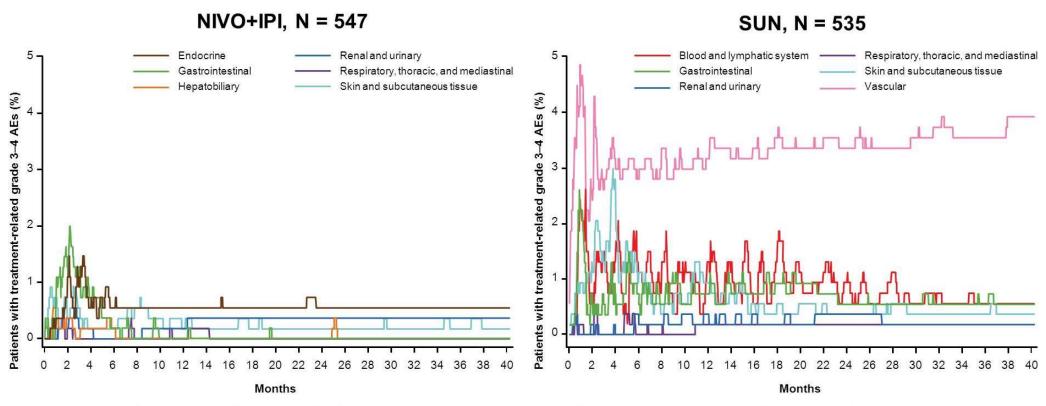
¹University of Texas MD Anderson Cancer Center, Houston TX, USA; ²Centro Internacional de Estudios Clínicos, Santiago, Chile; ³UT Southwestern, Dallas, TX, USA; ⁴Johns Hopkins Medicine - The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; ⁵Beth Israel Deaconess Medical Center, Dana-Farber/Harvard Cancer Center, Boston, MA, USA; ⁶Fundación Arturo López Pérez, Santiago, Chile; ⁷Gustave Roussy, Villejuif, France; ⁸University Hospitals Leuven, Leuven, Belgium; ⁹Levine Cancer Institute, Charlotte, NC, USA; ¹⁰University of Pavia, Pavia, Italy; ¹¹Roswell Park Cancer Institute, Buffalo, NY, USA; ¹²Ospedale San Donato, Azienda Ospedaliera S.Maria, Terni, Italy; ¹³University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹⁴Barts Cancer Institute, London, UK; ¹⁵Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA; ¹⁶Niigata University, Niigata, Japan; ¹⁷Bristol-Myers Squibb, Princeton, NJ, USA; ¹⁸Memorial Sloan Kettering Cancer Center, New York, NY, USA

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19


Slides are property of the author. Permission required for reuse.


Presented By Nizar Tannir at 2019 Genitourinary Cancers Symposium

Checkmate 214 Overall Survival and Response Rates



Tanir et al, GU ASCO 2019

CM214: treatment-related AEs by common organ system

- In the NIVO+IPI arm, 35% of patients received high-dose glucocorticoids (≥40 mg of prednisone per day or equivalent) for select treatment-related AE management
- No additional treatment-related deaths occurred

Presented By Nizar Tannir at 2019 Genitourinary Cancers Symposium

10

Subgroup analysis from JAVELIN Renal 101: outcomes for avelumab + axitinib vs sunitinib in advanced renal cell carcinoma

Toni K. Choueiri,¹ Robert J. Motzer,² Matthew T. Campbell,³ Boris Y. Alekseev,⁴ Motohide Uemura,⁵ Christian K. Kollmannsberger,⁶ Gwenaelle Gravis,⁷ Georg A. Bjarnason,⁸ Howard Gurney,⁹ Jinsoo Chung,¹⁰ John Haanen,¹¹ Brian I. Rini,¹² James Larkin,¹³ Manuela Schmidinger,¹⁴ Franco Nole,¹⁵ Aleksander Chudnovsky,¹⁶ Bo Huang,¹⁷ Subramanian Hariharan,¹⁸ Alessandra di Pietro,¹⁹ and Laurence Albiges²⁰

¹The Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; ²Memorial Sloan Kettering Cancer Center, New York, NY, USA; ³The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Moscow Scientific Research Oncology Institute, Moscow, Russian Federation; ⁵Osaka University Hospital, Osaka, Japan; ⁶British Columbia Cancer Agency, Vancouver Centre, Vancouver, BC, Canada; ⁷Institut Paoli-Calmettes, Marseille, France; ⁸Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; ⁹Macquarie University, NSW, Australia; ¹⁰National Cancer Center, Goyang-Si, South Korea; ¹¹Netherlands Cancer Institute, Amsterdam, Netherlands; ¹²Cleveland Clinical Taussig Cancer Institute, Cleveland, OH, USA; ¹³The Royal Marsden NHS Foundation Trust, London, UK; ¹⁴Medical University of Vienna; Department of Medicine I, Clinical Division of Oncology and Comprehensive Cancer Center, Vienna, Austria; ¹⁵Istituto Europeo Di Oncologia Medical Oncology Division of Urogenital and Head & Neck Tumours, Milano, Italy; ¹⁶Pfizer Inc, Cambridge, MA, USA; ¹⁷Pfizer Inc, Groton, CT, USA; ¹⁸Pfizer Inc, New York, NY, USA; ¹⁹Pfizer SRL, Lombardia, Italy; ²⁰Institut Gustave Roussy, Villejuif, France

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19

Slides are property of the author. Permission required for reuse.

Presented by: Toni K. Choueiri, MD

Abstract no. 544

Presented By Toni Choueiri at 2019 Genitourinary Cancers Symposium

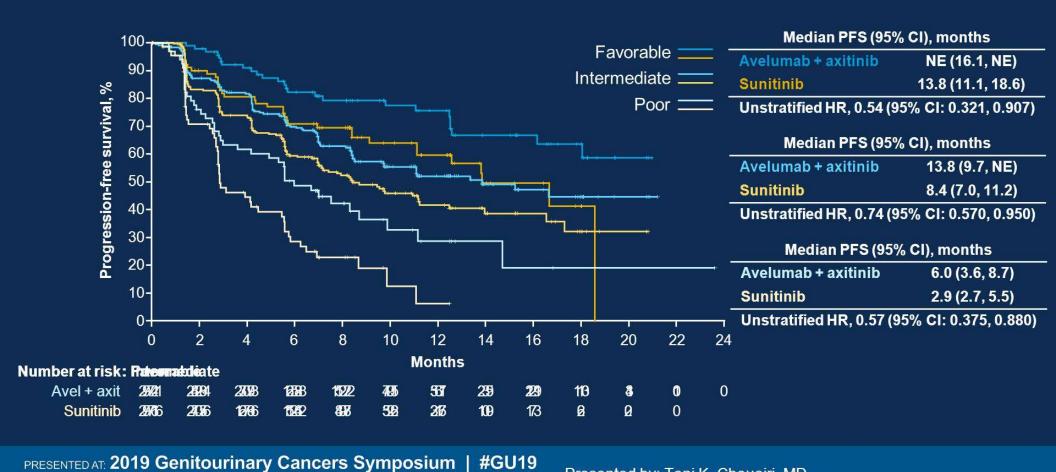
JAVELIN Renal 101 efficacy summary¹

	PD-L1+ group (l	N = 560)	Overall population	n (N = 886)
	Avelumab + axitinib (N = 270)	Sunitinib (N = 290)	Avelumab + axitinib (N = 442)	Sunitinib (N = 444)
PFS per IRC				
Median, months	13.8	7.2	13.8	8.4
95% CI	11.1, NE	5.7, 9.7	11.1, NE	6.9, 11.1
Benefit vs sunitinib (HR; P value)	0.61; P < .0001	-	0.69; P = .0001	-
ORR per IRC, %	55.2	25.5	51.4	25.7
95% CI	49.0, 61.2	20.6, 30.9	46.6, 56.1	21.7, 30.0
PFS per investigator assessment				
Median, months	13.3	8.2	12.5	8.4
95% CI	9.8, NE	6.9, 8.5	11.1, 15.2	8.2, 9.7
Benefit vs sunitinib (HR; P value)	0.51; P < .0001	=	0.64; P < .0001	-)
ORR per investigator assessment, %	61.9	29.7	55.9	30.2
95% CI	55.8, 67.7	24.5, 35.3	51.1, 60.6	25.9, 34.7

IRC, independent review committee; **NE**, not estimable; **ORR**, objective response rate. Data cutoff date: June 20, 2018; median follow-up, 12.0 months (avelumab + axitinib) and 11.5 months (sunitinib). 1. Motzer RJ, et al. ESMO 2018:LBA6_PR.

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19

Slides are property of the author. Permission required for reuse.


Presented by: Toni K. Choueiri, MD

Presented By Toni Choueiri at 2019 Genitourinary Cancers Symposium

PFS per IRC in IMDC prognostic risk groups in the overall population

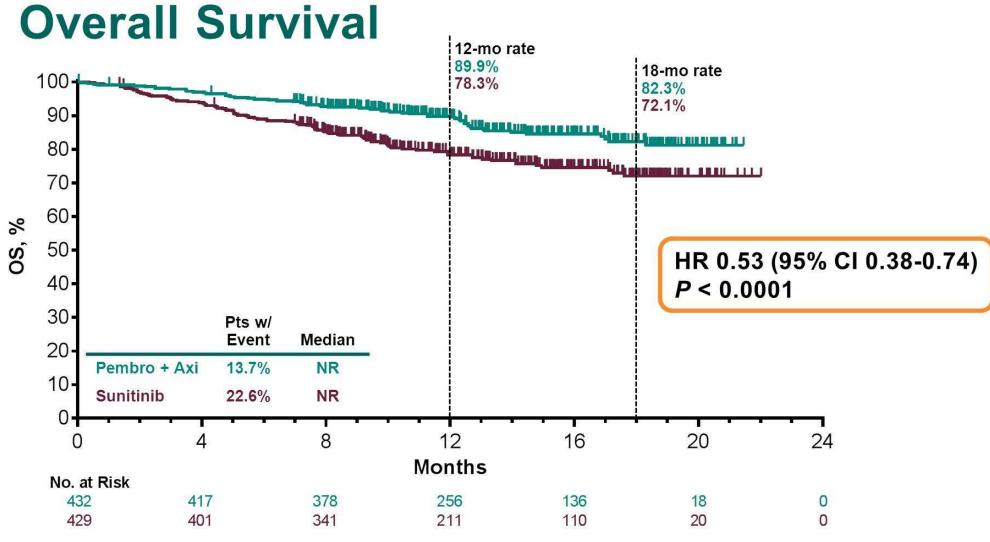
Presented By Toni Choueiri at 2019 Genitourinary Cancers Symposium

Presented by: Toni K. Choueiri, MD

Slides are property of the author. Permission required for reuse.

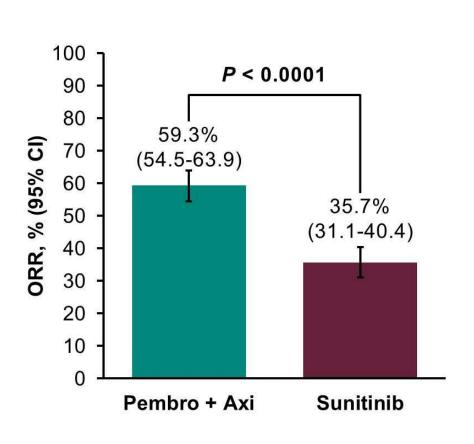
Pembrolizumab plus Axitinib as First-Line Therapy for mRCC: Outcomes in the Combined IMDC Intermediate/Poor Risk and Sarcomatoid Subgroups of KEYNOTE-426

Brian I. Rini,¹ Elizabeth R. Plimack,² Viktor Stus,³ Rustem Gafanov,⁴ Robert Hawkins,⁵ Dmitry Nosov,⁶ Frédéric Pouliot,⁷ Denis Soulières,⁸ Bohuslav Melichar,⁹ Ihor Vynnychenko,¹⁰ Sergio J. Azevedo,¹¹ Delphine Borchiellini,¹² Raymond S. McDermott,¹³ Jens Bedke,¹⁴ Satoshi Tamada,¹⁵ Shuyan Wan,¹⁶ Scot Ebbinghaus,¹⁶ Rodolfo F. Perini,¹⁶ Mei Chen,¹⁶ Michael B. Atkins,¹⁷ Thomas Powles¹⁸


¹Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA; ²Fox Chase Cancer Center, Philadelphia, PA, USA; ³Dnipropetrovsk Medical Academy of Ministry of Health of Ukraine, Dnipro, Ukraine; ⁴Russian Scientific Center of Roentgenoradiology, Moscow, Russia; ⁵The Christie NHS Foundation Trust, Manchester, UK; ⁶Central Clinical Hospital with Outpatient Clinic, Moscow, Russia; ¹CHU de Québec and Université Laval, Quebec City, QC, Canada; ⁶Centre Hospitalier de l'Universitaire de Montréal, Montréal, QC, Canada; ⁶Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic; ¹¹Sumy State University, Sumy Regional Oncology Center, Sumy, Ukraine; ¹¹Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; ¹²Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France; ¹³Adelaide and Meath Hospital and University College Dublin, Dublin, Ireland; ¹⁴Department of Urology, Eberhard-Karls University Tübingen, Tübingen, Germany; ¹⁵Osaka City University Hospital, Osaka, Japan; ¹⁶Merck & Co., Inc., Kenilworth, NJ, USA; ¹³Georgetown–Lombardi Comprehensive Cancer Center, Washington, D.C., USA; ¹³Barts Health and the Royal Free NHS Trusts, Barts Cancer Institute, and Queen Mary University of London, London, UK

Presented By Brian Rini at 2019 ASCO Annual Meeting

Keynote-426: overall survival

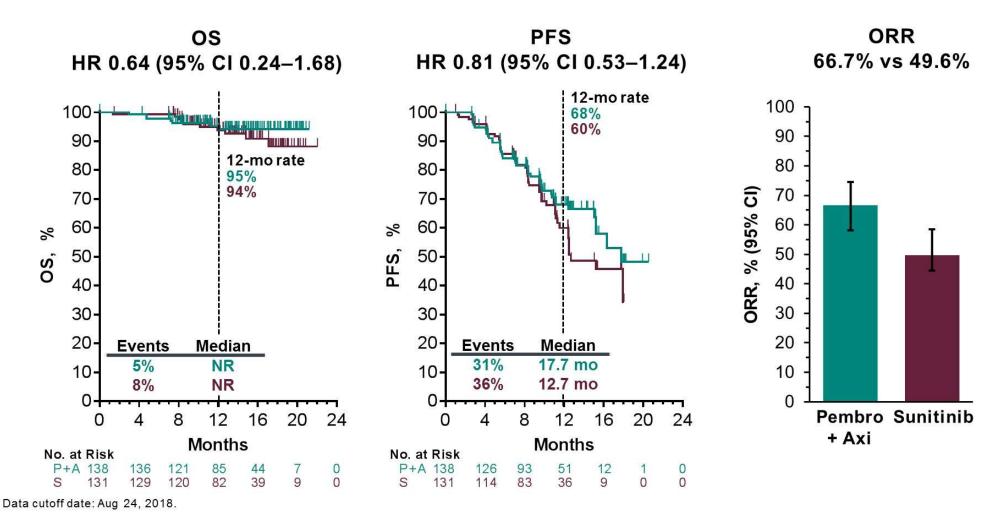

Data cutoff date: Aug 24, 2018.

Presented By Thomas Powles at 2019 Genitourinary Cancers Symposium

Keynote-426: confirmed objective response rate

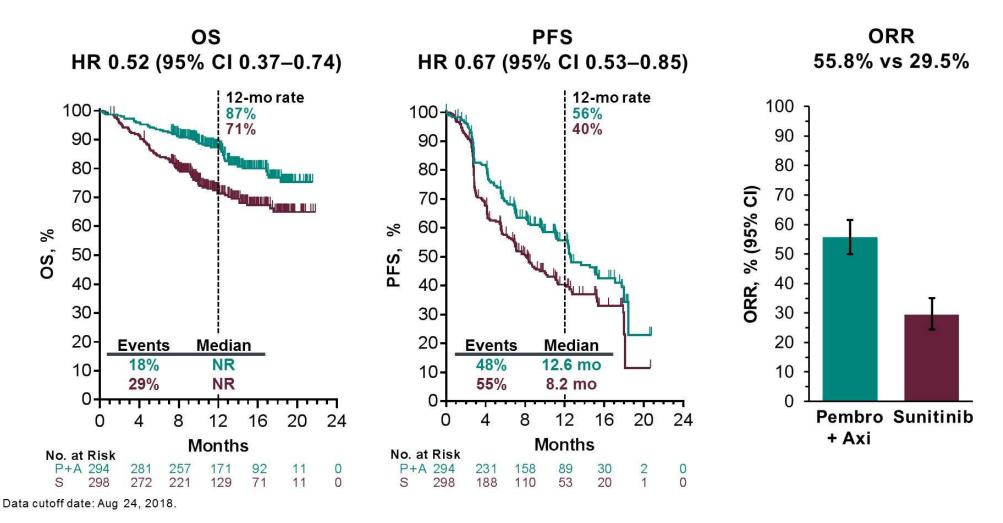
Best Response	Pembro + Axi N = 432	Sunitinib N = 429
CR	25 (5.8%)	8 (1.9%)
PR	231 (53.5%)	145 (33.8%)
SD	106 (24.5%)	169 (39.4%)
PD	47 (10.9%)	73 (17.0%)
NE ^a	8 (1.9%)	6 (1.4%)
NA ^b	15 (3.5%)	28 (6.5%)
Response Duration	N = 256	N = 153
Median (range), mo	NR (1.4+ to 18.2+)	15.2 (1.1+ to 15.4+)

^aPatients who had ≥1 post-baseline imaging assessment, none of which were evaluable per RECIST v1.1 by BICR. ^bPatients who did not have ≥1 post-baseline imaging assessment. Data cutoff date: Aug 24, 2018.


Presented By Thomas Powles at 2019 Genitourinary Cancers Symposium

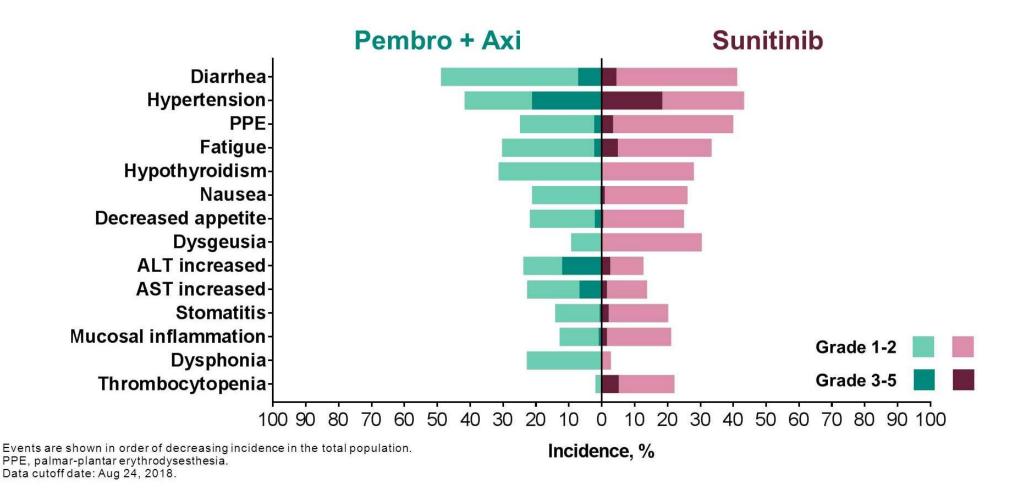
Keynote-426: favorable risk disease

IMDC Favorable Risk: OS, PFS, and ORR


Presented By Brian Rini at 2019 ASCO Annual Meeting

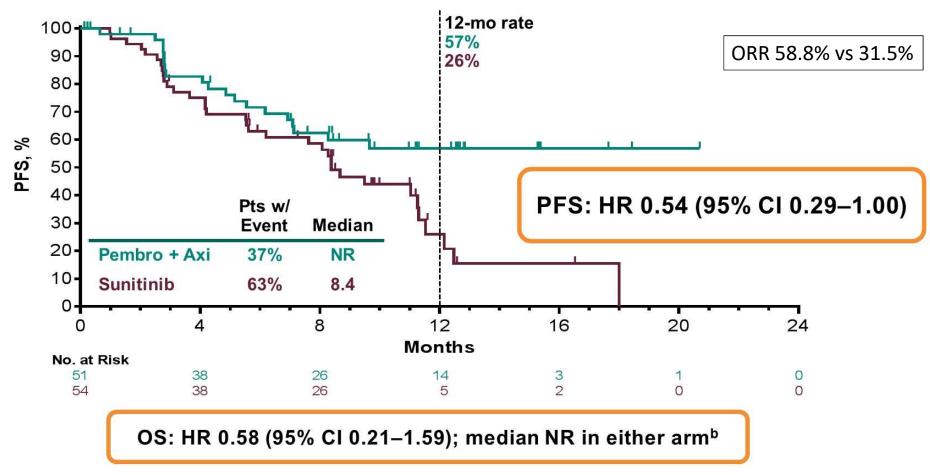
Keynote-426: intermediate/poor risk disease

IMDC Intermediate/Poor Risk: OS, PFS, and ORR



Presented By Brian Rini at 2019 ASCO Annual Meeting

Keynote-426: treatment-related AEs (≥20% incidence)

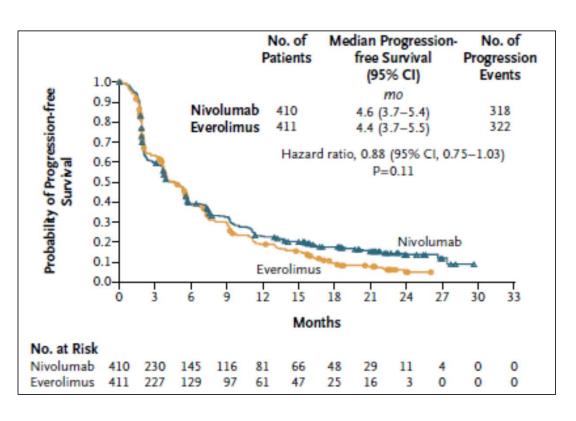

Presented By Thomas Powles at 2019 Genitourinary Cancers Symposium

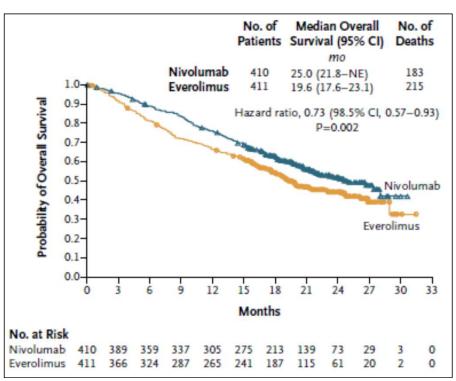
Keynote-426: sarcomatoid disease

PFS: Presence of Sarcomatoid Features^a

^aAmong the 578 participants with known status assessed by local pathology review and as indicated on the eCRF. ^bPts who died: 16% in the pembro + axi arm, 20% in the sunitinib arm. Data cutoff date: Aug 24, 2018.

Presented By Brian Rini at 2019 ASCO Annual Meeting

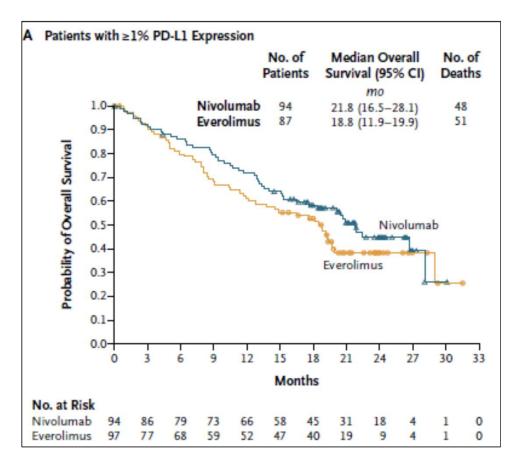


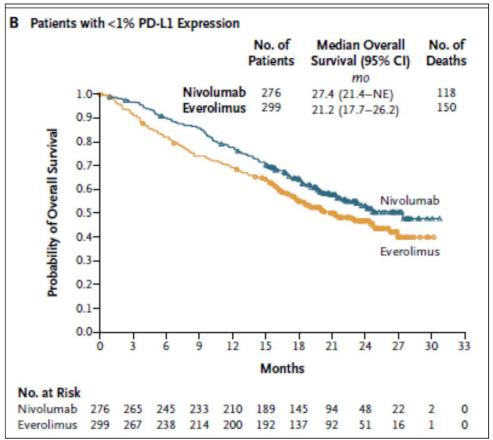


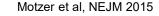
nivolumab vs everolimus (2nd or 3rd line IO naive)

Treatment	n	RR	PFS	os	≥G3 AEs
nivolumab 3 mg/kg q3 wk	410	25%	4.6 mo	25.0 mo	19%
temsirolimus 10 mg po qd	411	5%	4.4 mo	19.6 mo	37%

OS HR 0.73, p=0.002


OS benefit, but no PFS benefit!


Motzer et al, NEJM 2015



Nivolumab: PD-L1 expression prognostic but not predictive

Non-clear cell carcinoma response rates

Treatment	unclassified	papillary	chromophobe	sarcomatoid
atezolizumab/ bevacizumab	26%	25%	10%	44%
savolitinib/ durvalumab		27%		
pembrolizumab	34.6%	25.4%	9.5%	
pembrolizumab/ axitinib				58.8%
sunitinib				31.5%

Treatment	PDL1+	PDL1-	ref
atezolizumab/ bevacizumab	64%	20%	1
savolitinib/ durvalumab	38%	24%	2
pembrolizumab	33%	10%	3

1. McKay et al, GU ASCO 2019; 2. Powles et al, GU ASCO 2019; 3. McDermott et al, GU ASCO 2019

Treatment: intermediate/poor risk clear cell RCC

Ipilimumab/Nivolumab → To H

1st line

TKI or High dose IL-2

Axitinib/Pembrolizumab
or
Axitinib/Avelumab?

Sunitinib
Pazopanib
Cabozantinib
High dose IL-2

Cabozantinib ———

Axitinib
Nivolumab
Ipi/Nivo
Axi/Pembro
Axi/Avelumab?

TKI

High Dose IL-2 →

or Ipi/Nivo Nivo Axi/Pembro Axi/Avlumab?

3rd line

If patient has not seen IO:

Nivo or Ipi/Nivo

If patient has had IO and TKI:

- 2nd line TKI or
- Lenvatinib/Everolimus

4th + lines

- Temsirolimus
- Everolimus
- Bevacizumab/IFN
- Or retry IO (Nivo)

AT YALE-NEW HAVEN

Treatment: good risk clear cell RCC

1st line 2nd line **Sunitinib Pazopanib** Axitinib/Pembrolizumab Cabozantinib or High dose IL-2? Axitinib/Avelumab? Ipi/Nivo **Sunitinib** Pazopanib Ipilimumab/Nivolumab Cabozantinib High dose IL-2 Ipi/Nivo Nivo Axi/Pembro Sunitinib High Dose IL-2 Pazopanib Cabozantinib

Cabozantinib

Cabozantinib

Axi/Pembro
Axitinib
Nivolumab
Axi/Avelumab?

Axi/Avelumab?

3rd line

If patient has not seen IO:

- Nivo or Ipi/Nivo

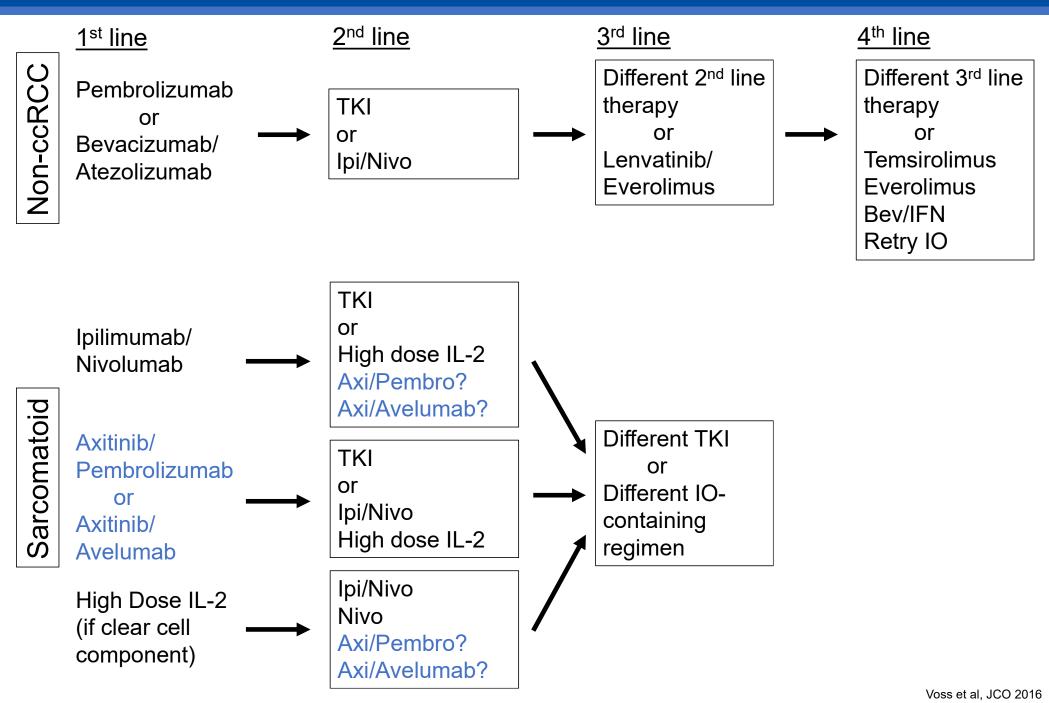
If patient has had IO and TKI:

 2nd line TKI: Axitinib, Cabozantinib, Lenvatinib/Everolimus

4th + lines

- Temsirolimus
- Everolimus
- Bevacizumab/IFN
- Or retry IO (nivo, pembro)

Other considerations:


- For Good Risk, can sometimes observe at first
- IL-2 might have worse outcomes after TKI

Voss et al, JCO 2016

Treatment: non-clear cell or sarcomatoid

Thanks for listening

Targeted Therapies: TKIs and mTor inhibitors

it line

Treatment	n	RR	PFS	os	ref
IFNα	363	NR	NR	17.4 mo	1
IFNα + bevacizumab	369	NR	NR	18.3 mo	
IFNα	327	NR	NR	21.3 mo	2
IFNα + bevacizumab	322	NR	NR	23.3 mo	
ΙΕΝα	375	6%	5 mo	22 mo	3
Sunitinib	375	31%	11 mo	26 mo*	
placebo	145	3%	4.2 mo	NR	4
Pazopanib	290	30%	9.2 mo*	NR	
Sunitinib	78	18%	5.6 mo	21.8 mo	5
Cabozantinib	79	46%	8.2 mo*	30.3 mo	
ΙΕΝα	207	4.8%	1.9 mo	7.3 mo	6
Temsirolimus/IFNα	209	8.1%	3.7 mo	8.4 mo	
Temsirolimus	210	8.6%	3.8 mo*	10.9 mo*	
Sorafenib	362	9%	4.7 mo	NR	7
Axitinib	362	19%	6.7 mo*	NR	
Everolimus	328	5%	3.8 mo	NR	8
Cabozantinib	330	21%	7.4 mo*	NR	
Lenvatinib	52	27%	7.4 mo	18.4 mo	9
Everolimus	50	6%	5.5 mo	17.5 mo	
Lenvatinib/Everolimus	51	43%	14.6 mo*	25.5 mo*	
Placebo	138	0%	1.9 mo	8.8 mo	10
Everolimus	272	1%	4.0 mo*	not reached	

*statistically significant

^{1.} Rini et al, JCO 2010; 2. Escudier et al, JCO 2010; 3. Motzer et al, NEJM 2007; 4. Sternberg et al, JCO 2010; 5. Choueiri et al, JCO 2016; 6. Hudes et al, NEJM 2007; 7. Rini et al, Lancet 2011; 8. Chouieri et al, NEJM 2015; 9. Motzer et al, Lancet Oncology 2015; 10. Motzer et al. Lancet 2008

Adverse effects of non-immune therapies

Tyrosine Kinase Inhibitors

Side effect	management
Fatigue	Supportive
Diarrhea	Anti-diarrheals
Nausea	Anti-nausea meds
Dyspepsia	Supportive
Stomatitis	Supportive
Hypertension	Anti-hypertensive
Proteinuria	Dose reduction
Decreased EF	Hold medication
Hypothyroidism	Replacement
Lymphopenia	Monitor
Hyperlipasemia	Monitor

mTor inhibitors

Side effect	Laboratory Abnormalities
Stomatitis	Hypercholesterolemia
Rash	Hypertriglyceridemia
Fatigue	Hyperglycemia
Asthenia	Hypophosphatemia
Diarrhea	
Pneumonitis	

Chen and Cleck, Nature Rev Clin Oncol 2009; Jonasch et al, JCO 2018

Adverse Events (select treatment-emergent in ≥5%)

AE Town	Placebo (n=52)		Pembrolizumab (n=55)			
AE Term	Grade 1-2	Grade 3	Grade 4	Grade 1-2	Grade 3	Grade 4
Any adverse event	58%	35%	0%	38%	42%	11%
Fatigue	39%	0%	0%	31%	7%	0%
Anorexia	14%	0%	0%	16%	2%	0%
Dry mouth	0%	0%	0%	11%	0%	0%
ALT increased	2%	0%	0%	11%	4%	2%
AST increased	10%	0%	0%	15%	5%	0%
Diarrhea	19%	0%	0%	35%	0%	0%
Hypothyroidism	4%	0%	0%	9%	0%	0%
Pruritis	13%	0%	0%	22%	2%	0%
Rash	8%	0%	0%	22%	0%	0%
Dyspnea	14%	0%	0%	22%	5%	0%
Renal insufficiency	24%	0%	0%	29%	2%	0%

^{*} One patient randomized to pembrolizumab developed fatal immune-related hepatitis

#ASCO19

PRESENTED BY: Matthew D. Galsky, MD

Objective Response Rate (RECIST 1.1)

Characteristic	Placebo (n=52)	Pembrolizumab (n=55)
Not evaluable (baseline CR)	10	9
Overall response	12%	22%
Partial response	12%	13%
Complete response	0	9%
Stable disease	29%	35%
Progressive disease	54%	33%
Unknown	5%	10%

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Matthew D. Galsky, MD

Adding ipilimumab to nivolumab at progression?

- 10 patients with progression of disease on nivolumab
- 1 PR, 4 SD after addition of ipilimumab
- Modest increase in grade 3/4 toxicities

Safety and efficacy of nivolumab in metastatic renal cell carcinoma Final analysis from the NIVOREN GETUG AFU 26 study

L. Albiges, S. Negrier, C. Dalban, C. Chevreau, G. Gravis, S. Oudard, B. Laguerre, P. Barthelemy, D. Borchiellini, M. Gross-Goupil, L. Geoffrois, F. Rolland, A. Thiery-Vuillemin, F. Joly, S. Ladoire, F. Tantot, B. Escudier on behalf of the GETUG

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19

Slides are property of the author. Permission required for reuse

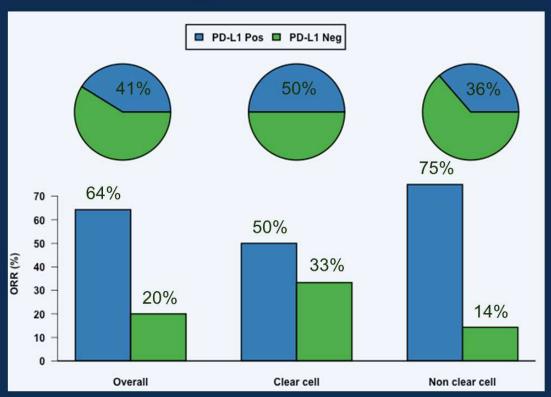
Presented By Laurence Albiges at 2019 Genitourinary Cancers Symposium

Nivolumab monotherapy: real-world results

Summary of the findings

	CheckMate 025	GETUG- AFU 26 NIVOREN
n	406	720
Median FUp	14 mo (minimum Fup)	23.9 mo
Median PFS	4.6 mo	3.7 mo
Median OS	25.0 mo	24.5 mo
ORR SD PD	25% 34% 35%	21.0% 31.1% 47.9%
Ttt beyond progression	44%	47.0%
Grade ≥3 TRAEs	19%	17.9%

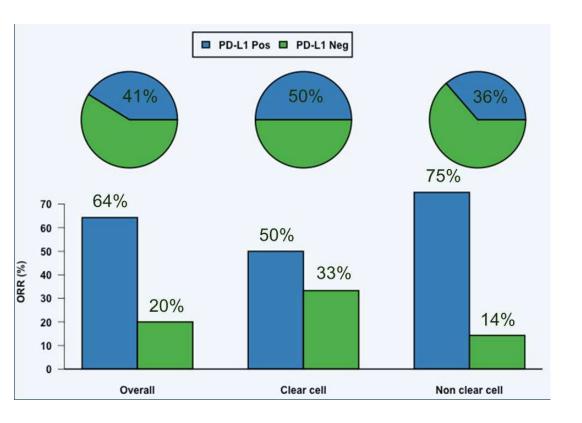
PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19 Slides are property of the author. Permission required for reuse.


Presented by: Laurence Albiges, MD PhD

Presented By Laurence Albiges at 2019 Genitourinary Cancers Symposium

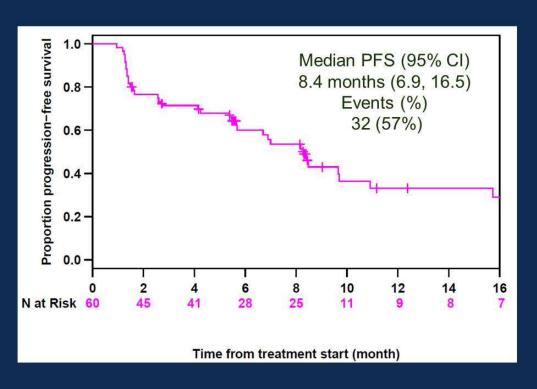
ORR by PD-L1 Staining Status

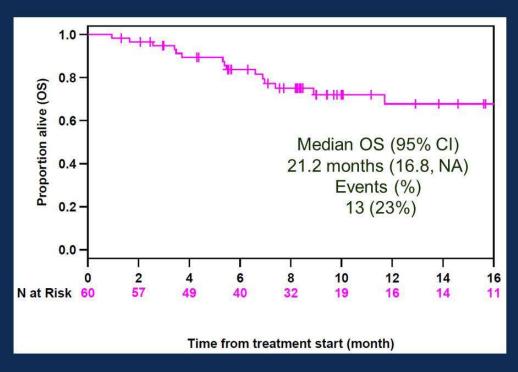
	Non- Clear Cell (n=22)	Clear Cell SD (n=12)	Total (n=34)
PD-	36%	50%	41%
L1+	(n=8/22)	(n=6/12)	(n=14/34)


SD=Sarcomatoid differentiation; PD-L1=Programmed death ligand 1. 9A11 antibody used for PD-L1 staining. The percent PD-L1 positive tumor cells (score) was calculated using the formula: Number PD-L1 Positive Tumor Cells/Total Number Tumor Cells . A score ≥1 was positive (Yes versus No).

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19 Slides are property of the author. Permission required for reuse.

Presented by: Rana R. McKay





PFS and OS

PFS=Progression-free survival; CI=Confidence interval, OS=Overall survival. Median follow-up time is 9.7 months.

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19 Slides are property of the author. Permission required for reuse.

Presented by: Rana R. McKay

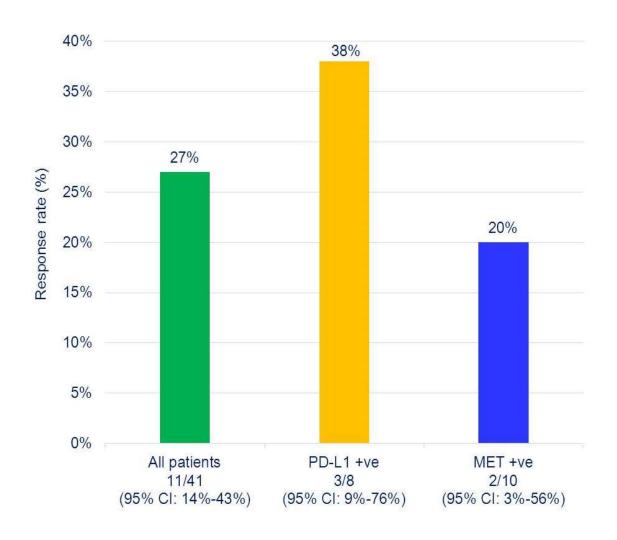
A phase I/II study investigating the safety and efficacy of savolitinib and durvalumab in metastatic papillary renal cancer (CALYPSO)

Thomas Powles¹, James M. G. Larkin², Poulam Patel³, Begoña Pérez-Valderrama⁴, Alejo Rodriguez-Vida⁵, Hilary Glen⁶, Fiona Thistlethwaite⁷, Christy Ralph⁸, Gopalakrishnan Srinivasan⁹, Maria Jose Mendez-Vidal¹⁰, Wing-Kin Liu¹¹, Aaron Prendergast¹, Laura Vosper¹, Kelly Mousa¹, Cristina Suárez¹²

> Presented by: Dr Cristina Suárez, MD PhD Hospital Universitari Vall d'Hebron – Vall d'Hebron Institute of Oncology

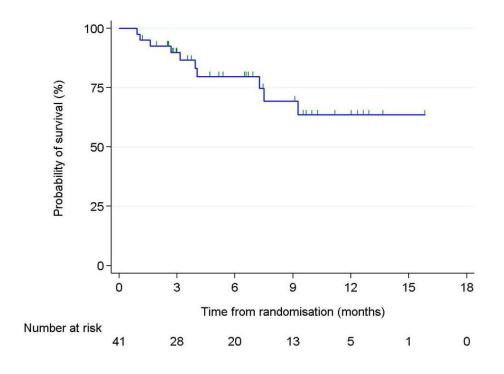
¹Barts Cancer Institute, Queen Mary University of London, London, UK; ²The Royal Marsden NHS Foundation Trust, London, UK; ³ Nottingham University Hospital NHS Trust, Nottingham, UK; 4 Hospital Universitario Virgen del Rocío, Seville, Spain; 5 Hospital del Mar, Barcelona, Spain; 6 Beatson West of Scotland Cancer Centre, Glasgow, UK; 7 The Christie NHS Foundation Trust and University of Manchester, UK; 8St. James's Institute of Oncology, University of Leeds, Leeds, UK; 9Mid-Essex Hospital Services NHS Trust, Broomfield, UK; ¹⁰Hospital Reina Sofia, Cordoba, Spain; ¹¹Barts Hospital NHS Trust, London, UK; ¹²Hospital University Vall D Hebron General, Barcelona, Spain

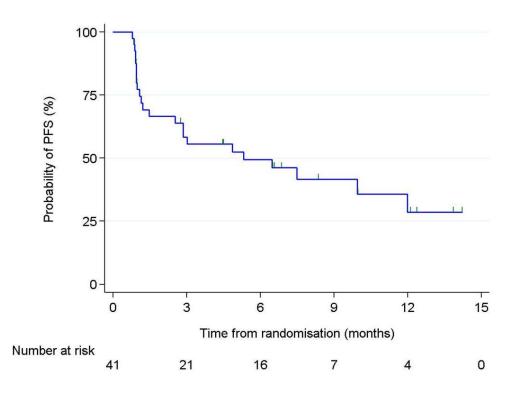
Presented at: 2019 Genitourinary Cancers Symposium | #GU19 Please contact t.powles@gmul.ac.uk for permission to reprint and/or distribute


Presented by: Dr Cristina Suárez

Presented By Cristina Suarez at 2019 Genitourinary Cancers Symposium

Calypso (savolitinib/durvalumab): response rates


Presented By Cristina Suarez at 2019 Genitourinary Cancers Symposium



Calypso: interim survival analyses

Median OS in months (95% CI) = NR (7.5 - NR)

Median PFS (95% CI) = 5.3 months (1.5 – 12.0)

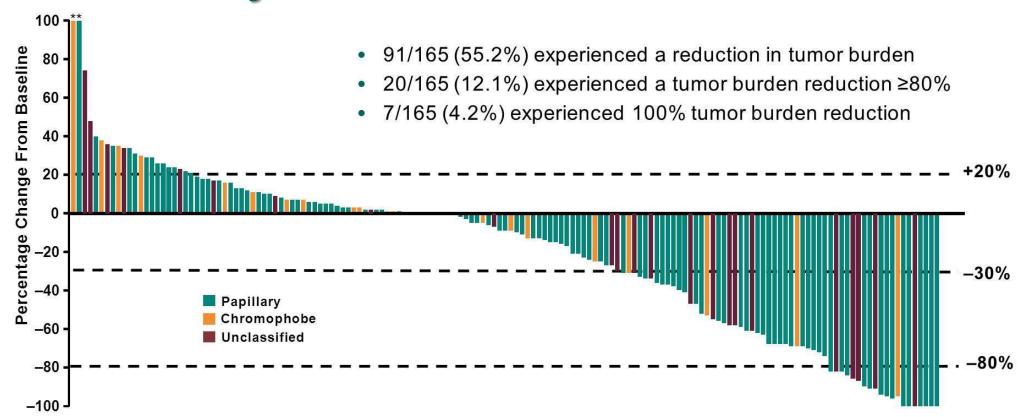
Presented By Cristina Suarez at 2019 Genitourinary Cancers Symposium

First-Line Pembrolizumab Monotherapy for Advanced Non-Clear Cell Renal Cell Carcinoma: Results From KEYNOTE-427 Cohort B

- D. McDermott¹; J.-L. Lee²; M. Ziobro³; R. Gafanov⁴; V. B. Matveev⁵; C. Suarez⁶; F. Donskov⁷; F. Pouliot⁸;
- B. Y. Alekseev⁹; P. Wiechno¹⁰; P. Tomczak¹¹; M. A. Climent¹²; S. J. Shin¹³; R. Kloss Silverman¹⁴;
- R. F. Perini¹⁴; C. Schloss¹⁴; M. B. Atkins¹⁵

¹Beth Israel Deaconess Medical Center, Boston, MA, USA; ²Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea; ³Centrum Onkologii-Instytut im. Marii Sklodowskiej, Cracow, Poland; ⁴Russian Scientific Center of Roentgenoradiology, Moscow, Russian Federation; ⁵N.N. Blokhin Russian Cancer Research Center, Moscow, Russia Federation; ⁶Vall d'Hebron University Hospital and Institute of Oncology, Universitat Authonma de Barcelona, Barcelona, Spain; ⁷Aarhus University Hospital, Aarhus, Denmark; ⁸CHU de Quebec and Laval University, Quebec, ON, Canada; ⁹P. A. Herzen Moscow Oncology Research Institute, Ministry of Health of the Russian Federation, Moscow, Russian Federation; ¹⁰Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland; ¹¹Clinical Hospital No. 1 of the Poznan University of Medical Sciences, Poznan, Poland; ¹²Instituto Valenciano de Oncología, Valencia, Spain; ¹³Yonsei University College of Medicine, Seoul, Republic of Korea; ¹⁴Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁵Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA

ORR by Confirmed RCC Histology per Blinded Independent Central Review

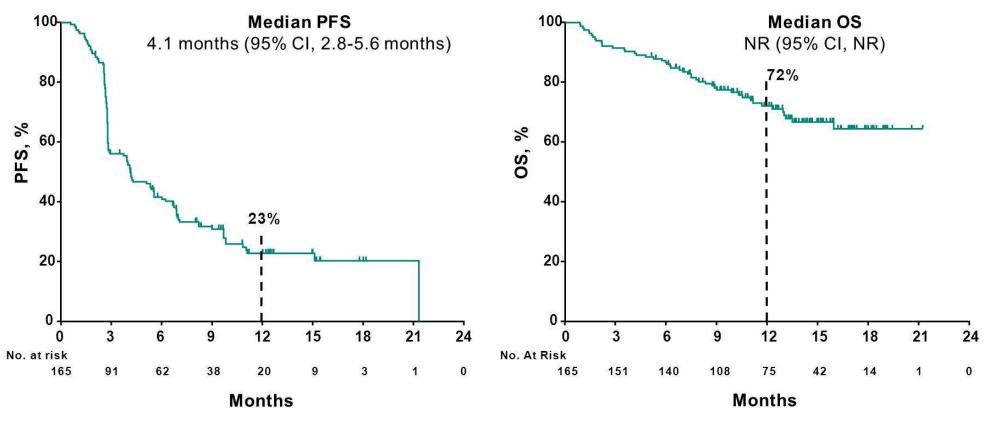

	Papillary n = 118	Chromophobe n = 21	Unclassified n = 26
Confirmed ORR, % (95%CI)	25.4 (17.9-34.3)	9.5 (1.2-30.4)	34.6 (17.2-55.7)
DCR, % (95%CI) ^a	43.2 (34.1-52.7)	33.3 (14.6-57.0)	34.6 (17.2-55.7)
Confirmed BOR, %			
CR	4.2	4.8	7.7
PR	21.2	4.8	26.9
SD	34.7	47.6	7.7
PD	33.9	42.9	46.2
No assessment ^b	5.1	0.0	7.7
Not evaluable ^c	0.8	0.0	3.8

^aDCR = CR + PR + SD ≥6 months. ^bIncludes patients who discontinued or died before first postbaseline scan. ^cIncludes patients with insufficient data for response assessment. Database cutoff: September 7, 2018.

Maximum Change From Baseline in Target Lesions by Central Review

Includes patients who received ≥1 dose of pembrolizumab, had a baseline scan with measurable disease per RECIST v1.1, and had a postbaseline assessment (n = 155). *Patient had an increase in target lesions above 100%. Database cutoff: September 7, 2018.

ORR by PD-L1 Expression


	CPS ≥1 n = 102	CPS <1 n = 58
Confirmed ORR, % (95%CI)	33.3 (24.3-43.4)	10.3 (3.9-21.2)
DCR, % (95%CI) ^a	49.0 (39.0-59.1)	25.9 (15.3-39.0)
Confirmed BOR, %		
CR	5.9	3.4
PR	27.5	6.9
SD	26.5	41.4
PD	33.3	43.1
No assessment ^b	4.9	5.2
Not evaluable ^c	2.0	0.0

^aDCR = CR + PR + SD ≥6 months. ^bIncludes patients who discontinued or died before first postbaseline scan. ^cIncludes patients with insufficient data for response assessment. Database cutoff: September 7, 2018.

Progression-Free Survival and Overall Survival in the Total Population

Database cutoff: September 7, 2018.

Abstract 548 (244057): Results of a Phase II Study of Atezolizumab and Bevacizumab in Non-Clear Cell Renal Cell Carcinoma and Clear Cell Renal Cell Carcinoma with Sarcomatoid Differentiation NCT02724878

Rana R. McKay, Bradley A. McGregor, Kathryn Gray, John A. Steinharter, Meghara K. Walsh, David A. Braun, Abdallah Flaifel, Eliezer M. Van Allen, Xiao X. Wei, Sabina Signoretti, Lauren C. Harshman, Ulka N. Vaishampayan, Toni K. Choueiri

University of California San Diego, San Diego, CA; Dana-Farber Cancer Institute, Boston, MA; Karmanos Cancer Institute, Detroit, MI

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19 Slides are property of the author. Permission required for reuse.

Presented by: Rana R. McKay

Objective Response Rate

	ORR
Overall	34% (n=19/56)*
Prior Treatment	
Treatment Naïve	31% (n=11/36)
Previously Treated	40% (n=8/20)
IMDC Risk Group	
IMDC Favorable Risk	33% (n=3/9)
IMDC Intermediate Risk	42% (n=14/33)
IMDC Poor Risk	14% (n=2/14)

	ORR
Clear Cell SD	53% (n=9/17)
Non-Clear	26% (n=10/39)
Sarcomatoid Present	44% (n=11/25)
Sarcomatoid Absent	26% (n=8/31)
Papillary	25% (n=3/12)
Chromophobe	10% (n=1/10)
Unclassified	29% (n=2/7)
Other#	30% (n=3/10)

Analytical cohort includes patient with at least 1 scan assessment. *Confirmed 23% (n=13/56). Complete response=2 (3.6%). #Translocation, Collecting Duct, Medullary. IMDC=International Metastatic Renal Cell Carcinoma Database Consortium; SD=Sarcomatoid Differentiation.

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19 Slides are property of the author. Permission required for reuse.

Presented by: Rana R. McKay

