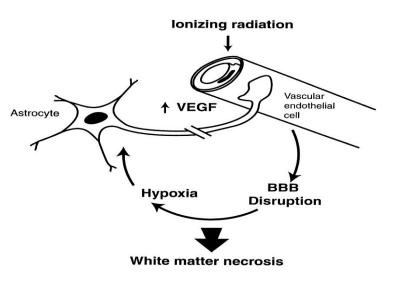
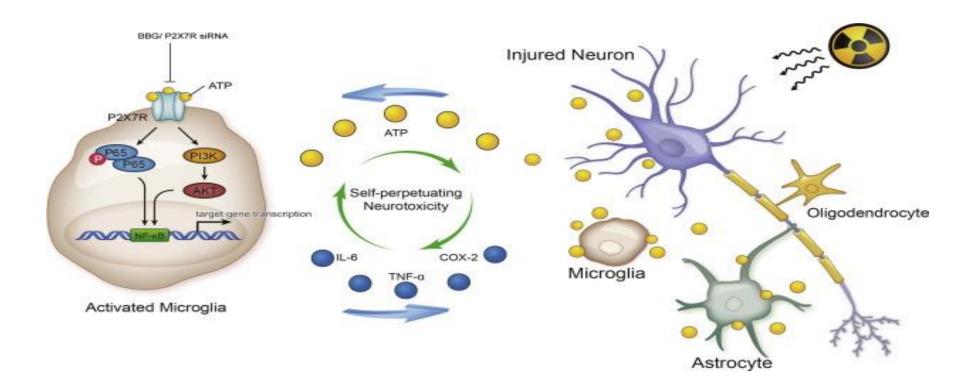
Long Term Effects of Cranial Radiotherapy

Gregg Goldin, MD 3/24/18

Definition

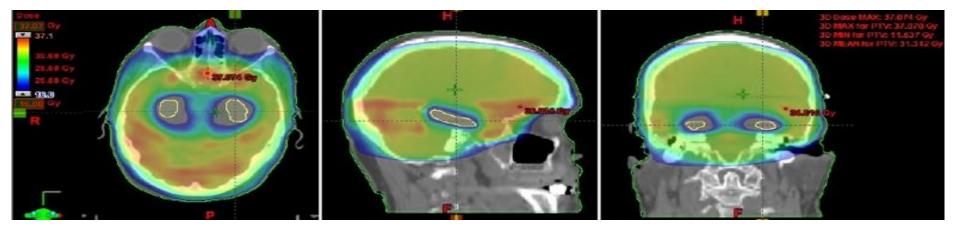

- acute effects: during radiation and/or up to six weeks afterwards
- early-delayed effects: six weeks to six months after radiation, and
- late effects: six months or more after the completion of radiation

Pathophysiology


 vasculature of the brain as well as the direct effects on neuroglial cells and their precursors, including stem cells [1]. In addition, inflammation and blood-brain barrier disruption, induced by radiation, may also cause direct or indirect cellular damage

Pathophysiology

Vascular endothelial cell damage
 Fibrinoid necrosis of small vessels



Capillary Leakage Demyelination of brain VEGF released in to hypoxia further disrupts BBB

Proliferating Neuroglial Progenitor Cells

- Evidence suggests that radiation is cytotoxic to proliferating neuroglial progenitor cells
- Loss of neurogenesis could lead to delayed cognitive deficits... rationale for hippocampal avoidance

Risk Factors

- Volume of Brain Treated
- **Total Radiation Dose**
- **Dose Per Fraction**
- **Concurrent Medications**

Underlying Host Variables (e.g. age, genetics, comorbidities)

Radiation Necrosis

- Onset: Typically 1-3 years after radiation
- Dose Threshold: 5% risk at about 72 Gy (@ 2 Gy/fraction)
- Higher incidence after SRS or when systemic therapy is used concurrently
- Symptoms range from focal to generalized deficits, mild to severe

Radiation Necrosis: Diagnosis

- Diagnosis difficult by imaging, hard to differentiate necrosis from recurrent tumor
 - Typical MRI appearance = enhancing lesion with central necrosis and reactive edema
 - Lack of mass lesion and/or high proportion of edema suggestive
 - Test of time may help
 - Advanced technology may help
 - Perfusion-weighted MRI
 - Diffusion-weighted MRI
 - Magnetic Resonance Spectroscopy
 - PET
- Biopsy may be needed for definitve diagnosis

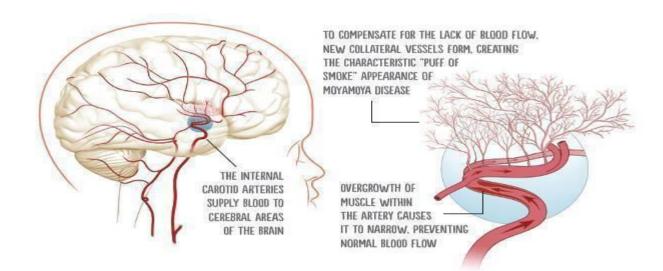
Radiation Necrosis: Treatment

- Self-limited and low grade in many cases
- Initial treatment: Steroids (4-8 mg PO Decadron daily)
- Steroid refractory patients may be treated with Bevacizumab or interstitial laser thermal therapy
- Surgical resection reserved for diagnosis or medically refractory patients

Neurocognitive Effects

- Early-delayed: 3 months 1 year
 - Numerous studies on whole brain radiotherapy show >5 point drop in Hopkins Verbal Learning test scores (Short term recall and verbal fluency) and worsened QoL outcomes at 4 month time points, which persist up to 1 year
- Long term effects: 1 year or longer
 - Difficult to study because population has poor prognosis and there are multiple potentially confounding variables (chemo, surgery, baseline function, comorbidities, etc.)
 - Diffuse white matter changes seen for nearly all patients receiving whole brain RT doses of > 20 Gy ; severity of symptoms correlate with degree of radiographic changes
 - When severe, could lead to ataxia, confusion, memory loss, dementia, and rarely death

Neurocognitive Effects: Evaluation


- Thorough history and physical to identify and treat contributing factors
- Formal neurocognitive and neuropsych testing usually not necessary unless it is needed to establish a baseline (e.g. neurocognitive rehab is planned)
- Important to review imaging as potentially reversible causes of cognitive decline include brain tumors and hydrocephalus
- Rarely vitamin deficiencies, metabolic abnormalities, or thyroid dysfunction may be the culprit

Neurocognitive Effects: Treatment

- Pharmacologic interventions have been tested in randomized trials with mixed results
- Individualize treatment decisions:
 - Methylphenidate and Modafinil may be preferential for patients with profound fatigue or poor motivation
 - Donepezil or Memantine for patients with prominent memory impairment

Cerebrovascular Effects

- Occlusive or hemorrhagic stroke, cavernous malformations
- Children more susceptible, supraclinoid region of the internal carotid artery and the circle of Willis are especially vulnerable

Radiation Induced Visual Disturbance

- **Cataracts** –low doses to the lens (50% develop after 10 Gy), 2-8 years after treatment, correlated with steroid use
- Optic Neuropathy painless monocular or bilateral impairment, 6-24 months after treatment. Dependent on dose and fractionation
 - <55 Gy: incidence unusual</p>
 - 55-60 Gy: 3-7% incidence
 - >60 Gy: 7-20%
- Xerophthalmia correlated w/ dose to lacrimal gland, increases w/ doses > 30 Gy
- Retinopathy correlated w/ dose to retina, use of chemo, and presence of diabetes. Dose threshold around 45 Gy

Ototoxicity

- Acute: Tinnitus and High Frequency Hearing Loss occasional occur. Related to otitis media and Eustachian tube edema. Symptoms resolve spontaneously but myringotomy may be needed for symptom relief
- Late: Sensorineural damage correlated with age, use of cisplatin, and dose to cochlea (~35 Gy dose threshold)
 - Cochlear implant can be considered

Endocrinopathies

- Hypothalamus and pituitary dysfunction:
 - Dose threshold about 20 Gy
 - Variable time course, abnormal serum hormone levels typically long precede clinical symptoms
 - Baseline post-treatment and annual bloodwork to screen for dysfunction
 - Most common abnormalities (in decreasing order):
 GH, GnRH, Prolactin, ACTH, TSH

Radiation Induced Malignancy

- Meningiomas, gliomas, nerve sheath tumors, sarcomas
- Risk proportional to radiation dose
- Very rare, but Likely that number of cases will increase as patient survival continues to improve