

Managing the Newly Diagnosed Patient in 2020

Sergio Giralt, MD Melvin Berlin Family Chair in Myeloma Research Professor of Medicine Weill Cornell Medical College Chief Attending, Adult BMT Service Memorial Sloan Kettering Cancer Center

> St Francis Hospital Grand Rounds Eastern Hills, New York January 16, 2020

Disclosures

- Consultancy
 - AMGEN, Jazz, Takeda, Novartis, KITE, Sanofi, CELGENE, Pfizer, GSK, Omeros, Acrotech,
 Actinuum
- Research Support
 - AMGEN, Takeda, Novartis, Sanofi, CELGENE, Pfizer, GSK, Actinuum, Miltenyi
- I am a transplanter

Initial Presentation

- 75-year-old woman
- κ light chain multiple myeloma diagnosed January 2019
 - Durie-Salmon Stage IIIA, ISS Stage 2
- Laboratory findings
 - Total proteinuria 5.82 g/day
 - Bence Jones protein (BJP) 3.6 g/day
 - Hypogammaglobulinemia
 - Albumin 3.9 g/dL
 - β2-microglobulin 4.7 mg/L
 - Creatinine 1.7 mg/dl
 - No paraprotein peak but kappa light chain 120000 with lambda light chain at 0.01
 - Kappa/lambda ratio=12000000

Initial Presentation

- Bone marrow biopsy
 - Cellularity 80% with 25% plasma cells
 - Cytogenetics 46, XX, inversion 9 (p11;q13)
- FISH no abnormalities
- Skeletal survey: extensive lytic bone disease with healing fractures of left 7th and the 8th ribs
- MRI of the spine: diffuse hyper-intense homogenous signal on STIR sequence
- MRI of the pelvis: diffuse marrow infiltrative changes due to myeloma
- Comorbidities: Diabetic on metformin, no history of coronary artery disease or other comorbidities

Maintenance of Certification Question

- In this newly diagnosed 75 year old with ISS Stage 2 Myeloma what would be the treatment strategy
 most likely to achieve a complete remission
- 1. Double therapy induction x 6 months followed by lenalidomide maintenance
- 2. Triple therapy with an alkylator a proteasome inhibitor and steroids followed by lenalidomide maintenance
- 3. Triple therapy with an alkylator a proteasome inhibitor and steroids followed by high dose melphalan and auto HCT followed by lenalidomide maintenance
- 4. Triple therapy with lenalidomide, bortezomib and dexamethasone followed by high dose melphalan and auto HCT followed by lenalidomide maintenance

Maintenance of Certification Answer

- In this newly diagnosed 75 year old with ISS Stage 2 Myeloma what would be the treatment strategy
 most likely to achieve a complete remission
- The correct answer is 4 which in randomized trials has shown deeper responses than the other alternatives.
- Doublet therapy is inferior to 3 drug therapy and should be limited to frail and debilitated patients
- In this patient high dose melphalan and autologous HCT would deepen the response
- Option 3 is reasonable due to her increase creatinine but would be associated with a lower CR rate.

Is she transplant eligible? If yes Is there an optimal induction?



MAIA Study Design

Phase 3 study of D-Rd vs Rd in transplant-ineligible NDMM (N = 737)

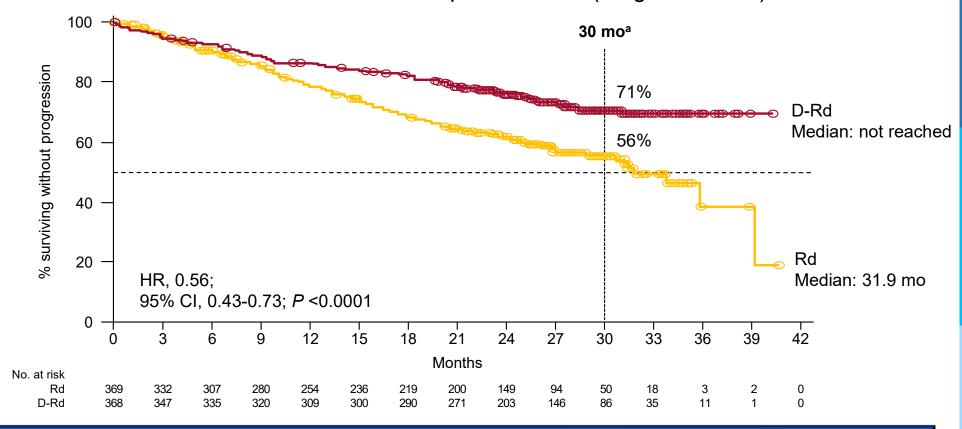
Key eligibility criteria:

- Transplantineligible NDMM
- ECOG 0-2
- Creatinine clearance
 ≥30 mL/min

Stratification factors

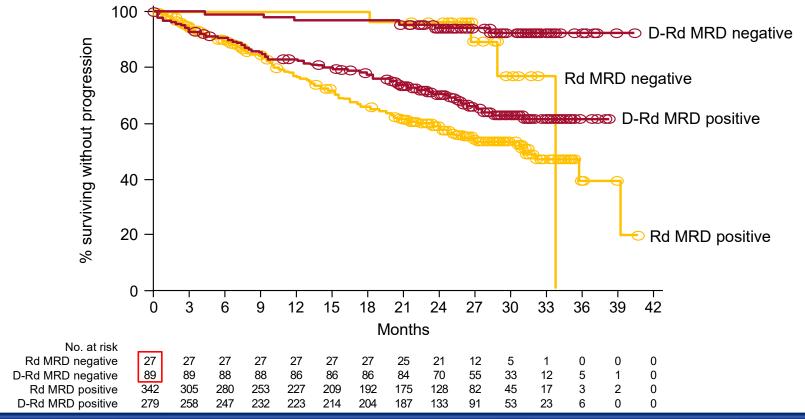
- ISS (I vs II vs III)
- Region (NA vs other)
- Age (<75 vs ≥75 years)

Cycle: 28 days

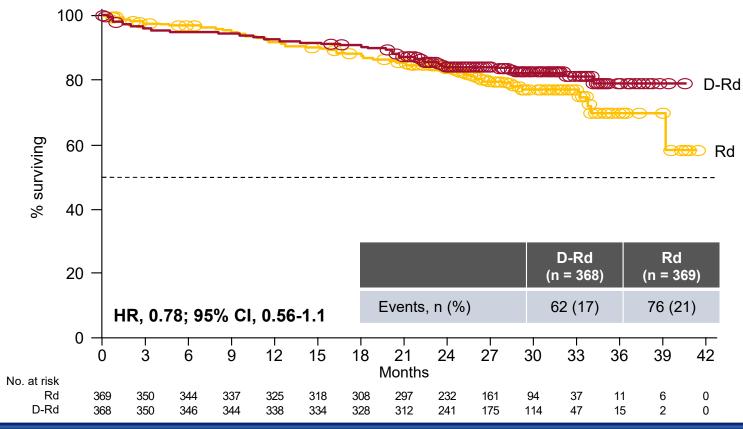

^aOn days when daratumumab was administered, dexamethasone was administered to patients in the D-Rd arm and served as the treatment dose of steroid for that day, as well as the required pre-infusion medication.

^bFor patients older than 75 years of age or with BMI <18.5, dexamethasone was administered at a dose of 20 mg weekly. ^cEfficacy endpoints were sequentially tested in the order shown.

ECOG, Eastern Cooperative Oncology Group; ISS, International Staging System; NA, North America; IV, intravenously; QW, once weekly; Q2W, every 2 weeks; Q4W, every 4 weeks; PD, progressive disease; PO, orally; CR, complete response; VGPR, very good partial response; MRD, minimal residual disease; NGS, next-generation sequencing; ORR, overall response rate; OS, overall survival; BMI, body mass index.


Median follow-up: 28 months (range: 0.0-41.4)

44% reduction in the risk of progression or death in patients receiving D-Rd


CI, confidence interval. ^aKaplan-Meier estimate.

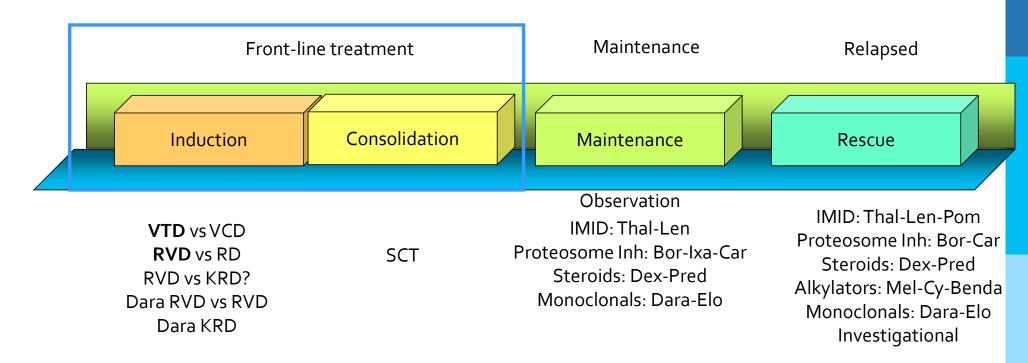
Efficacy PFS by MRD Status

- >3-fold higher MRD negativity achieved with D-Rd
- Lower risk of progression or death with MRD negativity

Efficacy: OS at Median Follow-up of 28 Months

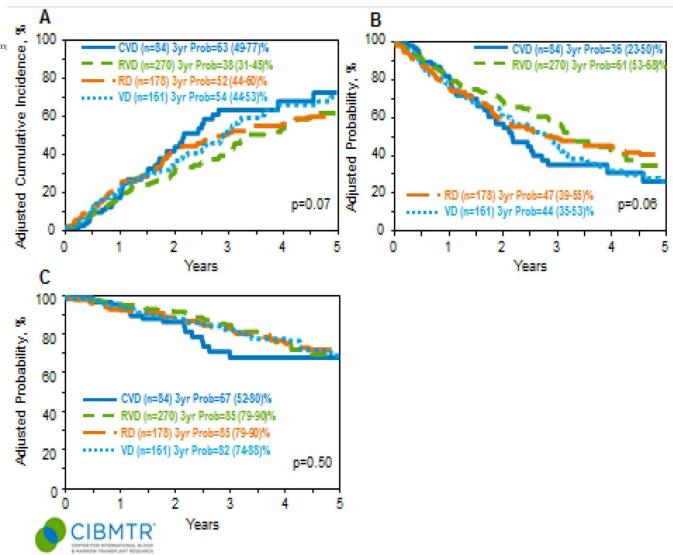
Data are immature after median follow-up of 28 months

FUNCTIONAL ASSESSMENT



Goals of Induction Therapy: The Potential Transplant Patient

- Rapid responses
- Depth of responses (high response rates)
- Durable responses
- Improve performance status
- Not limit PBSC mobilization
 - No use of alkylating agents in induction therapy
- Overall goal of multiple myeloma therapy: Extend survival while maintaining quality of life

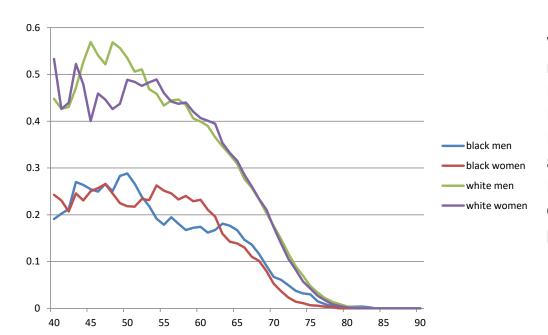

Phase III Trials Now Informing Induction

^aTransplant eligible patients.

Bor = bortezomib; Dex = dexamethasone; Dox = doxorubicin; Thal = thalidomide; Len = lenalidomide; SCT = stem-cell transplant; Pred = prednsione; Lipo/Dox = liposomal doxorubicin.

She has a major response to induction (i.e VGPR) and sees 2 different specialist. One recommends HCT consolidation the other continued treatment.

Who is right? Why the contradiction?


In 2020 who should receive high dose melphalan and auto HCT as consolidation?

- Everybody
- Nobody
- Only patient who fail to achieve MRD negativity after 6-8 cycles of highly effective induction therapy
- Response and risk adapted

Memorial Sloan Kett Despite strong evidence supporting auto HCT in MM only 30% of potentially eligible Cancer Center. patients undergo autograft. Even less if you are a minority or over 65 years of age Costa et al. BBMT

AHPCT "utilization rate"

Why are patients not going to HCT? Referral bias Fear of side effects Lack of access to an HCT program Lack of awareness of treating physician

What data do we have?

EMN02/HO95 MM trial: study design

VCD x three-four 21-d cycles
Bort 1.3 mg/sm twice weekly; CTX 500 mg/sm d1-8;
Dex 40 mg on day of and after bort

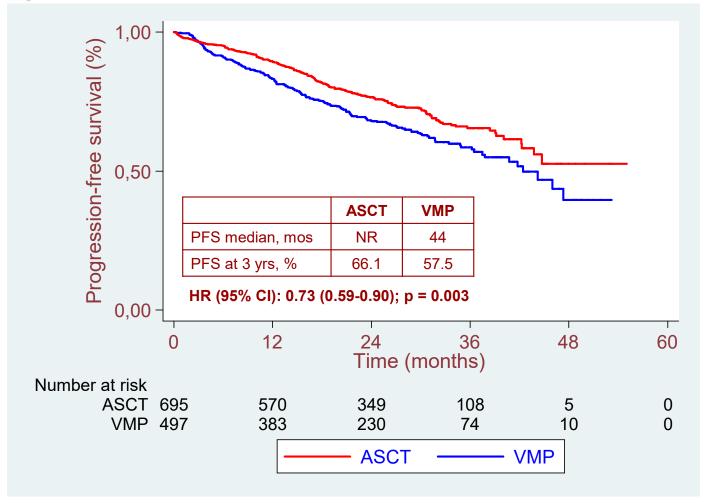
CTX (2-4 g/sm) + G-CSF + PBSC collection

R1

VMP x 4 cycles

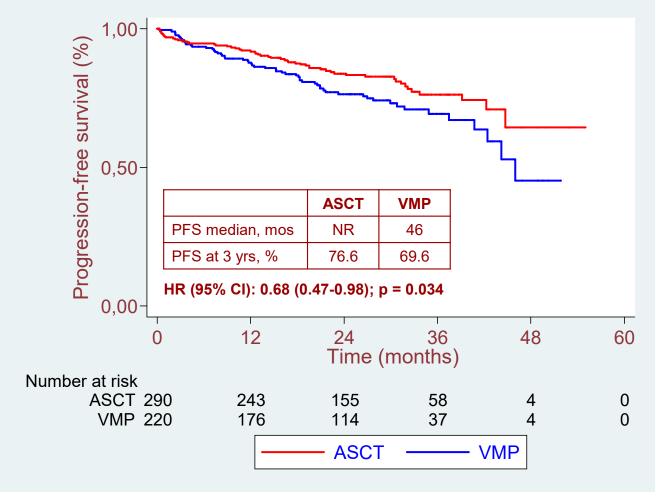
HDM x 1-2 courses

R2

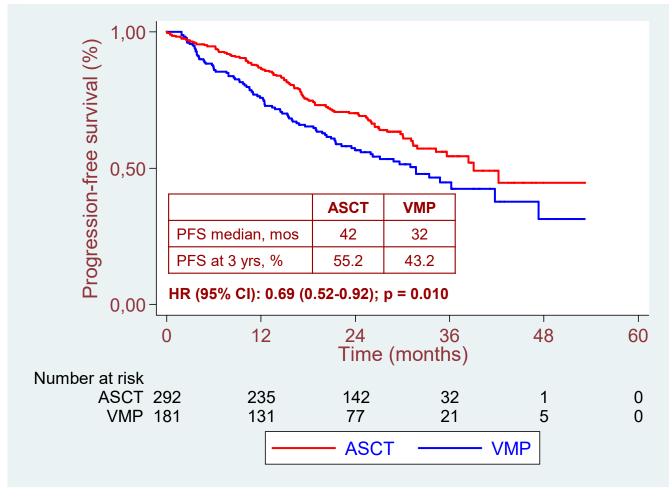

VRD x two 28-d cycles
Bort 1.3 mg/sm, twice weekly;
len 25 mg d1-21;
dex 20 d1-2-4-5-8-9-11-12

No consolidation therapy

Lenalidomide 10 mg/day, d1-21/28

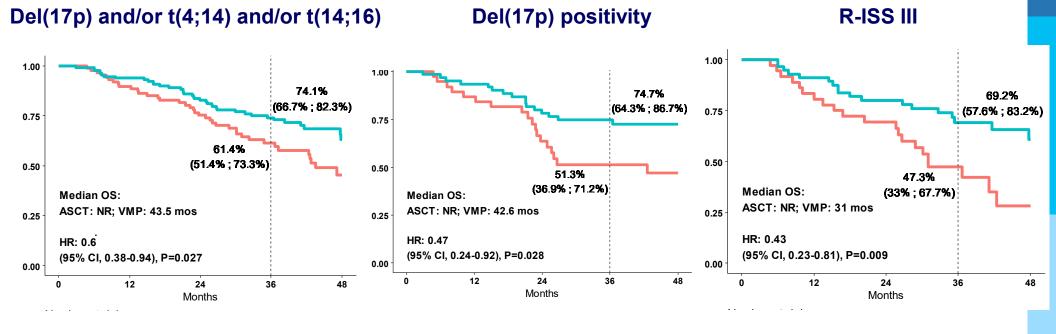

Memorial Sloan Kettering Cancer Center.

PFS by Randomization

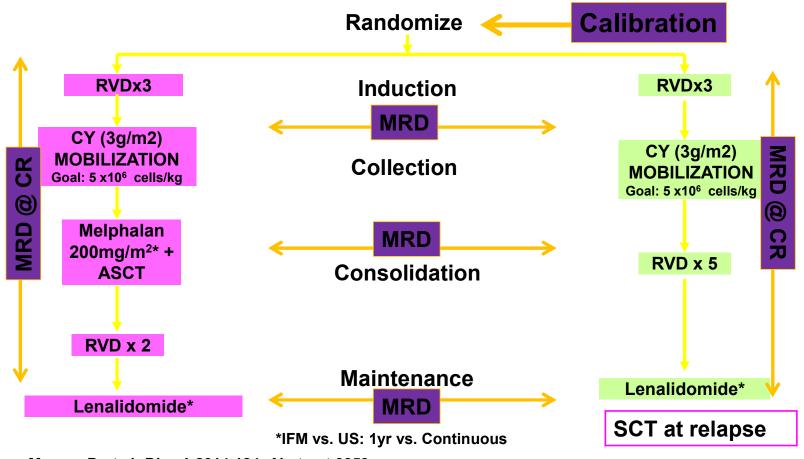


PFS by cytogenetics (standard risk)

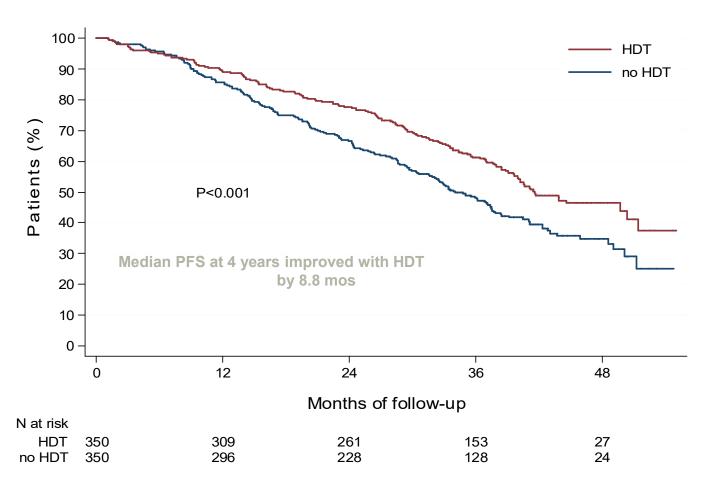
PFS by cytogenetics (high risk)


NOTE – High Dose Melphalan Independent Prognostic Variable

Variables affecting PFS	HR	95% CI	P-value
Best CR+sCR	0.22	0.16-0.30	<0.001
Standard Risk cytogenetics	0.44	0.34-0.57	<0.001
Randomization to ASCT	0.54	0.42-0.68	<0.001
ISS I	0.60	0.43-0.83	0.002


Memorial Slo**O**S by randomization in high risk subgroups

- VMP - ASCT


IFM/DFCI 2009 Study (US and France) Newly Diagnosed MM (N=1,360)

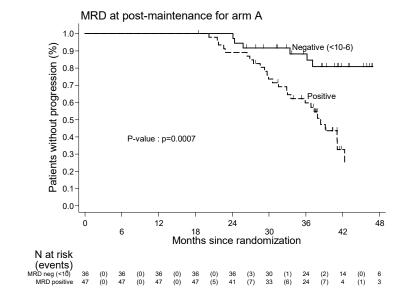
Moreau P, et al. *Blood.* 2014;124: Abstract 3359.

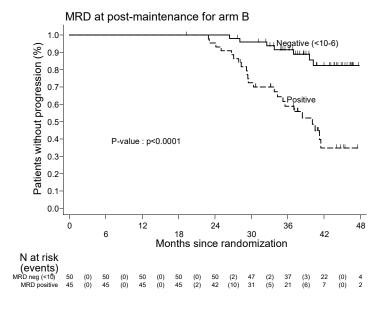
ASH 2015 (Attal et al): IFM 2009: PFS (9/2015)

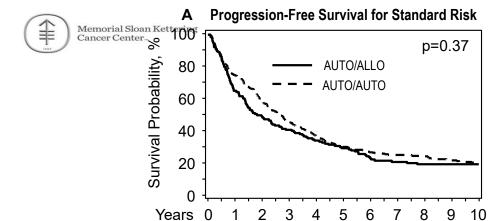
Attal M. et al. *Blood*. 2015:126: Abstract 391

ASH 2015: IFM 2009: Best Response

	RVD arm N=350	Transplant arm N=350	<i>P</i> value
CR	49%	59%	7
VGPR	29%	29%	.02
PR	20%	11%	
<pr< td=""><td>2%</td><td>1%</td><td>J</td></pr<>	2%	1%	J
At least VGPR	78%	88%	.001
Neg MRD by FCM , n (%)	228 (65%)	280 (80%)	.001

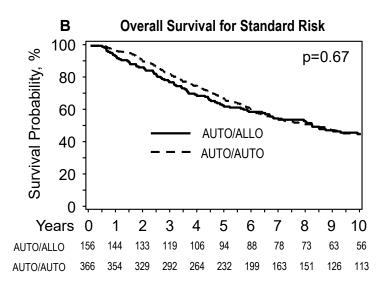

Attal M. et al. *Blood*. 2015:126: Abstract 391

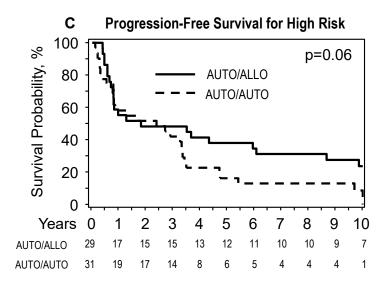


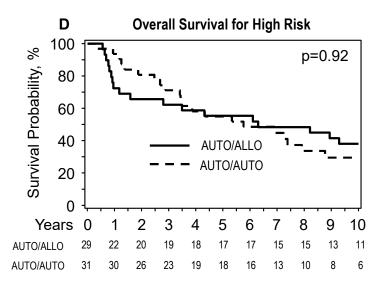

IFM/DFCI 2009 ~ PFS according to MRD Post Maintenance

RVD Arm

Transplant Arm






275 212

162 130

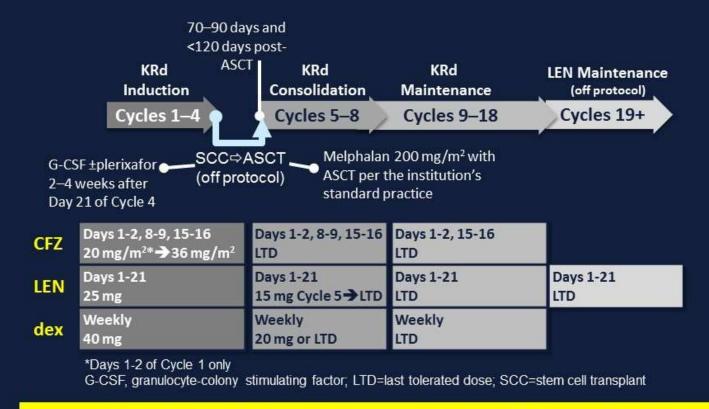
AUTO/ALLO

Rationale for Delayed HCT-PROS

- 10% of patients don't derive significant benefit from high dose melphalan
- 10% of patients can achieve long term disease control without high dose melphalan
- Avoids exposure and potentially SPMs in patients
- Subsequent high dose melphalan is possible if cells are collected early
- 1% treatment related mortality
- 5-10% significant morbidity
- No clearly demonstrated survival benefit in the context of modern treatment
 - This may be impossible to determine due to efficacy of salvage therapy

Rationale for Delayed HCT-CONS

- 10% of patients can achieve long term disease control without high dose melphalan
- 20% of patients who opt for delayed HCT do not get the procedure
- 50% of patients who opt for delayed HCT are receiving it within the first 24 months of the decision
- Toxicities are likely to be higher with delayed HCT
- Overall burden of therapy may actually be higher.



...but RVD will no longer be the standard KRD and KRD Dara will be the next standard induction...

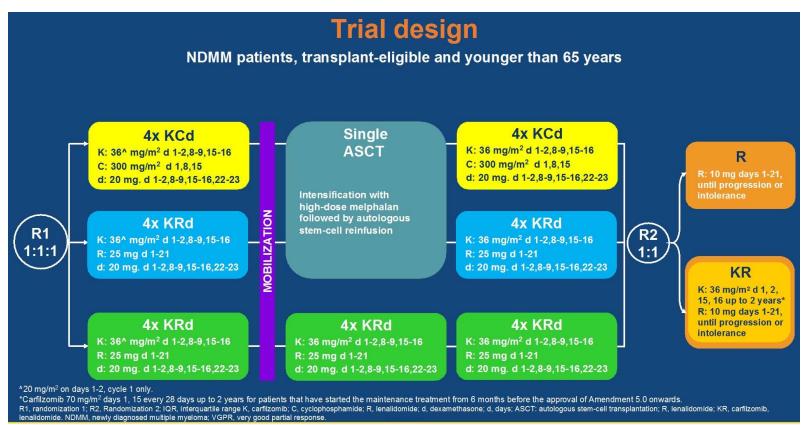
What data do we have for HCT in this setting?

Treatment Schema – 28-day Cycle

KRd+ASCT considered promising: improvement of sCR at the end of 8 cycles from historical rate of 30% for KRd without transplant to 50% for KRd+ASCT

Efficacy of Carfilzomib Lenalidomide Dexamethasone (KRd) With or Without Transplantation in Newly Diagnosed Myeloma According to Risk Status: Results from the FORTE Trial

Francesca Gay,¹ Chiara Cerrato,¹ Maria Teresa Petrucci,¹ Renato Zambello,¹ Barbara Gamberi,¹ Stelvio Ballanti,¹ Paola Omedé,¹ Salvatore Palmieri,¹ Rossella Troia,¹ Stefano Spada,¹ Alessandro Gozzetti,¹ Tommaso Caravita,¹ Antonio Spadano,¹ Antonio Palumbo,² Vittorio Montefusco,¹ Pellegrino Musto,¹ Michele Cavo,¹ Mario Boccadoro.¹

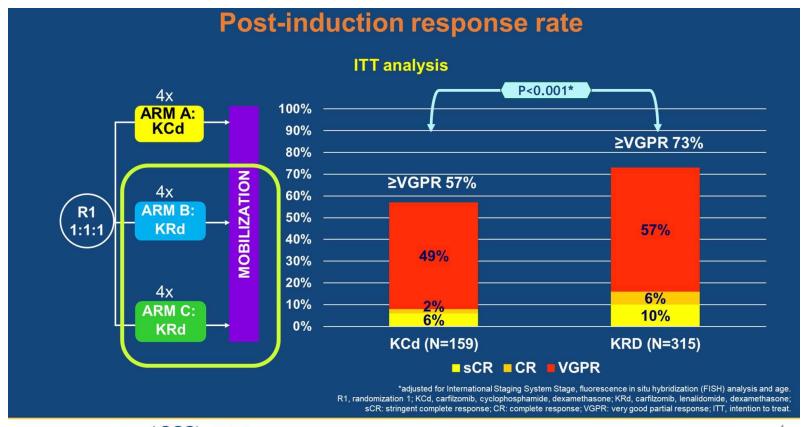

Correspondence: fgay@cittadellasalute.to.it

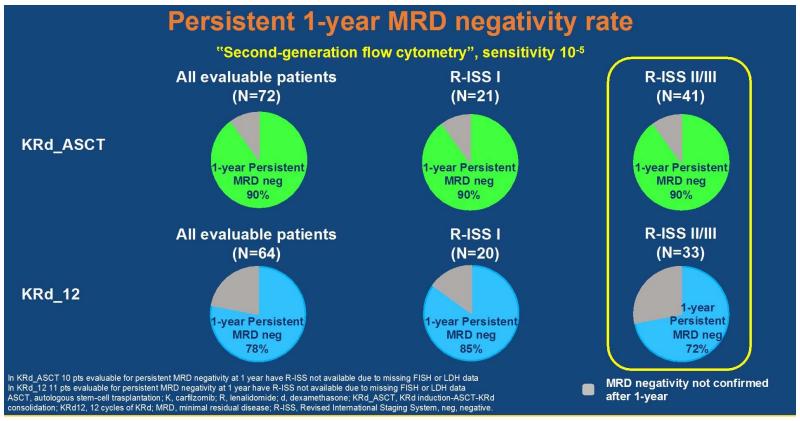
1. GIMEMA / European Myeloma Network, Italy; 2. University of Torino, Torino, Italy - Currently Takeda Pharmaceuticals Co.

PRESENTED AT: 2019 ASCO

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Francesca Gay

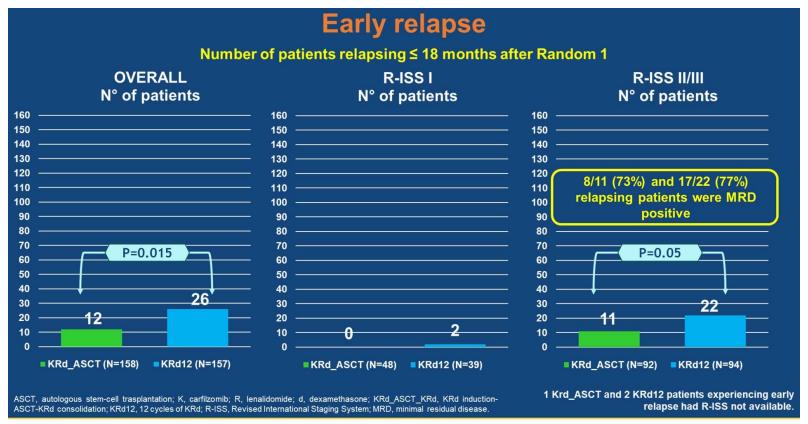



Slides are the property of the author, permission required for reuse.

PRESENTED BY: Francesca Gay

3

4



Slides are the property of the author, permission required for reuse.

PRESENTED BY: Francesca Gay

17

PRESENTED AT: 2019 ASCO

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Francesca Gay

Multivariate Logistic Regression Model*

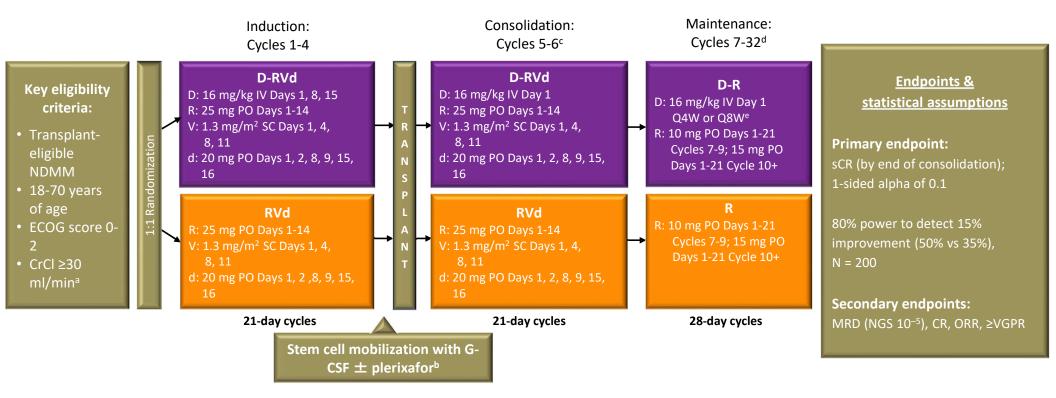
	OR	95% CI	P-value
R-ISS II/III vs R-ISS I	3.78	1.71-8.35	0.001
KRd-ASCT vs KRd12	0.41	0.19-0.88	0.022
MRD negative (10 ⁻⁵)	0.21	0.12-0.40	<0.001

Increased risk of early relapse

Reduced risk of early relapse

*The model was also adjusted for the presence/absence of plasmacytoma and for age as continuous variable.

ASCT, autologous stem-cell trasplantation; K, carfilzomib; R, lenalidomide; d, dexamethasone; KRd_ASCT, KRd induction-ASCT-KRd consolidation; KRd12, 12 cycles of KRd; R-ISS, Revised International Staging System; OR, odds ratio; CI, confidence interval.



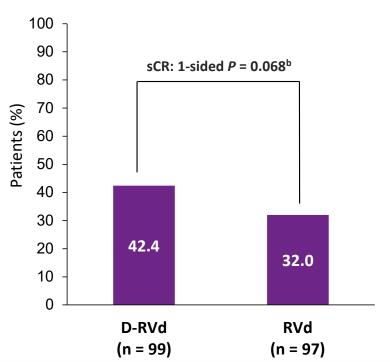
#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Francesca Gay

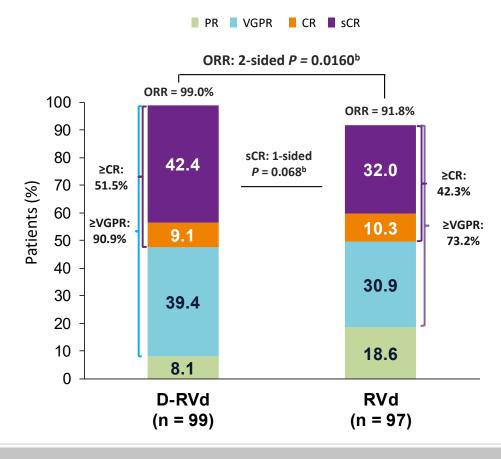
GRIFFIN (NCT02874742): Randomized Phase

• Phase 2 study of D-RVd vs RVd in transplant-eligible NDMM, 35 sites in US with enrollment from 12/2016 and 4/2018

D-RVd, daratumumab-lenalidomide/bortezomib/dexamethasone; RVd, lenalidomide/bortezomib/dexamethasone; NDMM, newly diagnosed multiple myeloma; US, United States; ECOG, Eastern Cooperative Oncology Group; CrCl, creatinine clearance; IV, intravenously; PO, orally; SC, subcutaneously; G-CSF, granulocyte colony-stimulating factor; D-R, daratumumab-lenalidomide; Q4W, every 4 weeks; Q8W, every 8 weeks; SCR, stringent complete response; MRD, minimal residual disease; NGS, next-generation sequencing; CR, complete response; ORR, overall response rate; VGPR, very good partial response. alenalidomide dose adjustments were made for patients with CrCl ≤50 mL/min


"Cyclophosphamide based mobilization was permitted if unsuccessful. Consolidation was initiated 60-100 days post transplant.

"Patients who complete maintenance 41


cycles 7-32 may continue single-agent lenalidomide thereafter. Protocol Amendment 2 allowed for the option to dose daratumumab Q4W, based on pharmacokinetic results from study SMM2001 (NCT02316106).

Primary Endpoint: sCR by the End of Consolidation^a

- Primary endpoint met at pre-set 1-sided alpha of 0.1
 - sCR by end of consolidation
 - 42.4% D-RVd vs 32.0% RVd
 - Odds ratio, 1.57; 95% CI, 0.87-2.82; 1-sided $P = 0.068^{b}$

Post-consolidation depth of response^a

alncluded patients in the response-evaluable population (all randomized patients with a confirmed diagnoses of MM, measurable disease at baseline, received ≥1 dose of study treatment, and had ≥1 post-baseline disease assessment).

By values were calculated with the use of the Cochran—Mantel—Haenszel chi-square test. A 1-sided P value is reported for sCR; for all other responses, 2-sided P values not adjusted for multiplicity are reported.

Post-Consolidation MRD Negativity

MRD-Negative Status (10 ⁻⁵), ^a n (%)	D-RVd RVd		Odds Ratio (95% CI)	<i>P</i> value ^b	
In ITT population					
MRD negative regardless of response	46/104 (44.2)	15/103 (14.6)	4.70 (2.38-9.28)	<0.0001	
MRD negative with CR or better	30/104 (28.8)	10/103 (9.7)	3.73 (1.71-8.16)	0.0007	
In patients achieving CR or better	30/51 (58.8)	10/41 (24.4)	4.65 (1.76-12.28)	0.0014	
In patients who received ASCT	45/94 (47.9)	14/78 (17.9)	4.31 (2.10-8.85)	<0.0001	

D-RVd improved MRD-negativity (10⁻⁵) rates at the end of consolidation

The threshold of MRD negativity was defined as 1 tumor cell per 10⁵ white cells. MRD status is based on assessment of bone marrow aspirates by next-generation sequencing in accordance with International Myeloma Working Group criteria. MRD assessments occurred in patients who had both baseline (with clone identified/calibrated) and post baseline MRD (with negative, positive, or indeterminate result) samples taken (D-RVd, n = 71; RVd, n = 55). Patients with a missing or inconclusive assessment were considered MRD positive. P values were calculated from the Fisher's exact test.

Stem Cell Collection and Transplantation

	D-RVd	RVd
CD34 ⁺ cell yield, ^{a,b} median (10 ⁶ cells/kg)	8.1	9.4
CD34 ⁺ cells transplanted, ^c median (10 ⁶ cells/kg)	4.2	4.8
Patients receiving plerixafor for mobilization, ^d n (%)	66 (70)	44 (55)
Patients receiving cyclophosphamide, ^d n (%)	5 (5)	4 (5)
Days to neutrophil (0.5×10 ⁹ /L) engraftment, median	12	12
Days to platelet (20×10 ⁹ /L) engraftment, median	13	12

DARA did not impact time to engraftment

^eAmong patients who underwent peripheral blood stem cell apheresis (D-RVd, n = 94; RVd, n = 80). ^bOne patient in the D-RVd group had a stem cell yield <3x10^e cells/kg; no patients in either group had a stem cell apheresis (D-RVd, n = 94; RVd, n = 94; RVd, n = 94; RVd, n = 94; RVd, n = 95; RVd, n = 80). Patients underwent stem cell mobilization with G-CSF with or without plerixafor, according to institutional standards; if unsuccessful, cyclophosphamide-based mobilization was permitted.

Weekly KRd-daratumumab (all pts received 8 cycles)

Cycle 1

Daratumumab

8, 15, and 22;

Carfilzomib 20

 $mg/m^2 day 2$

and 56 mg/m²

days 8 and 15;

mg days 1-21;

40 mg weekly

16 mg/kg days 1, Lenalidomide 25 Dexamethasone

Cycle 2

Daratumumab 16 mg/kg days 1, 8, 15, and 22; Carfilzomib 56 mg/m^2 days 1, 8, and 15: Lenalidomide 25 mg days 1-21; Dexamethasone 40 mg weekly

Cycle 3-4

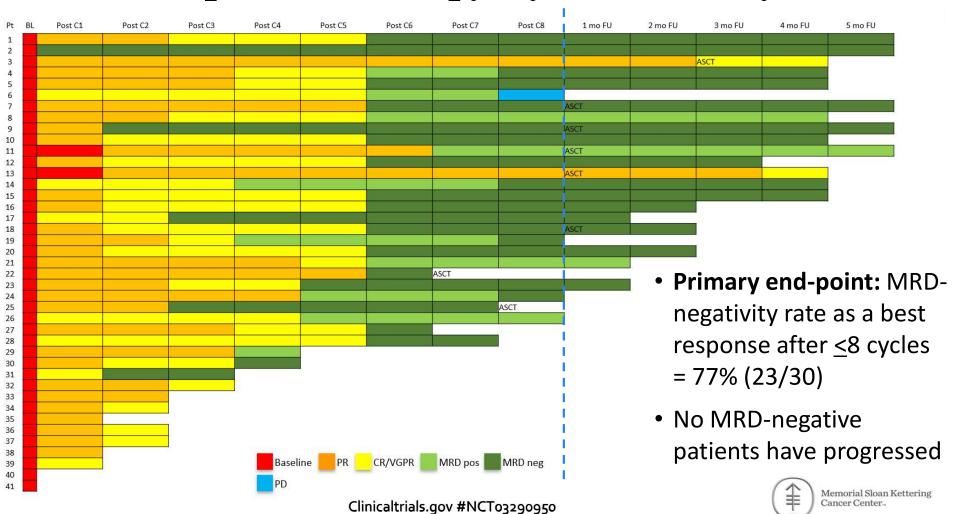
Daratumumab 16 mg/kg days 1 and 15; Carfilzomib 56 mg/m^2 days 1, 8, and 15: Lenalidomide 25 mg days 1-21; Dexamethasone 40 mg weekly

Cycle 5-6

Daratumumab 16 mg/kg days 1 and 15; Carfilzomib 56 mg/m^2 days 1, 8, and 15: Lenalidomide 25 mg days 1-21; Dexamethasone 20 mg weekly

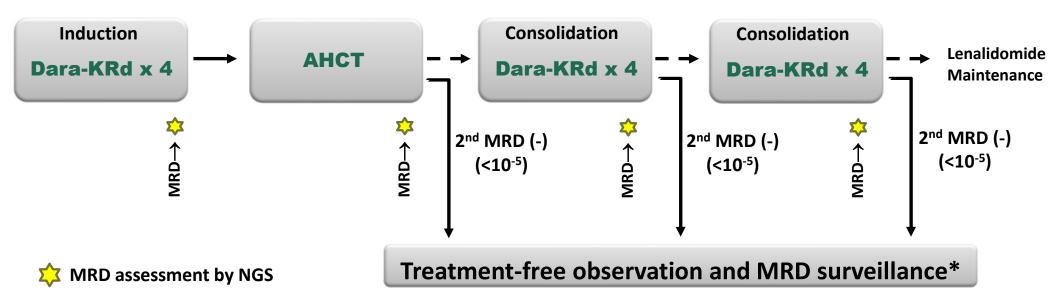
Cycle 7-8

(28-day cycles)


Daratumumab 16 mg/kg day 1; Carfilzomib 56 mg/m^2 days 1, 8, and 15: Lenalidomide 25 mg days 1-21; Dexamethasone 20 mg weekly

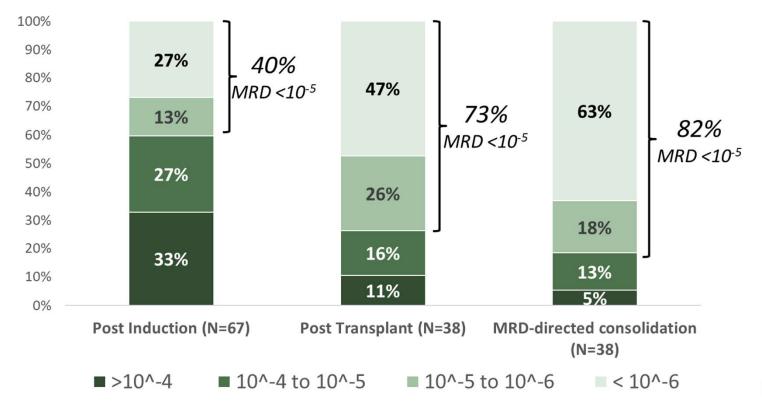
For fit patients, stem cell collection recommended after 4 to 6 cycles; therapy resumed after collection to a total of 8 cycles

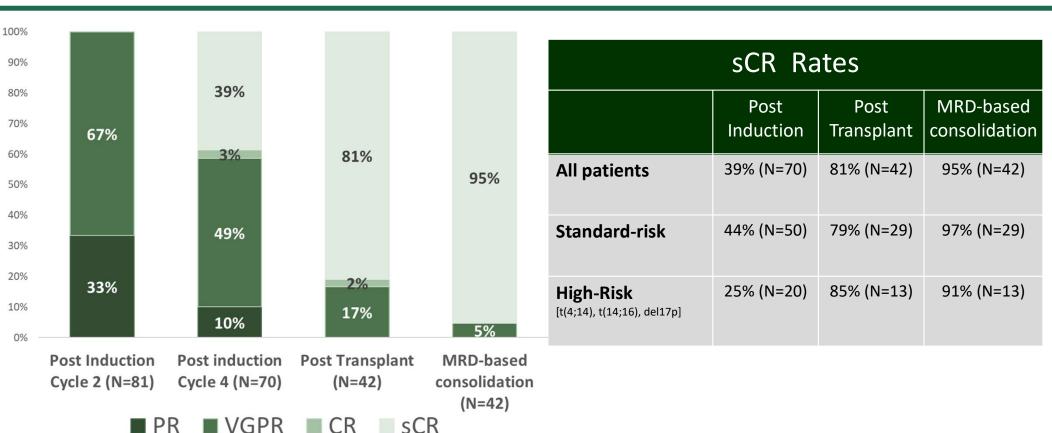
- Bi-weekly and weekly arms had comparable efficacy and safety with a substantial reduction of the number of infusion days (total of 51 vs. 27) favoring weekly arm
- We closed the bi-weekly arm after fully enrolling the first stage


Results: response to therapy, by number of cycles

Treatment

Dara-KRd


- Daratumumab 16 mg/m² days 1,8,15,22 (days 1,15 C 3-6; day 1 C >6)
- Carfilzomib (20) 56 mg/m² Days 1,8,15
- Lenalidomide 25 mg Days 1-21
- Dexamethasone 40mg PO Days 1,8,15,22


*24 and 72 weeks after completion of therapy

Best MRD response by phase of therapy

- MRD trackable by NGS clonoSEQ® in 78/81 patients (96%)
- 100% of datapoints obtained in patients with trackable MRD

Best IMWG response by phase of therapy

1 progression at post-AHCT evaluation

What about MRD Directed Therapy?

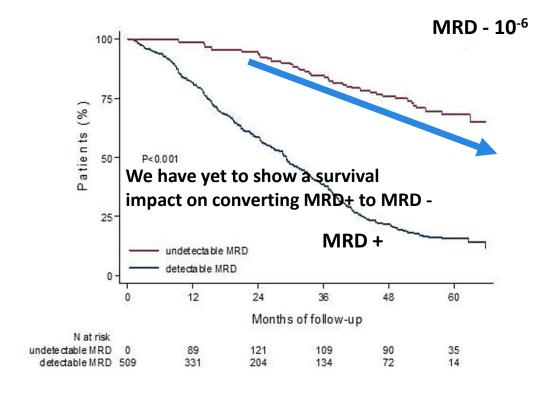
Multivariable analysis PFS at 1 Year - PRIMeR

High risk: β_2 -microglobulin >5.5 mg/L Or cytogenetic abnormalities: t(4;14), t(14;20), t(14;16), del 17p, del13, aneuploidy

									Estimate	Limit	Limit
MRD positive v negative				-		•		-	4.37	2.76	6.91
High risk v standard risk			-	•					3.29	2.09	5.18
AHCT+RVD v AHCT + main	tenance 🛶	\vdash							0.77	0.46	1.27
AHCT+AHCT v AHCT + maintenance 0.91 0.55 1.53									1.53		
	1	-1		1	1	1	1	П	-		
	0	1	2	3	4	5	6	7			
HR Estimate											

Support provided by #U10HL069294 to BMT CTN from NHLBI/NCI, and #R01HL107213 from NHLBI

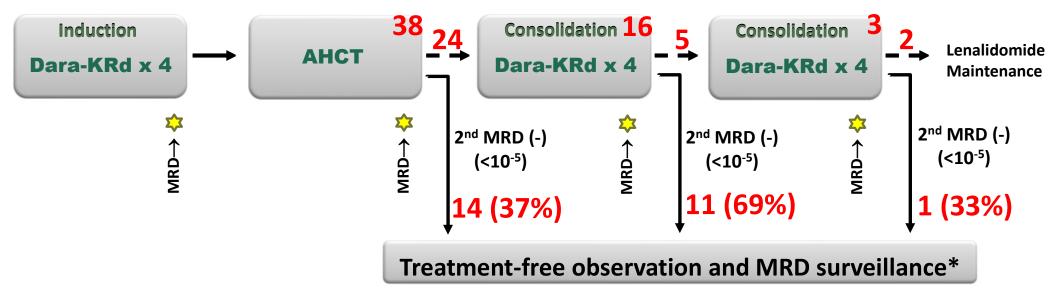
Upper 95%


Wald

Confidence Confidence

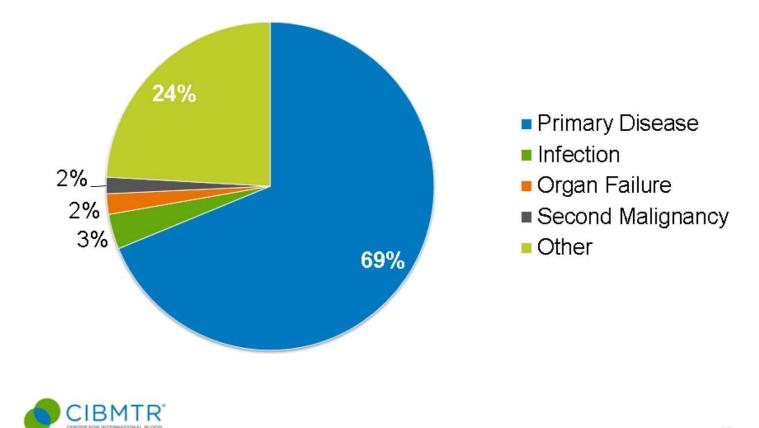
Wald

"MRD negativity is not the same as "cure" or even "long term disease control" and it's ability to inform practice is not the same for each patient.


At median follow-up of 55 months, median PFS for MRD negative patients not reached, versus 29 months for MRD positive patients

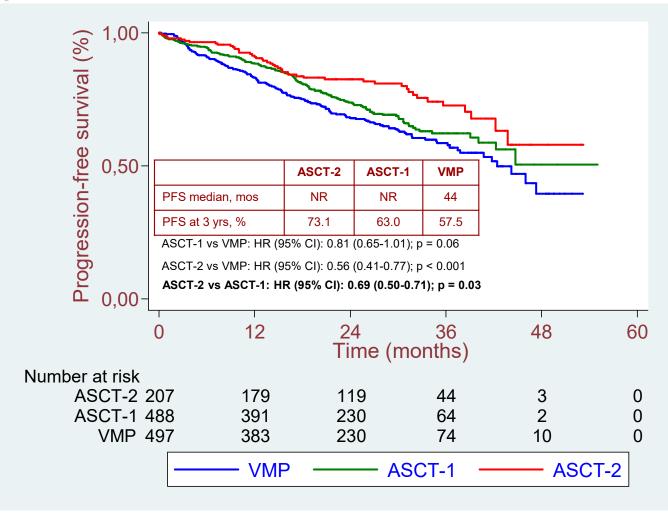
MRD negativity obtained in 30% (73/245) with VRd + transplant and 20% (54/264) with VRd alone

Observation/MRD surveillance

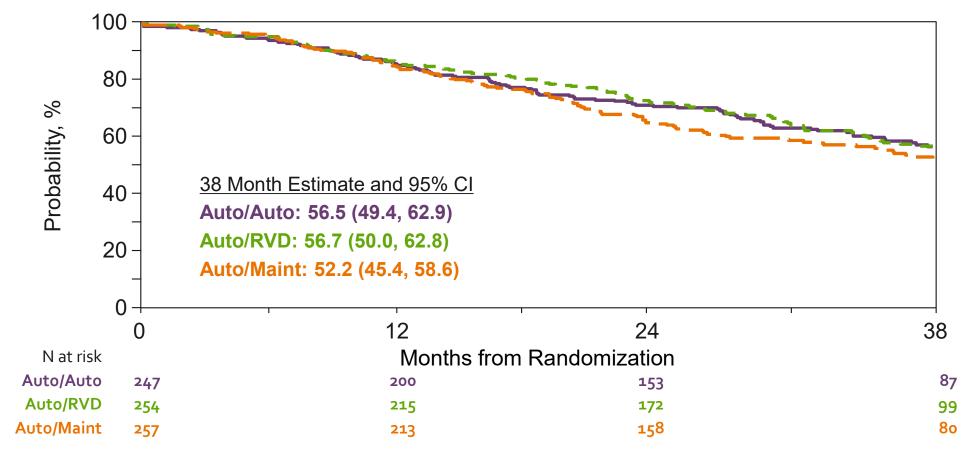

- 26 patients (19 SR, 7 HR) have reached confirmed MRD (-) and entered observation/MRD surveillance.
- Median follow up on observation 4.9 months (0.2-12.2) No relapse or resurgence of MRD

Improving Outcomes

Causes of Death after Autologous HCT done in 2013-2014

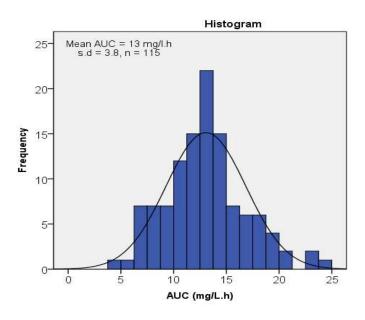


Relapse Prevention

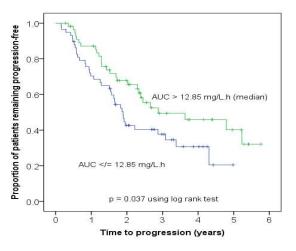

Memorial Sloan Kettering Cancer Center.

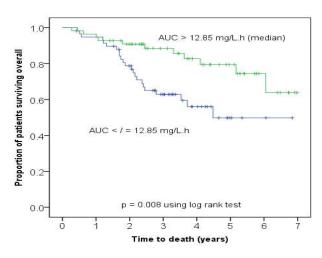
PFS by Randomization to ASCT-1 or ASCT-2

Primary Endpoint: Progression-free Survival



Wide Variability in Melphalan AUC

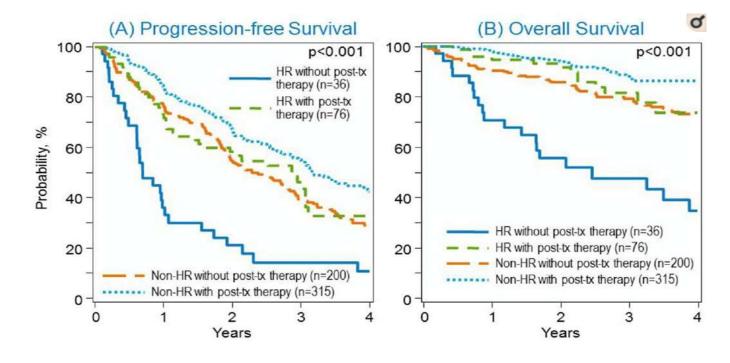

- Higher dose intensity associated with improved disease response
- Significant risk factors for severe mucositis
 - Melphalan dose
 - Renal impairment



- AUC range: 5 25 mg/L.h
- Same 5 fold variation as: Carbo, Fludarabine, Busulfan, Amphotericin

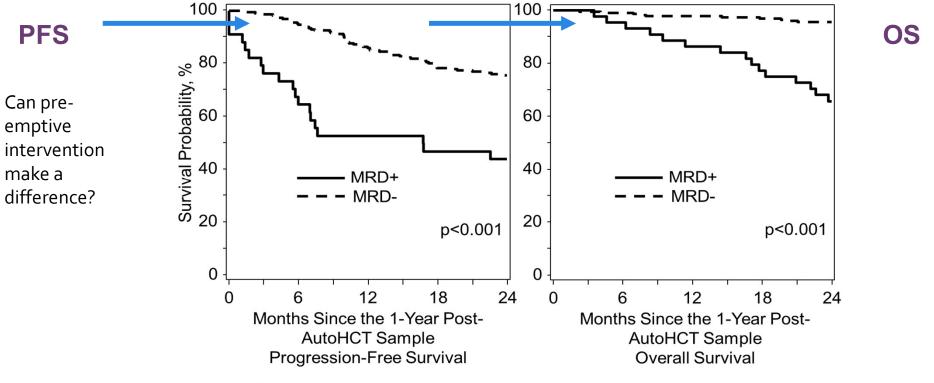
Higher Melphalan AUC Predicts Time to Progression, Overall Survival, and Toxicity

- Melphalan median AUC 12.85 mg/L.h
- Mucositis >= Grade 3
 - 12% clinical, 20% functional
 - Multivariate analysis Melphalan AUC (continuous), HR 1.2, p = 0.004


HHS Public Access

Author manuscript

Biol Blood Marrow Transplant. Author manuscript, available in PMC 2017 October 01.
Published in final edited form as:
Biol Blood Marrow Transplant 2016 October; 22(10): 1893–1899. doi:10.1016/j.bbmt.2016.07.007.


Post-transplant outcomes in high-risk compared to non-high risk multiple myeloma, a CIBMTR analysis

Emma C. Scott¹, Parameswaran Hari², Manish Sharma³, Jennifer Le-Rademacher^{2,4}, Jiaxing Huang², Dan Vogl⁵, Muneer Abidi⁶, Amer Beitinjaneh⁷, Henry Fung⁸, Siddhartha Ganguly⁶, Gerhard Hildebrandt¹⁰, Leona Holmberg¹¹, Matt Kalaycio¹², Shaji Kumar¹³, Robert Kyle¹³, Hillard Lazarus¹⁴, Cindy Lee¹⁵, Richard T. Maziarz¹⁶, Kenneth Meehan¹⁷, Joseph Mikhael¹⁸, Taiga Nishihori¹⁹, Muthalagu Ramanathan²⁰, Saad Usmani²¹, Jason Tay²², David Vesole²³, Baldeep Wirk²⁴, Jean Yared²⁵, Bipin N. Savani²⁶, Cristina Gasparetto²⁷, Amrita Krishnan²⁸, Tomer Mark²⁹, Yago Nieto³⁰, and Anita D'Souza²

PRIMeR Results: PFS (Left) and OS (Right) by MRD Status at 1-Year

Summary

- We are now at the dawn of a new era in hematopoietic cell transplantation for myeloma
- We have strategies that can now impact the major causes of treatment failure (relapse, infections and toxicities)
- The way forward will require more personalized approaches to develop the optimal strategy for each patient and each specific disease.
- Only prospective trials and well curated large datasets will allow us to develop the knowledge necessary to perform such transplants
- We need substitute our current Triple P Transplants where we Push the drugs, Pour the Cells and Pray that it all works out to a modern Triple P Strategy of Precise, Personalized and Predictable transplant.
- I predict that dose intense therapy will continue to be an important component of a curative strategy for myeloma with both autologous and allogeneic stem cell transplantation.

Questions or referrals giralts@mskcc.org 713-504-5082 text before calling

LIEDATE

October 1-3, 2020 New York City RELAPSE AFTER HSCT² 2020

Grand Hyatt New York

5th International Workshop on Biology, Prevention and Treatment of Relapse after Hematopoietic Stem Cell Transplantation and Cellular Therapy

Visit www.relapse-after-hsct.com to sign up for updates and additional information

