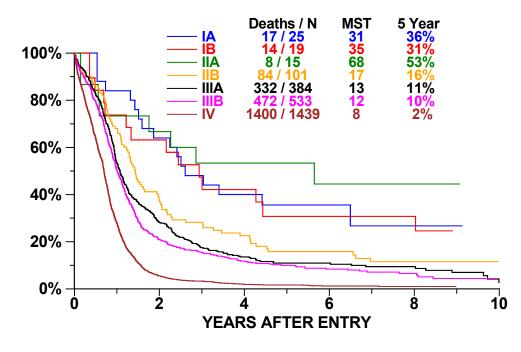
Small Cell Lung Cancer: Novel Approaches 2019

David R. Gandara, MD University of California Davis Comprehensive Cancer Center


Disclosures

- Institutional Research Grants: Roche-Genentech, Novartis, Merck
- Consultant/Advisory Board: AstraZeneca, Celgene, CellMax, FujiFilm, Roche-Genentech, Guardant Health, Inivata, IO Biotech, Lilly, Merck, Samsung Bioepis

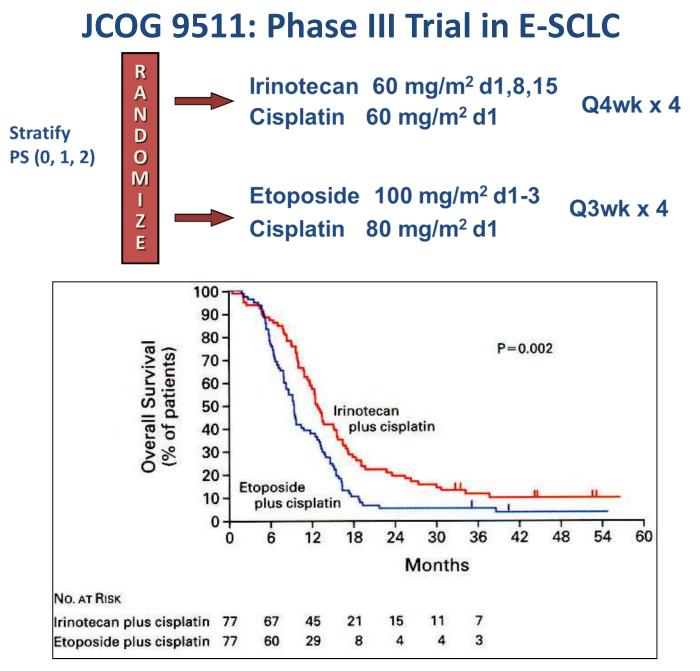
Small Cell Lung Cancer:

High Proliferation Rate, Early Dissemination, Initial Chemo- Radiation-sensitivity → Refractory Disease

- High propensity for early systemic dissemination
 - Over 70% present with extensive stage disease
 - Up to 65% relapse with brain metastases
 - Over 85% succumb within 1 year of relapse

Shepherd et al: J Thorac Oncol 2007

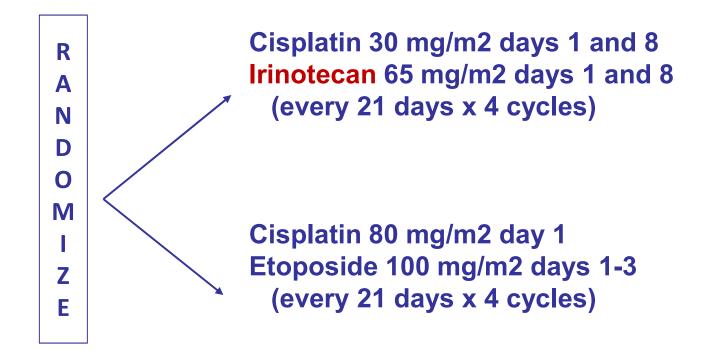
Demographic, Biologic, Clinical & Therapeutic Differences between SCLC & NSCLC


Feature	SCLC	NSCLC
Incidence	Decreasing	Increasing
Association with Smoking	Universal	Highly Variable
Mutational Load	High	Variable
Biologic Diversity (Histologic & Molecular)	~More Uniform	Distinct Subtypes
Growth Kinetics	~Rapid	Variable
Early Metastases	Universal	Variable
Sensitivity to DNA-damaging chemotherapy (1 st line)	High	Variable
Sensitivity to Radiotherapy	High	Variable
Advances in Therapy ~15 years	Few Advances	Dramatic Advances

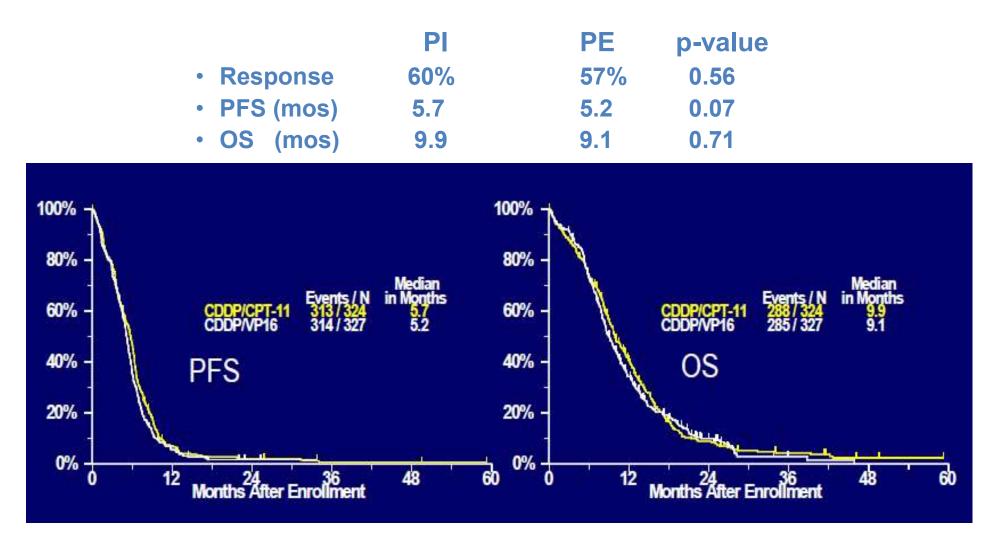
Current Status: Systemic Therapy of Extensive SCLC

- Platinum/Etoposide (PE) has been the standard for first-line therapy in the U.S. for ~20 years, but this has now changed
- In 1st line therapy, new regimens consistently failed to surpass PE in Phase III comparisons until
 - Over 20 new chemotherapeutic & biologic agents failed
 - Dose intensification including BM transplantation failed
 - Checkpoint Immunotherapy + PE set new standard of care
- In 2nd line therapy, a number of chemotherapeutic agents are active in "platinum-sensitive" patients, but the "platinum-refractory" subset fares poorly
 - Despite modest ORRs & short PFS, 2nd line CPIs result in some long term survivors
- Additional studies evaluating novel molecular-targeted agents in firstand second-line therapies of SCLC are needed
- Advances but Controversial:
 - Prophylactic Cranial Irradiation (PCI) is reported to be beneficial but is controversial
 - "Consolidation" thoracic RT is reported to be beneficial but is controversial

Investigation of Chemotherapy Agents in SCLC


Agent	Response Rate in Phase II: 1 st line/2 nd line	Results (1 st line in combination with Platinum)
Paclitaxel	~35%/~25%	Negative Phase III trial (Niell et al)
Gemcitabine	~25%/14%	Phase II: not promising (Hesketh et al)
Topotecan	?/~18%	"Positive" Phase III: but not adopted (Heigener et al)
Irinotecan	~35%/~25%	Conflicting results of Phase III trials (Noda; Lara; Hanna)
Pemetrexed	?	Negative Phase III trial (Socinski et al)
Amrubicin	~40%	Negative Phase III 2 nd line trial (Jotte et al) Negative Phase III 2nd line trial (Kotani et al)

Noda: NEJM, 2002


SWOG 0124:

Cisplatin/Irinotecan (PI) vs Cisplatin/Etoposide (PE)

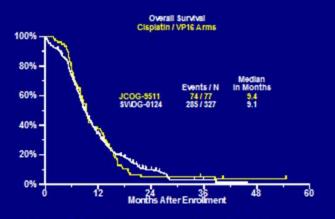
- Hypothesis: Results of S0124 will differ from J9511 due to population-related pharmacogenomics for Irinotecan disposition in Japanese vs U.S. populations
- Identical drug dose schedules for J9511 & S0124
- Unique Aspect of S0124
 - Comparative efficacy of J9511 & S0124 using "common arm" approach
 - Comparative Toxicity of J9511 & S0124: patient level data

SWOG 0124: Cisplatin/Irinotecan (PI) vs Cisplatin/Etoposide (PE)

Lara et al: JCO, 2009

Comparative Toxicities of JCOG 9511 versus SWOG 0124: Cisplatin/Irinotecan "common arm"

	(PI) Cisplatin/Irinotecan			
≥ Grade 3	J9511 (n=75)	S0124 (n=278)		
Neutropenia	49 (65%)*	88 (32%)		
Leukopenia	20 (27%)**	48 (17%)		
Anemia	21 (28%)*	16 (6%)		
Diarrhea	12 (16%)	51 (18%)		


* p<0.0001 **p=0.02

Japanese patients have more toxicity with the same treatment regimen & dose delivery

Lara et al: JCO, 2009

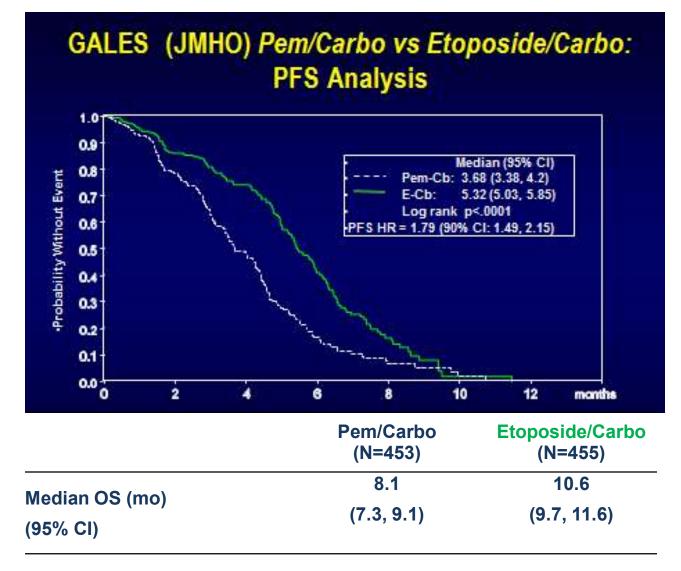
Comparative Efficacy of JCOG 9511 versus SWOG 0124

Overall Survival by Trial: Cisplatin/Etoposide (VP-16) Arm

J9511 and S0124 have similar OS in the control Cisplatin/Etoposide "common arm"

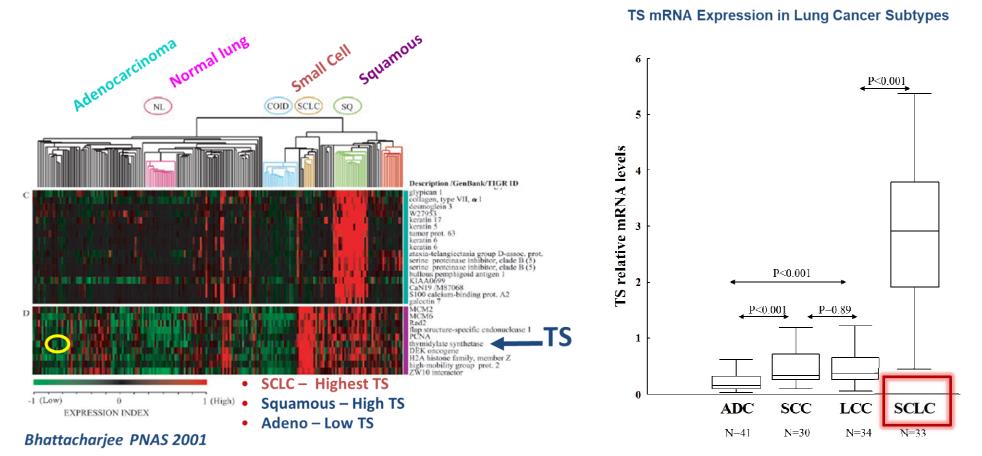
Overall Survival by Trial: Cisplatin/Irinotecan(CPT-11) Arm

J9511 demonstrates longer OS compared to S0124 in the Cisplatin/Irinotecan "common arm"


S0124 did not confirm results of J9511 Efficacy of Irinotecan greater in Japanese patients Toxicity is also greater in Japanese patients Population-related Pharmacogenomics may have influenced results

Lara et al: JCO, 2009

Investigation of Chemotherapy Agents in SCLC

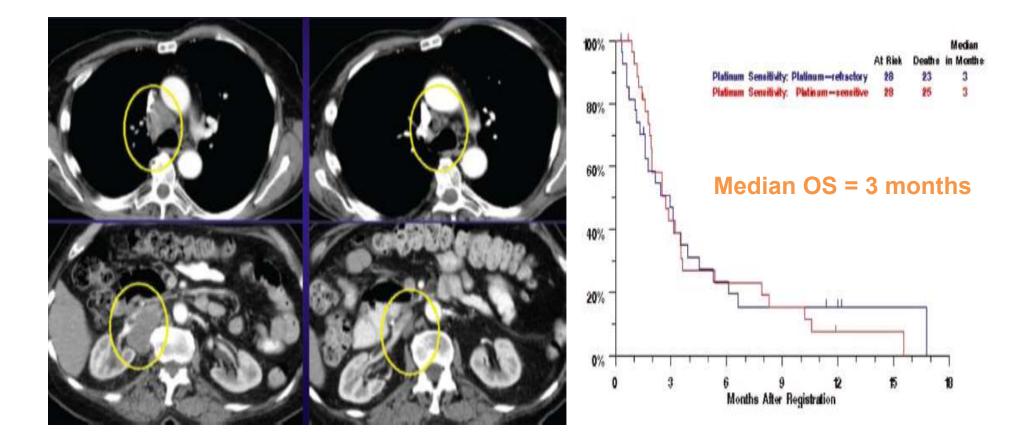

Agent	Response Rate in Phase II: 1 st line/2 nd line	Results (1 st line in combination with Platinum)
Paclitaxel	~35%/~25%	Negative Phase III trial (Niell et al)
Gemcitabine	~25%/14%	Phase II: not promising (Hesketh et al)
Topotecan	?/~18%	"Positive" Phase III: but not adopted (Heigener et al)
Irinotecan	~35%/~25%	Conflicting results of Phase III trials (Noda; Lara; Hanna)
Pemetrexed	?	Negative Phase III trial (Socinski et al)
Amrubicin	~40%	Negative Phase III 2 nd line trial (Jotte et al) Negative Phase III 2nd line trial (Kotani et al)

Lessons Learned: Pemetrexed (GALES) Phase III trial in Extensive SCLC

Socinski et al: ASCO 2008; Smit et al: ASCO 2009

Thymidylate Synthetase (TS) Expression in Lung Cancer

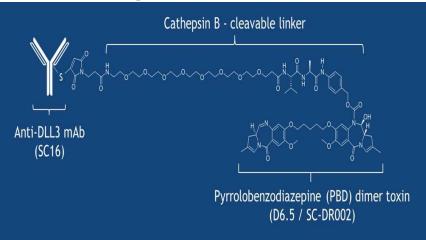
TS mRNA Expression in Lung Cancer Subtypes

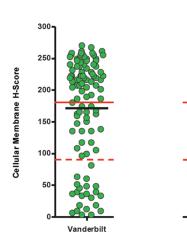

Ceppi et al: Cancer 2006

Investigation of "Targeted Therapies" in Extensive Stage SCLC

Selected Agents	Target(s)	Results
Imatinib (Johnson et al)	KIT, SCF	Inactive
Bec2/BCG (Giaccone)	GD3 ganglioside	Negative Phase III trial
Bortezomib (PS-341) (Lara et al)	Proteasome	Insufficient activity
Sorafenib (Gitliz et al)	VEGFR	Insufficient activity PR: PlatSens: 5% PlatRef: 2%
Vandetanib (ZD6474) (Arnold et al)	EGFR/VEGFR	HR 1.43 vs Placebo for OS
ABT263 & Obatoclax (Rudin et al; Langer et al)	Bcl-2	Insufficient activity
Aflibercept (VEGF-Trap or AVE0005) S0802 (Allen)	VEGF	Modest activity added to topotecan
ABT888 + PE vs PE (Belani)	PARP	Negative

Bortezomib (PS-341) in Relapsed or Refractory Extensive Stage Small Cell Lung Cancer: A Southwest Oncology Group Phase II Trial (S0327)

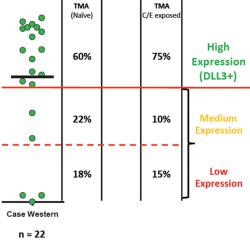

Primo N. Lara, Jr., MD, *† Kari Chansky, MS, † Angela M. Davies, MD, * Wilbur A. Franklin, MD, § Paul H. Gumerlock, PhD, * Perry P. Guaglianone, MD, || James N. Atkins, MD, ¶ Nichole Farneth, BS, * Philip C. Mack, PhD, * John J. Crowley, PhD, * and David R. Gandara, MD*†



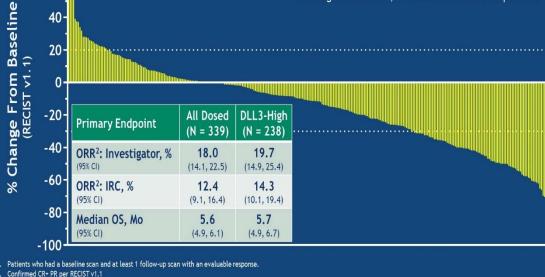
Investigation of "Targeted Therapies" in Extensive Stage SCLC

Selected Agents	Target(s)	Results
Imatinib (Johnson et al)	KIT, SCF	Inactive
Bec2/BCG (Giaccone)	GD3 ganglioside	Negative Phase III trial
Bortezomib (PS-341) (Lara et al)	Proteasome	Insufficient activity
Sorafenib (Gitliz et al)	VEGFR	Insufficient activity PR: PlatSens: 5% PlatRef: 2%
Vandetanib (ZD6474) (Arnold et al)	EGFR/VEGFR	HR 1.43 vs Placebo for OS
ABT263 & Obatoclax (Rudin et al; Langer et al)	Bcl-2	Insufficient activity
Aflibercept (VEGF-Trap or AVE0005) S0802 (Allen)	VEGF	Modest activity added to topotecan
ABT888 + PE vs PE (Belani)	PARP	Negative
Rova-T	DLL3 (Notch path)	TRINITY (Insufficient Activity)

TRINITY: Phase II Trial of Rova-T (a DLL3-targeted ADC) in E-SCLC

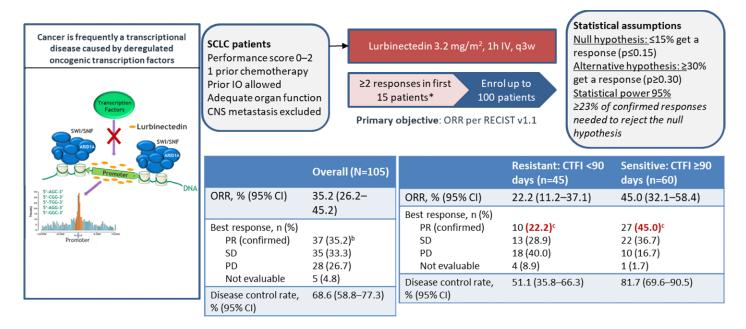


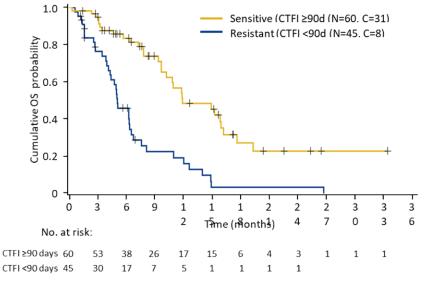
n = 106


DLL3 Expression is highly expressed in SCLC

VANDY

CASE WST


TRINITY: Primary Endpoint Analyses


	All Patient	ts, N = 339
TEAEs	Any n (%)	Drug-Related n (%)
Any AEs	335 (99%)	308 (91%)
Serious AEs	170 (50%)	100 (30%)
Grade 3+ AEs	179 (53%)	134 (40%)
AEs with fatal outcome	34 (10%)	10 (3%)
AEs resulting in: Discontinuation Interruption Dose reduction	24 (7%) 32 (9%) 33 (10%)	16 (5%) 29 (9%) 32 (9%)

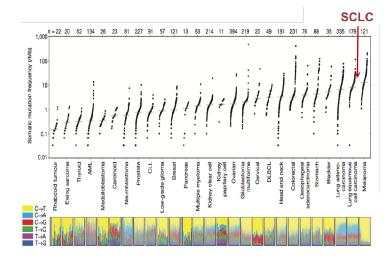
Carbone et al: ASCO18

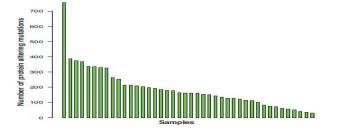
Lurbinectedin in SCLC: Phase 2 study in 2nd-line therapy

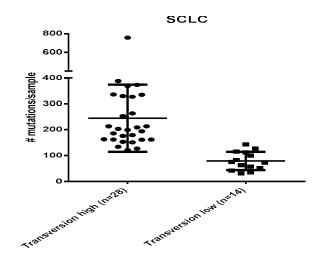
Overall survival in Sensitive and Resistant populations

	n	Median OS, mo (95% CI)	OS at 12 mo, % (95% Cl)
All	105	9.3 (6.3-11.8)	34.2 (23.2-45.1)
Resistant (CTFI <90d)	45	5.0 (4.1-6.3)	15.9 (3.6-28.2)
Sensitive (CTFI ≥90d)	60	11.9 (9.7-16.2)	48.3 (32.5-64.1)

Paz-Ares LG, et al. ASCO 2019. Abstract 8506.

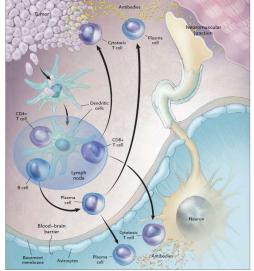

Rationale for Checkpoint Immunotherapy (CPI) in SCLC


• SCLC ranks among the highest of all tumor types in terms of # of mutations/Mb of DNA

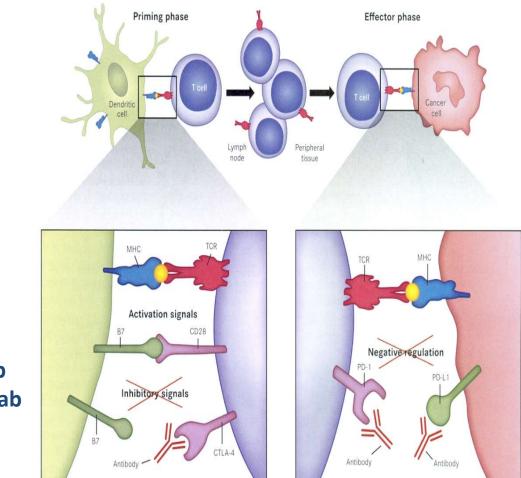

• Extraordinarily high numbers of somatic mutations in some patients

- Mutations are most commonly G to T transversions
 - Reflective of DNA-damaging tobacco carcinogens
 - Strongly neoantigenic

Rudin C, et al. *Nature Genetics*. 2012;44:1111. Peifer M, et al. *Nature Genetics*. 2012;44:1104. George J, et al. *Nature*. 2015;524:47.



SCLC associated with Immunogenic Effects

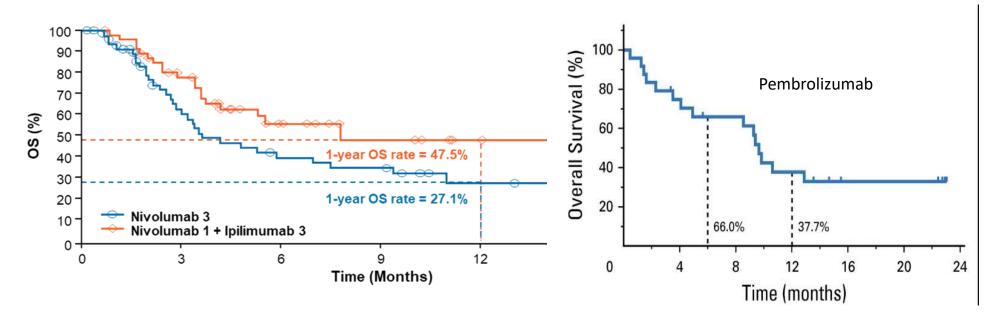

- Subset of SCLCs elicit CD4-dependent antibody and CD8 T-cell responses against neuronal antigens expressed by the tumor
 - Associated with immune-mediated paraneoplastic syndromes

• SCLC patients with neurologic paraneoplastic syndromes and anti-Hu autoantibodies have an improved response to therapy and prolonged survival

Darnell RB & Posner JB. NEJM. 2003;349:1543. Brahmer JR & Pardoll DM. Cancer Immunol Res. 2013;1:85. Roberts WK, et al. J Clin Invest. 2009;119:2042.

Checkpoint Immuno-Therapeutics

PD-1/PD-L1

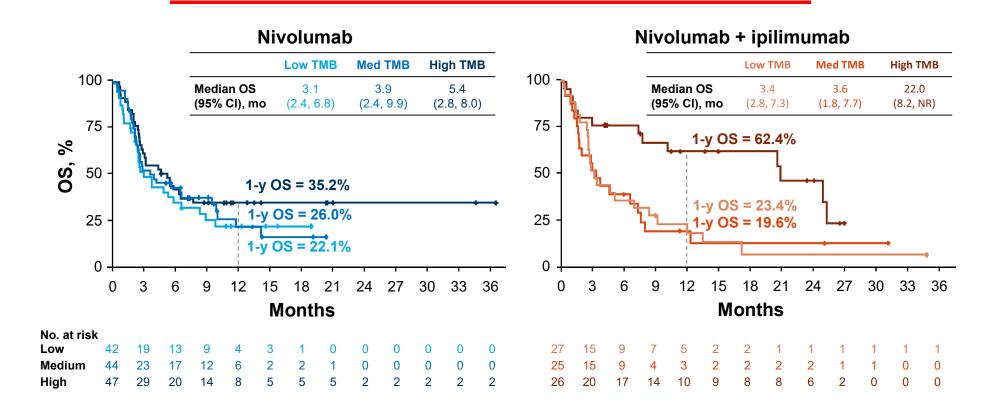

Inhibitors: Nivolumab Pembrolizumab Atezolizumab Durvalumab Avelumab

CTLA-4

Inhibitors: Ipilimumab Tremilimumab

CheckMate 032 and Keynote 028 in previously treated E-SCLC

Overall survival



NCCN Guidelines have all 3 options: Nivo, Nivo+ipi, and Pembro FDA approved nivolumab for 3rd line therapy in Aug 2018; pembrolizumab in June 2019

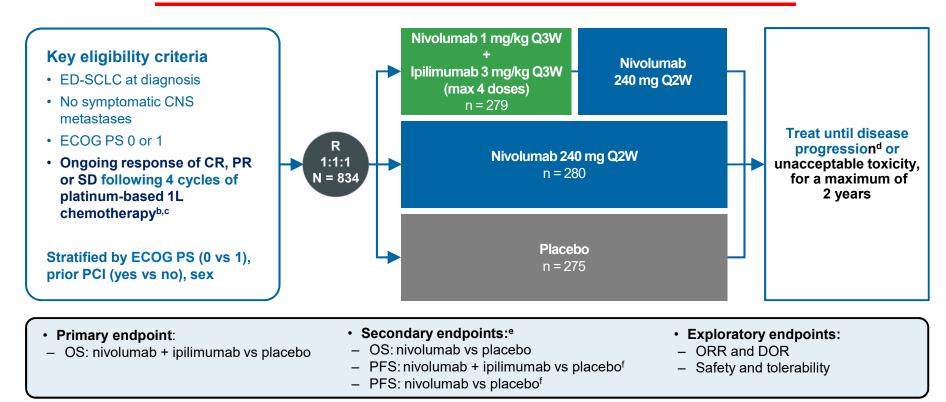
Hellman et al: JCO 2017 & E. Calvo; ESMO, 2015

OS by Tumor Mutation Burden Subgroup

CheckMate 032 Exploratory TMB Analysis Nivo ± Ipi in Previously Treated SCLC

Median (95% CI) OS, overall TMB-evaluable population: 3.9 (2.8, 6.1) months for nivolumab and 7.0 (3.2, 8.8) months for nivolumab + ipilimumab; NR = not reached

Hellman et al: JCO 2017

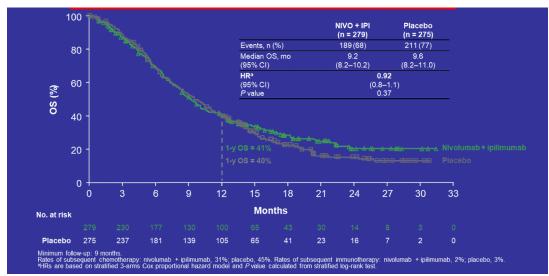

CM032: Treatment-related AEs in ≥5% Patients

	NIVO (n		NIVO1 + IPI3 (n = 47)	
	Any Grade, %	Grade 3-4, %	Any Grade,	% Grade 3-4, %
Total TRAEs	53	15	77	34
Fatigue	18	3	21	0
Diarrhea	13	0	23	9
Nausea	10	0	13	2
Vomiting	3	0	9	4
Pruritus	8	0	19	2
Rash	3	0	21	4
Rash maculopapular	0	0	13	4
Hypothyroidism	5	0	15	0
Hyperthyroidism	3	0	13	0
AST increased	5	0	4	0
Amylase increased	3	3	6	2
Lipase increased	0	0	11	6
Pneumonitis	5	0	2	2

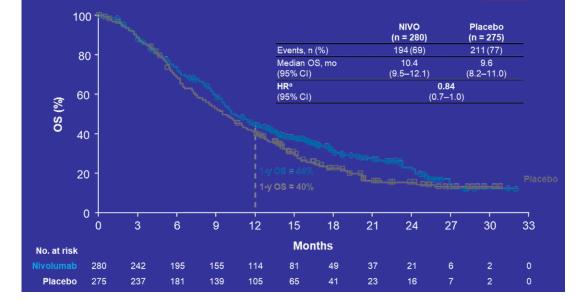
Limbic encephalitis of grade 2 occurred in 2 pts (NIVO, n = 1; NIVO 1 + IPI 3, n = 1) and resolved under immunosuppressive treatment. One pt (NIVO, n = 1) had grade 4 limbic encephalitis with minor response to immunosuppressive treatment. One fatal case of Myasthenia Gravis in combination therapy arm

S. Antonia et al: ASCO 2015 and Hellman et al: JCO 2017

CheckMate 451 Study Design[:] Maintenance Nivo or Nivo/Ipi

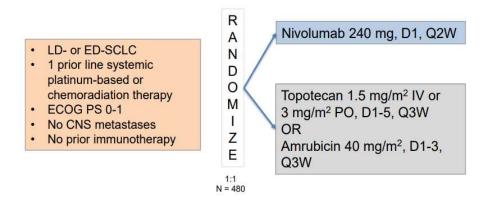

PCI, prophylactic cranial irradiation.

Database lock: November 12, 2018; minimum follow-up: 9 months.


and the last dose of 1L chemotherapy, or < 11 weeks for those receiving PCI or whole brain radiotherapy; a Patients could be treated beyond progression under protocol-defined circumstances; escondary endpoints to be tested hierarchically if primary endpoint met; Per blinded independent central review.

CheckMate 451: Phase III trial of Nivo or Nivo-Ipi vs Placebo Maintenance Therapy

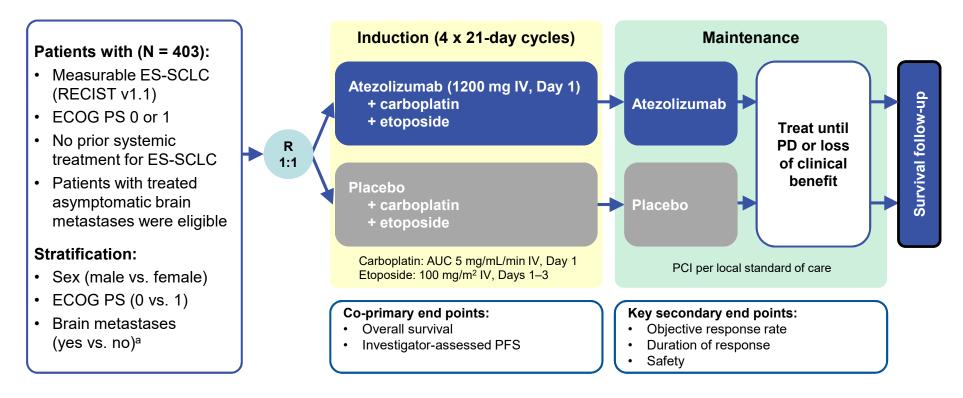
CM 451: OS of Nivo + Ipi vs Placebo



CM 451: OS of Nivo vs Placebo

Owonikoko et al: ELCC 2019

CheckMate 331: Nivo vs. Topotecan in 2nd line ES-SCLC



· Co-primary endpoint: OS

- Secondary endpoints: ORR, PFS
- Primary completion date: March 2018

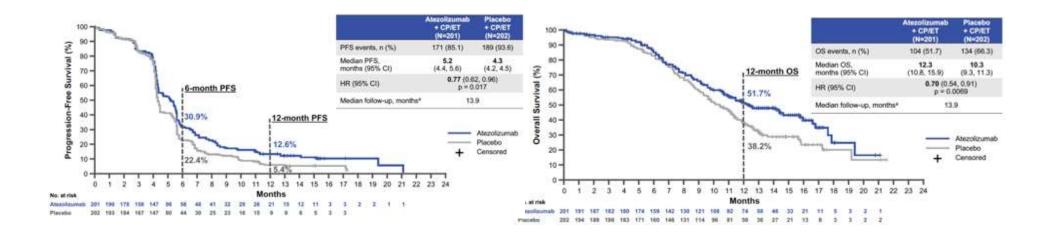
	Nivo (n = 284)	Topotecan (n = 285)
Overall survival		
Median, months (95% CI)	7.5 (5.7–9.2)	8.4 (7.0–10.0)
HR (95% CI)	0.86 (0.72–1.04) P = 0.11°	
1-year OS rate, % (95% CI)	37 (31–42)	34 (29–40)
Progression-free survival		
Median, months (95% CI)	1.4 (1.4–1.5)	3.8 (3.0–4.2)
HR (95% CI)	1.41 (1.18–1.69)	
1-year PFS rate, % (95% CI)	11 (8–15)	10 (7–14)
Objective response rate, n (%)	39 (14)	47 (16)
Odds ratio (95% CI)	0.80 (0.50–1.27)	
Duration of response		
n events/n responders (%)	28/39 (72)	43/47 (92)
DOR-Median, months (95% CI)	8.3 (7.0–12.6)	4.5 (4.1–5.8

IMpower133: Global Phase 1/3, double blind, randomized, placebo-controlled trial evaluated atezolizumab + carboplatin + etoposide in 1L ES-SCLC

^a Only patients with treated brain metastases were eligible. ECOG PS, Eastern Cooperative Oncology Group Performance Status; IV, intravenous; PCI, prophylactic cranial irradiation; PD, progressive disease; PFS, progression-free survival; R, randomized; RECIST, Response Evaluation Criteria In Solid Tumors.

Horn et al: N Engl J Med 2018

IASLC-


INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Immune-related AEs — no. (%) Atezolizumab + CP/ET > 1% Grade 3-4 AEa in either treatment group (N=195)		NET	Placebo + CP/ET (N=196)			
	Grade 1-2	Grade 3-4	Grade 5	Grade 1-2	Grade 3-4	Grade 5
Rash	33 (16.7)	4 (2.0)	0	20 (10.2)	0	0
Hepatitis	11 (5.6)	3 (1.5)	0	9 (4.6)	0	0
Infusion-related reaction	7 (3.5)	4 (2.0)	0	9 (4.6)	1 (0.5)	0
Pneumonitis	3 (1.5)	1 (0.5)	0	3 (1.5)	2 (1.0)	0
Colitis	1 (0.5)	2 (1.0)	0	0	0	0
Pancreatitis	0	1 (0.5)	0	0	2 (1.0)	0

Horn et al: N Engl J Med 2018

Presented by S Liu D Gandara: Closing Plenary Discussant

ImPower133: Overall survival in key subgroups

	Median overall sur	vival (months)		OS hazard ratio ^a
Population	Atezolizumab + CP/ET	Placebo + CP/ET		(95% CI)
Male (n = 261)	12.3	10.9	• • •	0.74 (0.54, 1.02)
Female (n = 142)	12.5	9.5	•	0.65 (0.42, 1.00)
< 65 years (n = 217)	12.1	11.5	• • • • • • • • • • • • • • • • • • •	0.92 (0.64, 1.32)
≥ 65 years (n = 186)	12.5	9.6	••	0.53 (0.36, 0.77)
ECOG PS 0 (n = 140)	16.6	12.4	· · · · · · · · · · · · · · · · · · ·	0.79 (0.49, 1.27)
ECOG PS 1 (n = 263)	11.4	9.3	· · · · · · · · · · · · · · · · · · ·	0.68 (0.50, 0.93)
Brain metastases (n = 35)	8.5	9.7	•	1.07 (0.47, 2.43)
No brain metastases (n = 368)	12.6	10.4	· · · · · · · · · · · · · · · · · · ·	0.68 (0.52, 0.89)
Liver metastases (n = 149)	9.3	7.8	• • • • • • • • • • • • • • • • • • •	0.81 (0.55, 1.20)
No liver metastases (n = 254)	16.8	11.2	•	0.64 (0.45, 0.90)
bTMB < 10 mut/mb (n = 139)	11.8	9.2	· · · · · · · · · · · · · · · · · · ·	0.70 (0.45, 1.07)
bTMB ≥ 10 mut/mb (n = 212)	14.6	11.2	►	0.68 (0.47, 0.97)
oTMB < 16 mut/mb (n = 271)	12.5	9.9	•	0.71 (0.52, 0.98)
bTMB ≥ 16 mut/mb (n = 80)	17.8	11.9	►	0.63 (0.35, 1.15)
ITT (N = 403)	12.3	10.3	·•	0.70 (0.54, 0.91)
		0.1	1.0	2.5
Clinical data cutoff date: April 2 burden) assessed as reported in Ganda			Atezolizumab better Placebo be	

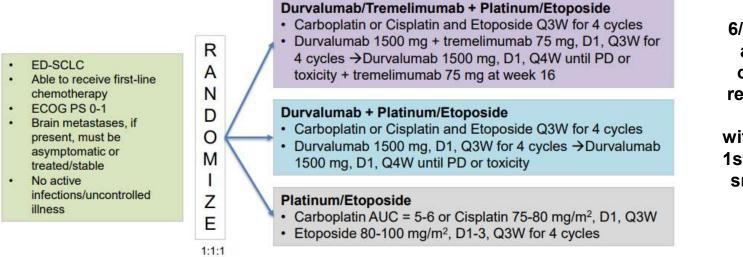
assessed as reported in Gandara DR, et al. *Nat Med*, 2018. ^a Hazard ratios are unstratified for patient subgroups and stratified for the

ITT.

IASLC----

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer


September 23-26, 2018 Toronto, Canada

Name	Study arms	Phase
LS-SCLC		
STIMULI	Nivolumab+ ipilimumab maintenance vs. observation	П
NCT02402920	Platinum/etoposide + radiation +/- pembrolizumab	1
ES-SCLC Treatment naïve		
REACTION	Platinum/etoposide +/- pembrolizumab	Ш
KEYNOTE 604	Platinum/etoposide +/- pembrolizumab	Ш
IMpower133	Carboplatin/etoposide +/- atezolizumab	Ш
Caspian	Platinum/etoposide+ durvalumab +/- tremelimumab vs. chemotherapy alone	Ш
MCC-18914	Platinum/etoposide followed by thoracic radiation +/- nivolumab +ipilimumab	1/11
NCT02402920	Platinum/etoposide followed by thoracic radiation +/- pembrolizumab	I.
ES-SCLC Maintenance		
Checkmate 451	Nivolumab, nivolumab + ipilimumab, placebo	Ш
ES-SCLC Subsequent lines		
AFT17	Pembrolizumab vs. topotecan	Ш
Checkmate 331	Nivolumab vs. topotecan or amrubicin	Ш
IFCT-1603	Atezolizumab vs. topotecan or carboplatin/etoposide	Ш
MISP-MK3475	Pembrolizumab + paclitaxel	П
PembroPlus	Pembrolizumab + irinotecan	1/11
CA001-030	BMS-986012 +/- nivolumab	1/11
KEYNOTE 158	Pembrolizumab	Ш
NCT02937818	Durvalumab + tremelimumab vs. AZD1775+carboplatin	Ш
Winship 3112-15	Tremelimumab + durvalumab +/- radiation	Ш
M16-300	Nivolumab + rovalpituzumab +/- ipilimumab	1
AAAQ8257	SGI-110 followed by durvalumab + tremelimumab	1
ES-SCLC, extensive stage small cell lung cancer; LS, limited stage.		

CPIs in SCLC: Where to from here? 1. Earlier Stage I-III SCLC - concurrent or maintenance? - chemo + IO, or IO combination? 2. 1L Combinations + Chemotherapy + **RT** + PARP, DNA repair inhibition + Epigenetic modifiers + DLL3 targeted agents 3. Biomarker selection - TMB - PDL-1 composite proportion score - Baseline autoantibodies?

CASPIAN: Chemo +/- Durva or Durva/Treme in ES-SCLC

6/27/2019 AstraZeneca announces positive overall survival (OS) results from the Phase III CASPIAN trial with *durvalumab+PE* in 1st-line extensive-stage small cell lung cancer

- Co-primary endpoints: OS, PFS
- · Secondary endpoints: ORR; 18-month OS; 6-, 12-month PFS, QoL, change in PS, PK

N = 795

Primary completion date: March 2019

Summary: Emerging Role of Immunotherapy in SCLC

- SCLC appears to clinically be a good candidate for checkpoint immunotherapy (heavy smokers)
- SCLC is characterized by a high mutational load from tobacco carcinogens
- SCLC has unique immunologic features, in particular those associated with paraneoplastic syndromes
- Early studies showed long-term OS with PD-1 blockade or PD-1 blockade combined with anti-CTLA-1 therapy
- SCLC patients may be particularly at risk for autoimmunerelated side effects
- Two Phase III trials have recently demonstrated improved OS with CPI+PE vs PE alone. This approach of CPI+PE now represents a new SOC in E-SCLC