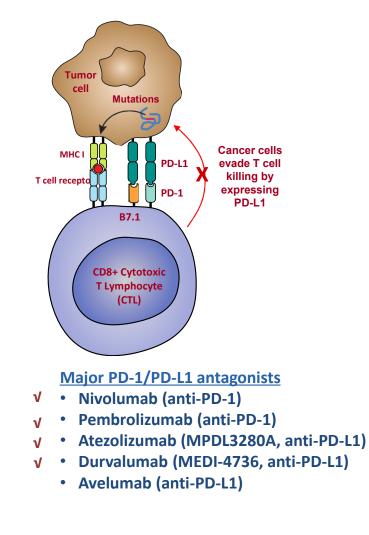

Current Issues in Checkpoint Immunotherapy for NSCLC: A Perspective from February 2020

Disclosures

- Institutional Research Grants: Astex, Roche-Genentech, Merck
- Consultant/Advisory Board: AstraZeneca, Celgene, CellMax, FujiFilm, Roche-Genentech, Guardant Health, Inivata, IO Biotech, Lilly, Merck, Oncocyte, Samsung Bioepis


Current Issues in Checkpoint Immunotherapy (CPI) for NSCLC: A Perspective from February 2020

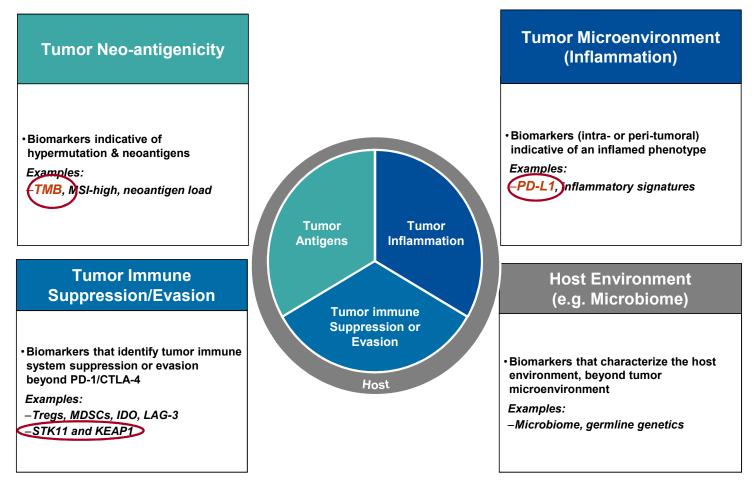
- Overview: Evolving Role of CPI in advanced (Stage IV) NSCLC
- Predictive Biomarkers
 - PD-L1 Assay
 - Tumor Mutational Burden (TMB)
 - Other biomarkers in development
- Clinical trial results in advanced NSCLC
 - 2nd line CPI Monotherapy –Updates on Long Term Survival
 - 1st line (CPI monotherapy, CPI-Chemotherapy)
- Stage III Unresectable NSCLC: Platinum Chemotherapy/RT → Consolidation CPI (PACIFIC)

Checkpoint Immunotherapy for Advanced NSCLC

- Cancer cells have mutations that make them recognizable by the immune system (neoantigens)
- Theoretically, the higher the mutational burden of neoantigens (e.g. through smoking), the greater the immune recognition
- Cancer cells can evade immune surveillance by expressing proteins such as PD-L1 (serves as a predictive biomarker)
- Inhibiting PD-L1/PD-1 interaction can restore anti-tumor T-cell activity, leading to immunemediated response
- Multiple Phase III trials of PD(L)-1 agents in advanced NSCLC
 - Some positive, some negative
 - Many variables to consider
- Predictive biomarkers:

PD-L1 IHC, TMB (tumor mutational burden)

Compartmental Treatment Algorithm for Advanced NSCLC: As of January 2020

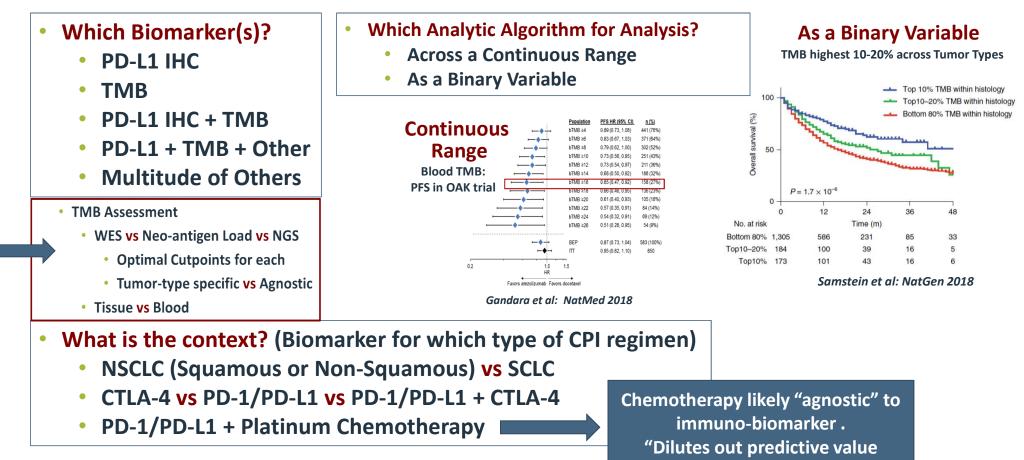

Patients With Advanced Stage NSCLC (PS 0-1)								
	Non-Sq	Squamous						
	Oncogene-Driven	PD-L1+	PD-L1-	PD-L1+	PD-L1-			
1 st Line	TKI (Targeted therapy) EGFR, ALK, ROS1, BRAF TKIs	Pembro ± Chemo or Atezo-Bev-Chemo	Pembro-Chemo or Atezo-Bev-Chemo	Pembro ± Chemo or Atezo-Chemo	Pembro-Chemo or Atezo-Chemo			
1 st Line Maintenance	EGFR, ALK, ROS1, BRAF TKIs	Pembro-Pem or Atezo-Bev	Pembro-Pem or Atezo-Bev	Pembro or Atezo	Pembro or Atezo			
		Nivo or Pembro or Atezo	Nivo or Pembro or Atezo	Nivo or Pembro or Atezo	Nivo or Pembro or Atezo			
2 nd Line	Next-Gen TKIs	Docetaxel (± Anti-angiogenic)	Docetaxel (± Anti-angiogenic)	Docetaxel (± Anti-angiogenic)	PD-L1- Pembro-Chemo or Atezo-Chemo Pembro or Atezo Nivo or Pembro			
		Chemo	Chemo	Chemo	Chemo			
2 nd -3 rd Line	3 rd -GEN TKI	Chomo	Chemo	Chemo	Chemo			
Z ^{ra} -3 ^{ra} Line	or Chemo doublet	Chemo	Chemo	Afatinib	Afatinib			

Adapted from Gandara et al. Clin Lung Cancer. 2017; 18:1

Current Issues in Checkpoint Immunotherapy (CPI) for NSCLC: A Perspective from February 2020

- Overview: Evolving Role of CPI in advanced (Stage IV) NSCLC
- Predictive Biomarkers
 - PD-L1 Assay
 - Tumor Mutational Burden (TMB)
 - Other biomarkers in development
- Clinical trial results in advanced NSCLC
 - 2nd line CPI Monotherapy –Updates on Long Term Survival
 - 1st line (CPI monotherapy, CPI-Chemotherapy)
- Stage III Unresectable NSCLC: Platinum Chemotherapy/RT → Consolidation CPI (PACIFIC)

Immune Phenotype as potential Predictive Biomarkers for benefit from Checkpoint Immunotherapy



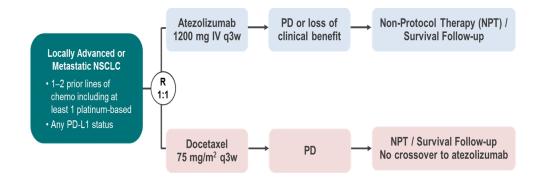
Adapted from Blank CU, et al. Science 2016;352:658-660

7

Predictive Biomarkers for Checkpoint Immunotherapy (CPI)

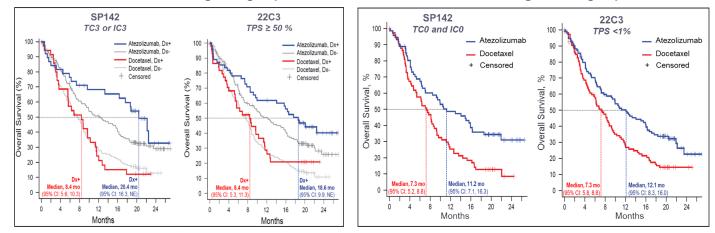
Note: cannot be equated to a discrete variable like driver mutations (Present or Absent) PD-L1 & TMB are dynamic & continuous variables across a context-specific range

Gandara: Lung Cancer Summit. ESMO19

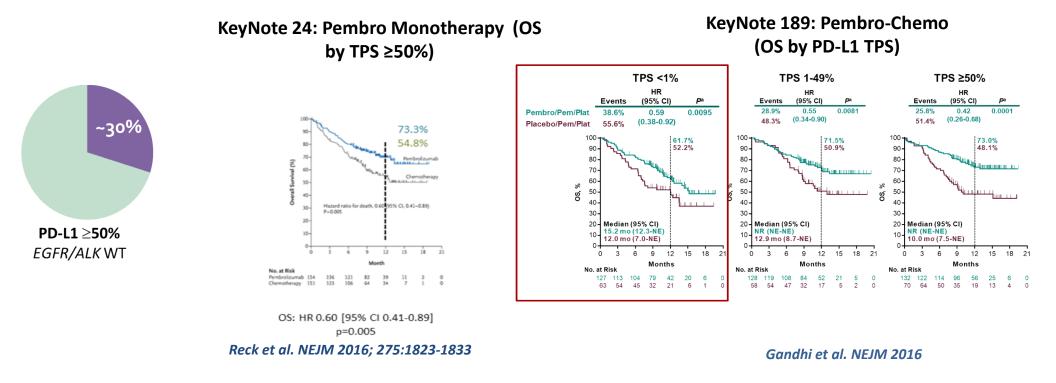

Analytical Validation of PD-L1 Assay Systems: The Blueprint Project

Assay primary antibody clone	28-8(Dako)	22C3(Da	ako)	SP142(Ventana)	SP263(Ventana)	 100 - 90 -	
PD-1/PD-L1 Agent	Nivolumab (BMS)	Pembroliz (Merc		Atezolizumab (Genentech)	Durvalumab (AstraZeneca)	-08 -07 -08 -08	
Interpretative Scoring	Tumor cell membrane	Tumor membra		-Tumor cell membrane -Infiltrating immune cells	Tumor cell membrane	ts 50- s. 50- b. 50- b. 50- c. 50	
Instrument and Detection Systems Required	EnVision Flex Autostainer Lin 48		ner Link	OptiView Detection & Amplification- Benchmark ULTRA	OptiView Detection- Benchmark ULTRA	20 - 10 - 0 -	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Cut Point	1 st line 2 nd lin 5% 1%-5		2 nd line* 1%; 50%	2 nd line 1%; 5%, 10%	NR		Cases ■ 22C3 ■ 28-8 ■ SP142 ■ SP263

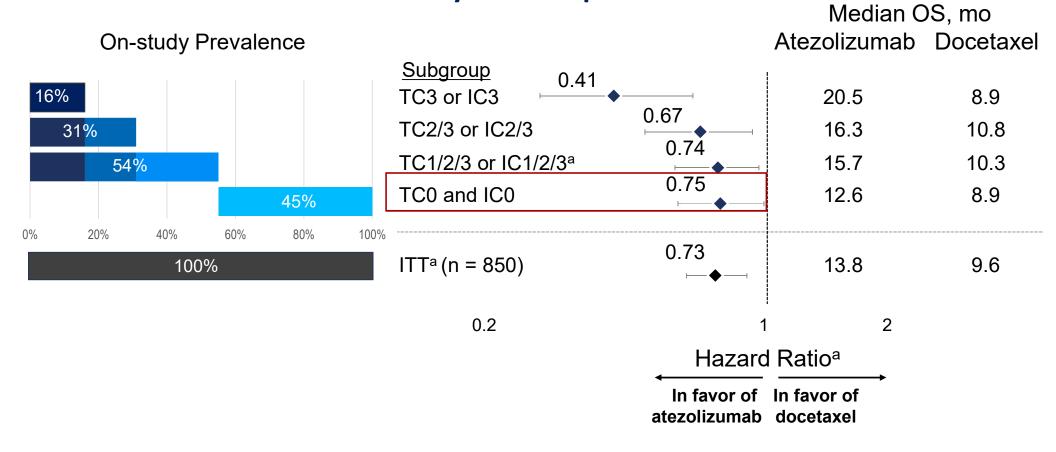
- Analytical comparison of % tumor cell staining (Tumor Proportion Score), by case, for each assay
- Data points represent the mean score from three pathologists for each assay on each case
- Conclusion: 3 of 4 assays are analytically similar for tumor cell staining (SP142 is outlier)


Adapted from Hirsch et al. J Thorac Oncol. 2017 Feb;12(2):208-222

Comparison of PD-L1 assays (Dako 22C3 vs Ventana SP142) in OAK Trial Specimens


OS in PD-L1-High Subgroups

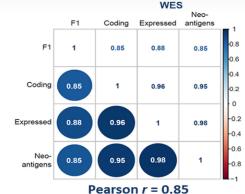
OS in PD-L1-Negative Subgroups

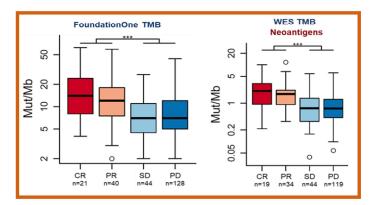


Gadgeel S et al. ESMO 2017 Abstract 12960.

PD-L1 ≥50% distinguishes a Patient Subset with Substantial Benefit from CPI Monotherapy (KN024) as well as CPI + Chemotherapy (KN189)

OAK (Atezolizumab vs Docetaxel in 2nd line+ Advanced NSCLC: OS by PD-L1 Expression

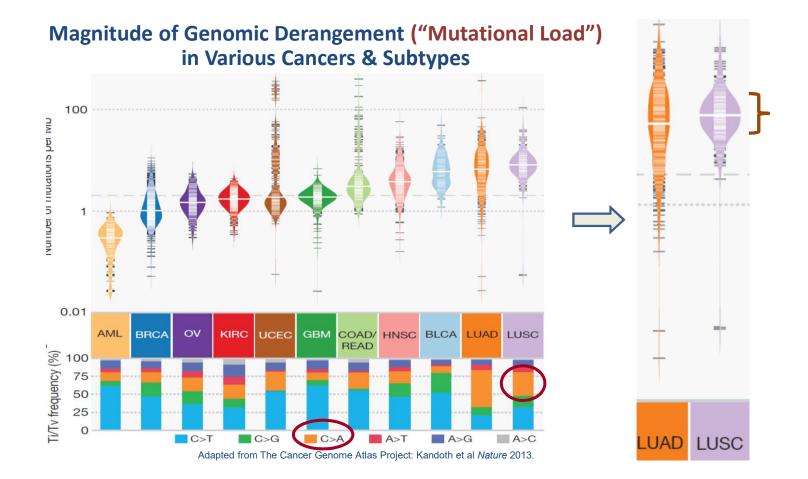


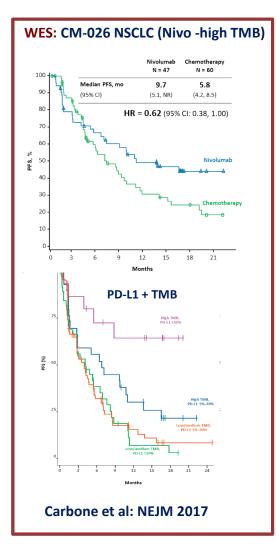

^aStratified HR for ITT and TC1/2/3 or IC1/2/3. Unstratified HR for other subgroups. TC, tumor cells; IC, tumor-infiltrating immune cells; OS, overall survival.

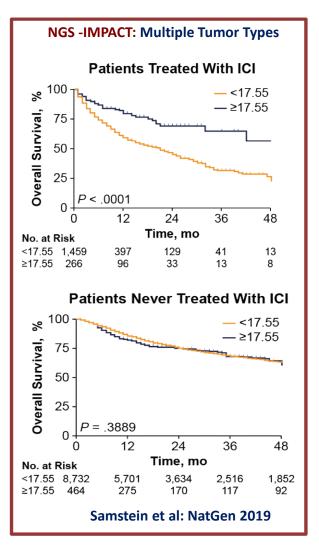
Rittmeyer. Gandara et al. Lancet. 2017;389:255-265

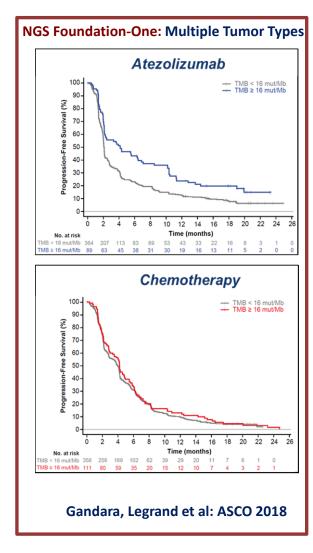
Tumor Mutational Burden (TMB) as a Candidate Predictive Biomarker for Cancer Immunotherapy

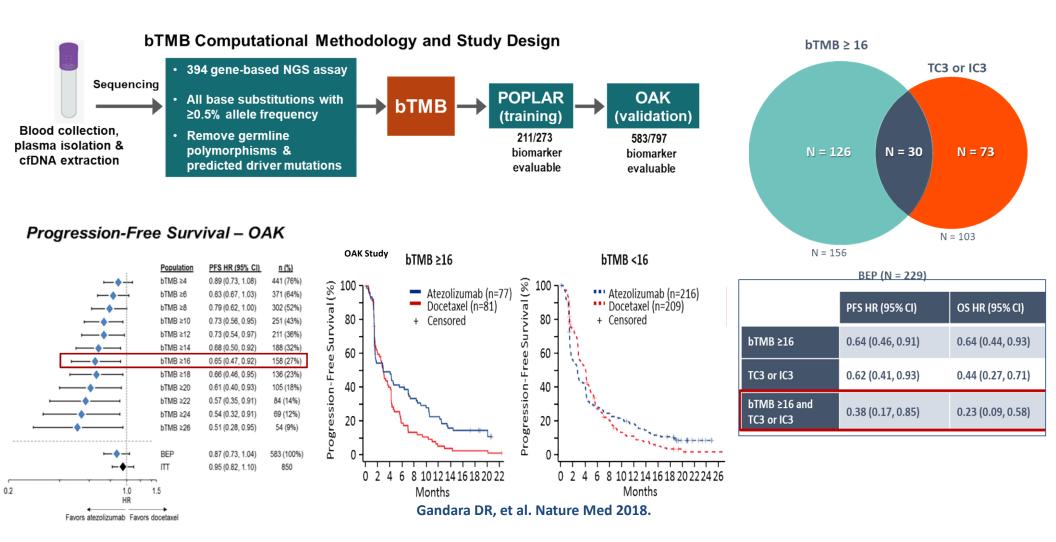
- Somatic mutations in cancers are multifactorial (including DNA repair defects, carcinogens & enzymatic alterations in DNA polymerases)
- These mutations produce neoantigens that induce anti-tumor immune responses
- TMB is an emerging predictive biomarker for cancer checkpoint immunotherapy (CIT)
- TMB can be estimated using whole-exome sequencing (WES) or comprehensive genomic profiling by NGS (e.g., FoundationOne & FACT in blood[bTMB]). MSK-IMPACT. Guardant OMNI¹⁻⁸
 - Studies show that TMB either by WES or CGP correlate with each other & with efficacy of CPI therapy in multiple cancer types¹⁻³
- Predicted neoantigen load (NAL), a component of TMB most closely linked to immune response, correlates with F1 TMB^{4,5,7}
- TMB identifies a distinct patient population not currently captured by PD-L1 IHC or other immune biomarkers^{5,6}

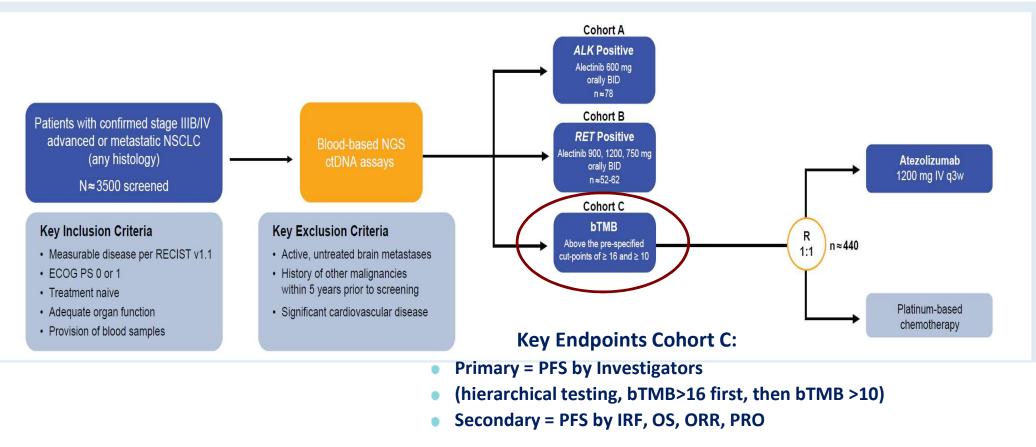



IHC, immunohistochemistry; PD-L1, programmed death-ligand 1; TMB, tumor mutational burden.

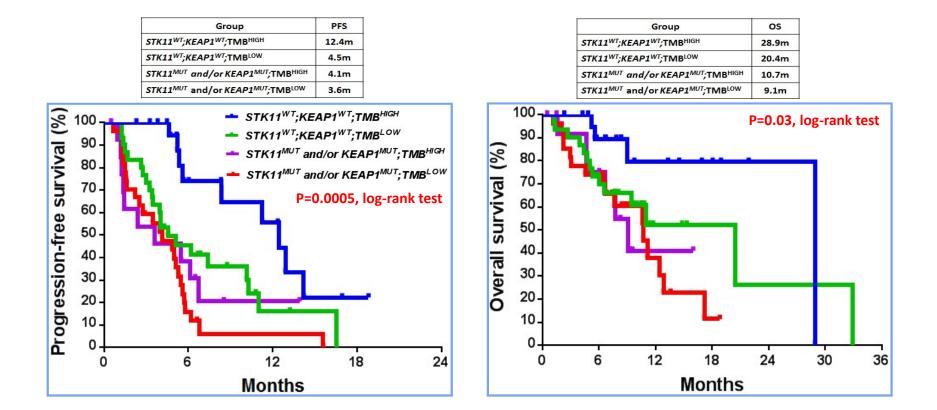

^{1.} Yarchoan M, et al. N Engl J Med. 2017; 2. Chalmers ZR, et al. Genome Med. 2017; 3. Goodman AM, et al. Mol Cancer Ther. 2017;


^{4.} Efremova M, et al. Front Immunol. 2017; 5. Topalian SL, et al. Nat Rev Cancer. 2016; 6. Kowanetz M, et al. WCLC 2017. 7. Mariathansan, et al. Nature 2018. 8. Rizvi et al: ESMO IO 2018.


High Tissue TMB is associated with increased efficacy of Checkpoint Inhibitor Monotherapy



Analytical & Clinical Validation of Tumor Mutational Burden in Blood (bTMB) in association with Atezolizumab efficacy in advanced NSCLC (POPLAR & OAK Trials)



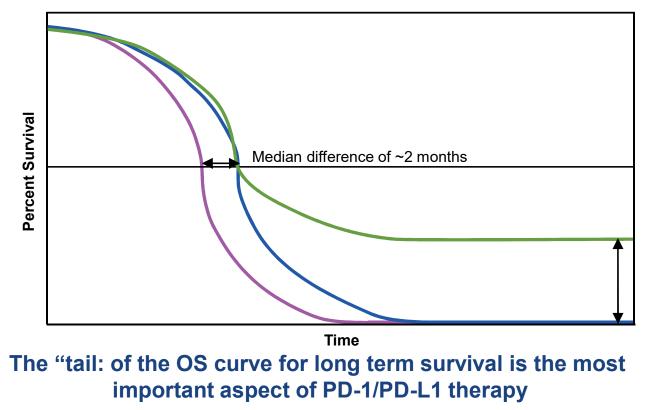
BFAST (Blood First Assay Screening Trial): Phase II/III in Advanced Treatment-naïve Advanced NSCLC

Accrual Completed 9/2019

Integration of *STK11* and *KEAP1* genomic alterations with TMB and other biomarkers: Moving towards a composite panel?

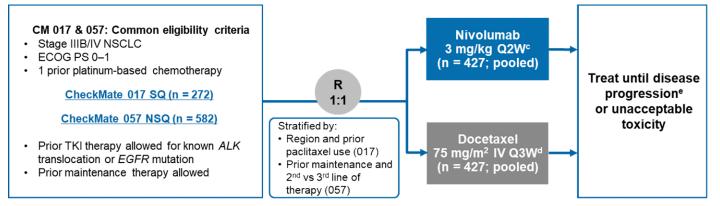
Skoulidis: ASCO 2019.

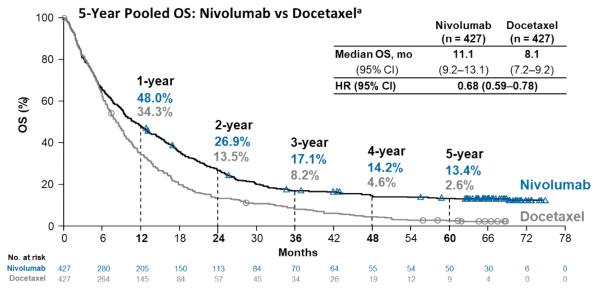
Current Issues in Checkpoint Immunotherapy (CPI) for NSCLC: A Perspective from February 2020


- Overview: Evolving Role of CPI in advanced (Stage IV) NSCLC
- Predictive Biomarkers
 - PD-L1 Assay
 - Tumor Mutational Burden (TMB)
 - Other biomarkers in development
- Clinical trial results in advanced NSCLC
 - 2nd line CPI Monotherapy –Updates on Long Term Survival
 - 1st line (CPI monotherapy, CPI-Chemotherapy)
- Stage III Unresectable NSCLC: Platinum Chemotherapy/RT → Consolidation CPI (PACIFIC)

Кеу	Key 2 nd + Phase III Trials of Checkpoint Immunotherapy in Advanced NSCLC									
Study	Drug	PDL1 Selection	Line of therapy	Control	Primary Endpoint	HR-Primary Endpoint	FDA Approval			
CM017 (SQ)	Nivo	None	2nd	Docetaxel	OS	0.62	Yes			
CM057 (Non-SQ)	Nivo	None	2 nd -3rd	Docetaxel	OS	0.75	Yes			
K010	Pembro	>1%	2 nd -3rd	Docetaxel	OS & PFS	0.61	Yes			
ОАК	Atezo	None	2 nd -3rd	Docetaxel	OS	0.73	Yes			

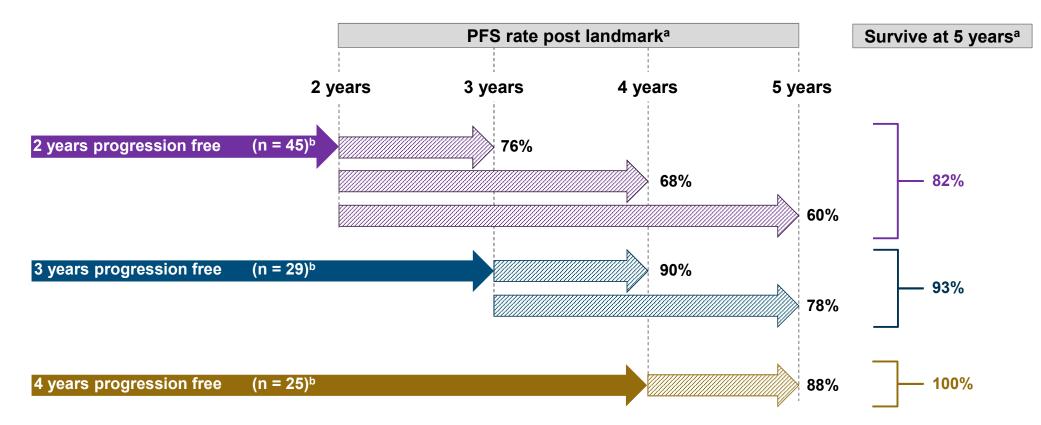
Trial	ORR	mPFS (mos)	mOS (mos)	2 yr OS
CheckMate 017 (SQ)	20%	3.5	9.2	23%
CheckMate 057 (Non- SQ)	19%	2.3	12.2	29%
KEYNOTE 010	18%	4	12.7	30%
ΟΑΚ	15%	2.8	13.8	31%


Gandara: Best of ASCO Central Europe 2019


Extending the Tail of the Kaplan-Meier Curve: Potential for "Cure"

Gandara D, et al. UCDCC 2015

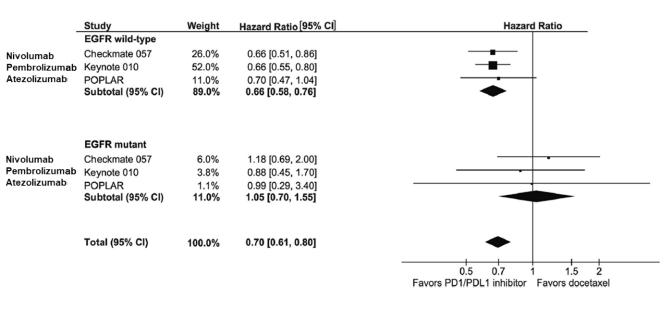
Long Term (5 year) OS in CheckMate 017 & 057



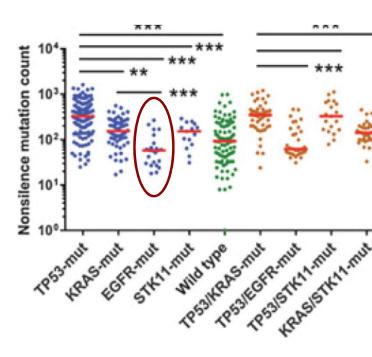
Trial	Nivo	Doc
CM017	12.3%	3.6%
CM057	14%	2.1%

Gettinger et al: WCLC 2019

PFS and OS Landmark Analyses by PFS at 2, 3, and 4 Years



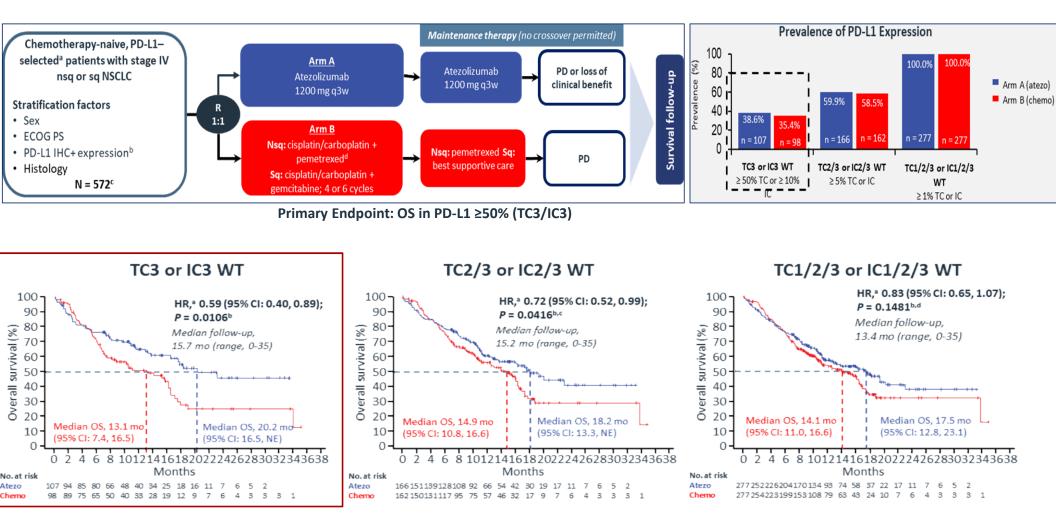
• There were 4, 1, and 0 patients who had PFS ≥ 2, 3, and 4 years, respectively, in the docetaxel arm; none of these patients survived ≥ 5 years


Gettinger et al: WCLC 2019

Oncogene-driven NSCLC: Efficacy of PD1/PD-L1 inhibitors is poor and TMB is low

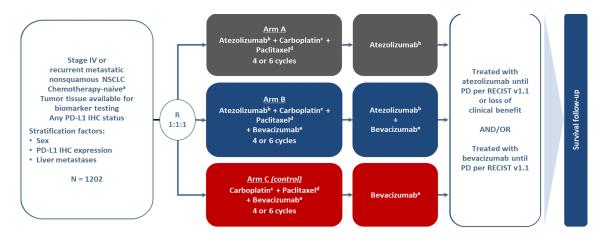
PD-(L)1 Inhibitors in EGFR-mutated NSCLC

TMB is low in EGFR-mutated cancers



Lee CK, et al. J Thorac Oncol 2016

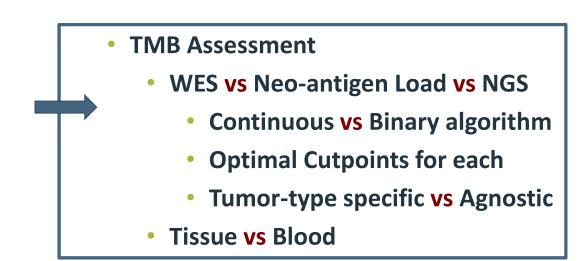
Dong, Wu et al CCR 2017


		anced NSCLC	therapy in Adv	oint Immuno	line Checkpo	Results of 1st	Clinical Trial I	
1 st Line Trial	Result	HR-Primary Endpoint	Primary Endpoint	Control	Line of Therapy	PDL1 Selection	Drug (vs Chemo)	Study
Test Regime	Positive	0.50	PFS	Plat Chemo	1st	≥50%	Pembro	KN024
CPI Monother CPI+Chemo CPI+Chemo+E	Negative	1.15	PFS	Plat Chemo	1st	≥5%	Nivo	CM026
CPI + CTLA4	Negative	NR	PFS & OS	Plat Chemo	1st	≥25%	Durva or Durva-Tremi	MYSTIC
Biomarker None PD-L1 TMB Histology All Squamous	Positive	0.52	PFS	Plat Chemo	1st	≥1%	Pembro-Chemo	KN189 (Non-SQ)
	Positive	0.81 for OS 0.69 for 50%	OS	Plat Chemot	1st	≥1%	Pembro	KN042
	Positive	0.64 for OS	PFS & OS	Plat-Nab Paclitax	1st	None	Pembro-Chemo	KN047 (SQ)
	Positive	0.71	PFS OS	Bev/Pac Carbo	1st	None	Atezo +Bev/ Pac/Carbo	Impower 150 (Non-SQ)
Non-Squamo	Positive	0.71 (PFS)	PFS OS	Pac/ Carbo	1st	None	Atezo + Nab/Carbo	Impower 131 (SQ)
1 Endpoint PFS	Positive	0.58 (in H-TMB)	PFS & OS	Plat Chemo	1st	<1% & TMB≥10	Nivo or Nivo-Ipi	CM227
OS Both	Positive	0.59	OS in TC3/IC3	Plat Chemo	1st	≥1%	Atezo	IMpower 110

IMpower110: Atezo vs Platinum Chemotherapy - Overall survival

Spigel D, et al. ESMO 2019. Abstract LBA78.

IMpower150: Phase 3 study of Atezolizumab + Chemo ± Bevacizumab vs Chemo + Bevacizumab in 1st-line Non-Squamous NSCLC



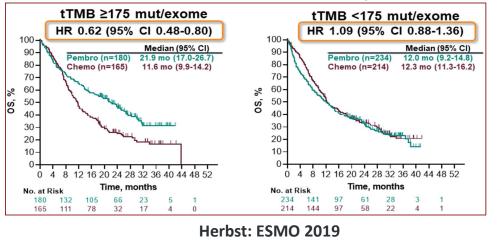
Population	No. of Patients (%)	Progres	edian ssion-free val (mo)		Hazard Ratio (9	5% CI)
		ABCP	BCP			
ITT population	800 (100)	8.3	6.8		⊢	0.61 (0.52-0.72)
Patients with EGFR or ALK genetic alternations	108 (14)	9.7	6.1		► ♦	0.59 (0.37–0.94)
WT population	692 (87)	8.3	6.8		·	0.62 (0.52-0.74)
PD-L1 subgroups (in the WT populatio	n)					
TC3 or IC3	135 (20)	12.6	6.8		'	0.39 (0.25-0.60)
TC1/2/3 or IC1/2/3	354 (51)	11.0	6.8		·	0.50 (0.39-0.64)
TC1/2 or IC1/2	224 (32)	8.3	6.6		· · · · · · · · · · · · · · · · · · ·	0.56 (0.41-0.77)
TC0/1/2 and IC0/1/2	557 (80)	8.0	6.8		· • •	→ 0.68 (0.56–0.82)
TC0 and IC0	338 (49)	7.1	6.9		·•	0.77 (0.61–0.99)
Teff subgroups (in the WT population)						
High gene-signature expression	284 (43)	11.3	6.8		·	0.51 (0.38-0.68)
Low gene-signature expression	374 (57)	7.3	7.0		·	0.76 (0.60–0.96)
				0.25		1.00 1.25
					ABCP Better	BCP Better

Socinski et al: NEJM 2018

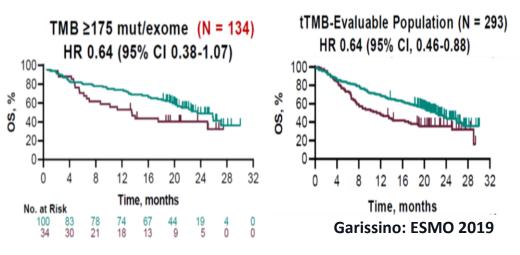
Predictive Biomarkers for Checkpoint Immunotherapy (CPI): Note: cannot be equated to a discrete variable like driver mutations (Present or Absent) Instead, a variety of dynamic & continuous variables across a context-specific range

- Which Biomarker(s)?
 - PD-L1 IHC
 - TMB
 - PD-L1 IHC + TMB
 - PD-L1 + TMB + Other
 - Multitude of Others

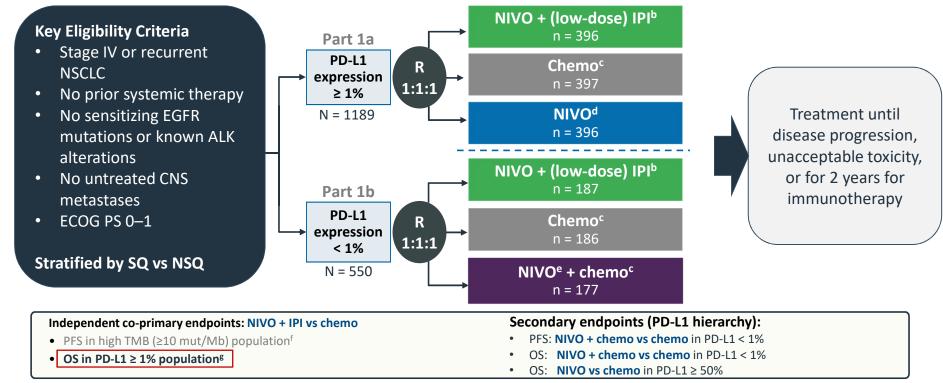
- What is the context? (Biomarker for which type of CPI regimen)
 - NSCLC (Squamous or Non-Squamous) vs SCLC
 - CTLA-4 vs PD-1/PD-L1 vs PD-1/PD-L1 + CTLA-4
 - PD-1/PD-L1 + Platinum Chemotherapy


Chemotherapy likely "agnostic" to immuno-biomarker . "Dilutes out predictive value

Gandara: Lung Cancer Summit. ESMO19

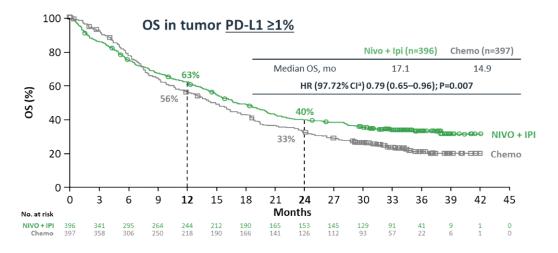

Summary of tTMB in CPI Monotherapy vs CPI + Chemo (or Ipi) Trials: Including New Data from WCLC & ESMO 2019

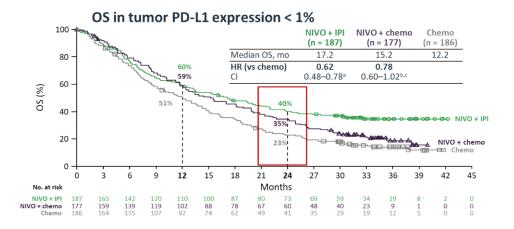
Phase III TrialS	Mono- or Combination	PFS	OS
KN-010	Pembro Mono	V	V
KN-042	Pembro Mono	V	V
KN-189	Pembro + Chemo	Νο	Νο
KN-047	Pembro + Chemo	Νο	Νο
CM 227	Nivo + Ipi	V	Νο
S1400i (LUNG MAP)	Nivo + Ipi	V	V


KN-042: Pembro vs Chemo: tTMB by WES

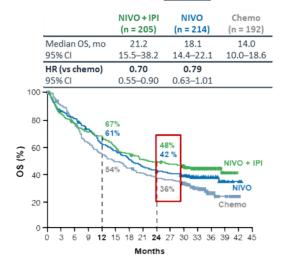
KN-189: Pembro+Chemo vs Chemo (Non-Squamous): tTMB by WES

CheckMate 227: Part 1 final analysis of nivolumab + low-dose ipilimumab vs platinum-doublet chemotherapy in 1L advanced NSCLC

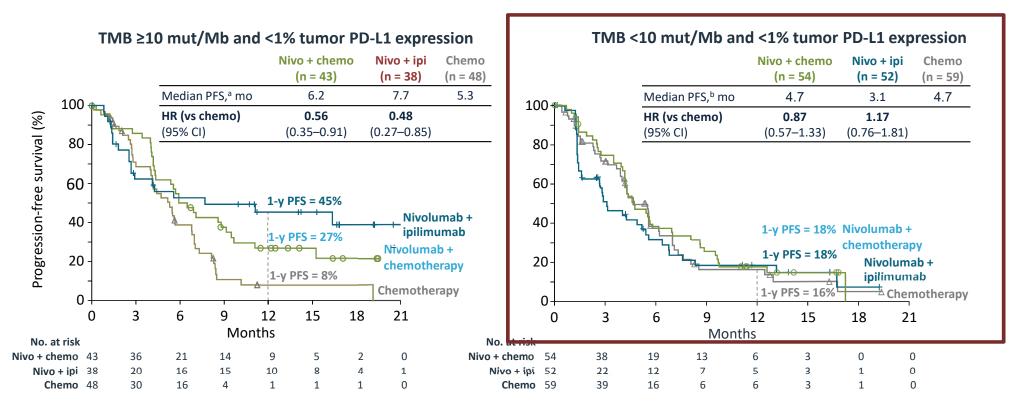



Database lock: July 2, 2019; minimum follow-up for primary endpoint: 29.3 months

^aNCT02477826; ^bNIVO (3 mg/kg Q2W) + IPI (1 mg/kg Q6W); ^cNSQ: pemetrexed + cisplatin or carboplatin, Q3W for ≤ 4 cycles, with optional pemetrexed maintenance following chemo or NIVO + pemetrexed maintenance following NIVO + chemo; SQ: gemcitabine + cisplatin, or gemcitabine + carboplatin, Q3W for ≤ 4 cycles; ^dNIVO (240 mg Q2W); ^eNIVO (360 mg Q3W); ^fTMB primary endpoint analysis conducted at January 24, 2018 database lock in subset of patients randomized to NIVO + IPI or chemo; alpha allocated was 0.025; ^gAlpha allocated was 0.025 overall (0.023 for final analysis)


Peters S, et al. ESMO 2019. Abstract LBA4_PR

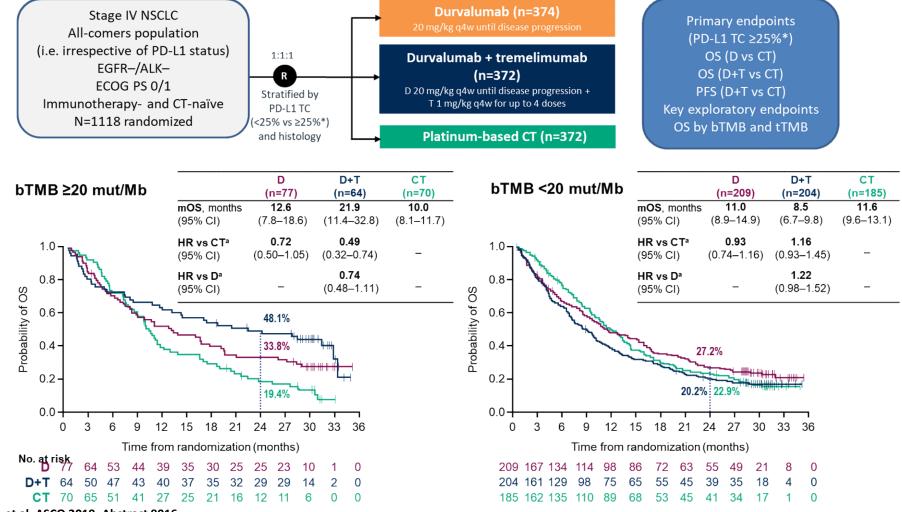
CheckMate 227: Part 1 final analysis of nivolumab + low-dose ipilimumab vs platinum-doublet chemotherapy in 1L advanced NSCLC



OS in PD-L1 ≥50%

Peters S, et al. ESMO 2019. Abstract LBA4_PR

CheckMate 227: Nivolumab +/- Ipilimumab vs Chemotherapy Progression-free survival by Tumor Mutation Burden and PD-L1 expression



Exploratory analysis. Chemo, chemotherapy; mut, mutations; ipi, ipilimumab; nivo, nivolumab; TMB, tumor mutation burden.

^a95% CI: nivo + chemo (4.3–9.1 mo), nivo + ipi (2.7–NR mo), chemo (4.0–6.8 mo); ^b95% CI: nivo + chemo (4.2–6.9 mo), nivo + ipi (1.6–5.4 mo), chemo (3.9–6.2 mo).

Borghaei H, et al. ASCO 2018. Abstract 9001.

MYSTIC: 1L durvalumab ± tremelimumab vs chemotherapy in metastatic NSCLC – bTMB

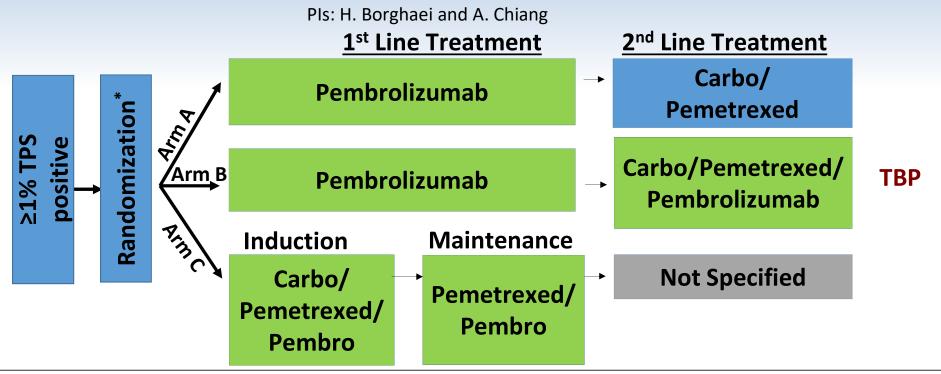
Rizvi NA, et al. ASCO 2019. Abstract 9016.

FRIENDS of CANCER RESEARCH

Friends of Cancer Research (FOCR) TMB Harmonization Effort

Friends of Cancer Research has convened a multi-stakeholder working group to align on and publish universal best practices for defining TMB, analytic validation, and alignment against reference standards.

		Analytica	Clinical Validation =		
	Workflow	Step 1: In silico analysis	Step 2: Empirical analysis	Step 3: Clinical analysis	
rs es	Samples	Publicly available TCGA data	Cells derived from human tumors	Clinical Samples	
	Goals	Identify agreement between TMB calculated using whole exome sequencing (WES) & various targeted panels used in the clinic	Agree upon creation of a universal reference standard using WES Identify agreement between TMB score from targeted panels & reference standard	Conduct a retrospective analysis using patient outcome data to identify cut-off values and inform prospective studies	
	Timeframe	May 2018	Fall 2018	Winter 2018/Spring 2019	

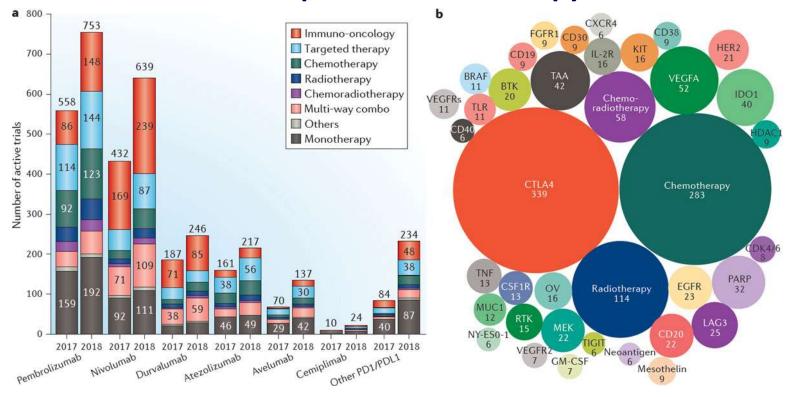

TMB Workflow

https://www.focr.org/tmb

Participants:

- Seven test developers
- Six pharma companies
- FDA
- NCI
- Academia

Perspective: INSIGNA: ECOG/SWOG Advanced Non-squamous Trial

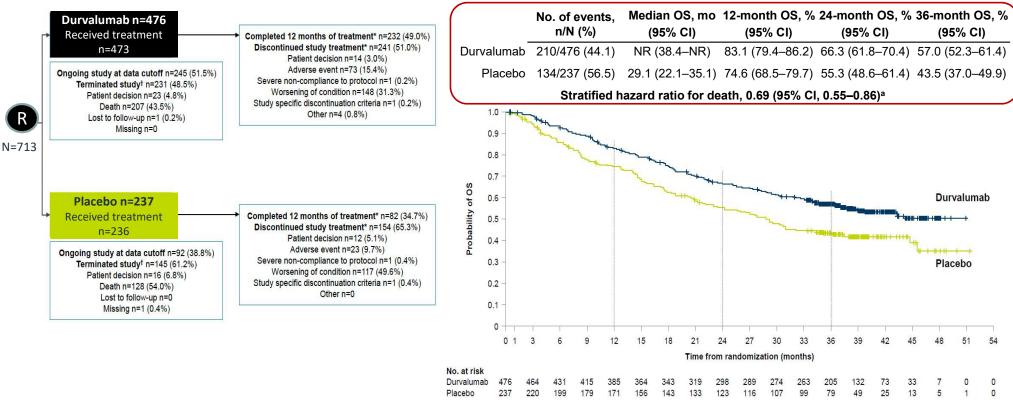


Primary Endpoint: Overall Survival

Integrated Biomarker Objectives:

- To establish a *predictive* immuno-*signature* for clinical benefit (OS) with chemo combined with pembrolizumab versus pembrolizumab alone in patients with PD-L1 expressing tumors (≥1%, 1-49%, ≥50%)
- To establish a *prognostic* immuno-*signature* associated with better outcome (OS) to 1st line treatment with pembrolizumab alone in patients with PD-L1 expressing tumors (>=1%, 1-49%, >=50% TPS).

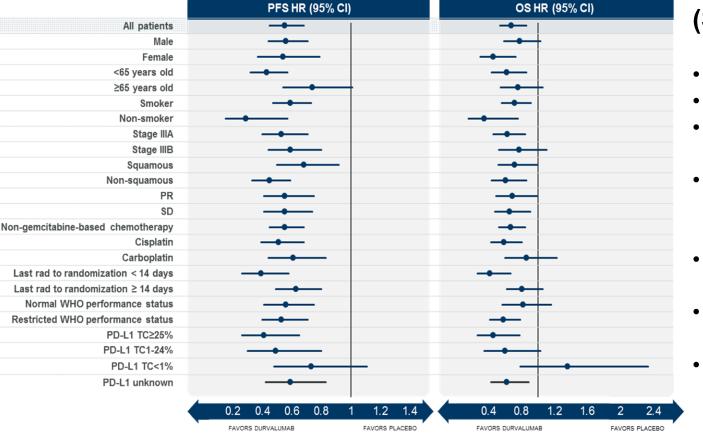
Unmet Need for Predictive Biomarkers in Clinical Trials of Checkpoint Immunotherapy


Over 2,250 clinical trials ongoing as of January 2019 requiring 380,900 patients ~750 trials in NSCLC

Tang: Nat RD 2018

Current Issues in Checkpoint Immunotherapy (CPI) for NSCLC: A Perspective from February 2020

- Overview: Evolving Role of CPI in advanced (Stage IV) NSCLC
- Predictive Biomarkers
 - PD-L1 Assay
 - Tumor Mutational Burden (TMB)
 - Other biomarkers in development
- Clinical trial results in advanced NSCLC
 - 2nd line CPI Monotherapy –Updates on Long Term Survival
 - 1st line (CPI monotherapy, CPI-Chemotherapy)
- Stage III Unresectable NSCLC: Platinum Chemotherapy/RT → Consolidation CPI (PACIFIC)


PACIFIC: Durvalumab versus placebo after Concurrent Chemo-RT in unresectable, stage III NSCLC — 3-year OS update

^aStratified hazard ratio for death from the primary analysis, 0.68 (95% CI, 0.53–0.87)

Gray JE, et al. ASCO 2019. Abstract 8526.

How do we apply the PACIFIC data in Clinical Practice?

Progression-free and Overall Survival by Subgroup (ITT)

Gray JE, et al. ASCO 2019. Abstract 8526.

Practical Applications (Selection vs De-Selection)

- Both IIIA (unresectable) & IIIB
- All Histologies of NSCLC
- Smokers/Non-Smokers
- What chemotherapy?
 - Cisplatin preferred over low dose weekly Carbo
- What Radiotherapy regimen?
 - 60-66Gy standard fx
- EGFR-mutated NSCLC
 - Unclear
- PD-L1 <1%
 - Unclear