### **Acute Myeloid and Lymphoid Leukemias**

Hugo F. Fernandez, MD

Department of Malignant Hematology & Cellular Therapy Moffitt at Memorial Healthcare System

March 31, 2019



# **Objectives**

- Present molecular and genetic prognostic markers
- Review current chemotherapy based on markers
- Discuss progress in targeted/immunotherapy



# **AML 2019 Prognostic Factors\***

- Cytogenetics and Molecular Studies
  - Favorable
    - CBF inv(16); t(16;16), t(8,21)
    - NPM1 in absence of FLT3-ITD or FLT3-ITD<sup>low</sup> or biallelic CEBPA
  - Intermediate
    - CN, +8 alone, t(9;11)
    - CBF with c-KIT, NPM1and FLT3-ITD<sup>high</sup>
  - Unfavorable
    - Complex, MK, -5 (q),-7(q),11q23, inv(3), t(3;3), t(6;9),t(9,22)
    - CN with FLT3-ITD, TP53, RUNX1, ASXL1 mutations

\*NCCN Guidelines 2.2019



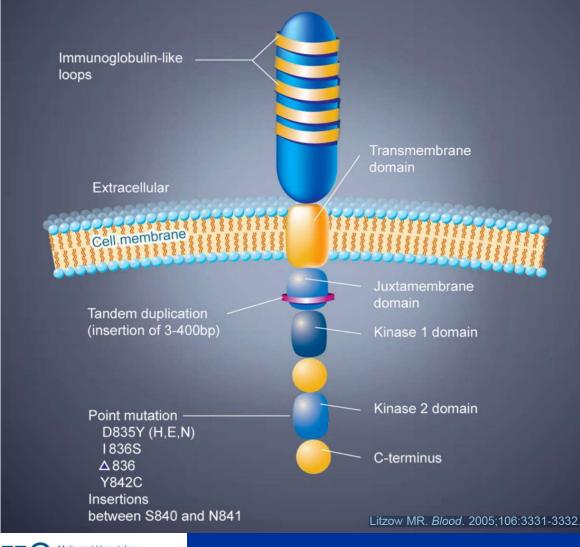
# **Points in Changes in NCCN Guidelines**

- *FLT3-ITD* and *TKD*, *IDH 1/2*, *NPM1*, *cKit* have therapeutic impact
- PB with circulating blasts may be used for NGS sequencing
- APL
  - Community hospitals should have ATRA
  - Confirm morphologic remission before consolidation
- Isolated extramedullary AML- treat systemically
- Gemtuzumab-ozogamycin
  - CD33 threshold is >1%
  - Cap dose at 4.5 mg (1 vial)



# **Induction Approach- Standard Therapy**

- High-dose anthracyclines are safe
  - Multiple regimens
  - Most 7+3 based:
    - Idarubicin (12 mg) and daunorubicin (60-90mg) plus cytarabine (100-200 mg)
    - CLAG/ FLAG (cardiac issues)
  - Consider clinical trial always!
- Add targeted therapy when possible
  - Midostaurin FLT3 mutation
  - Others under study

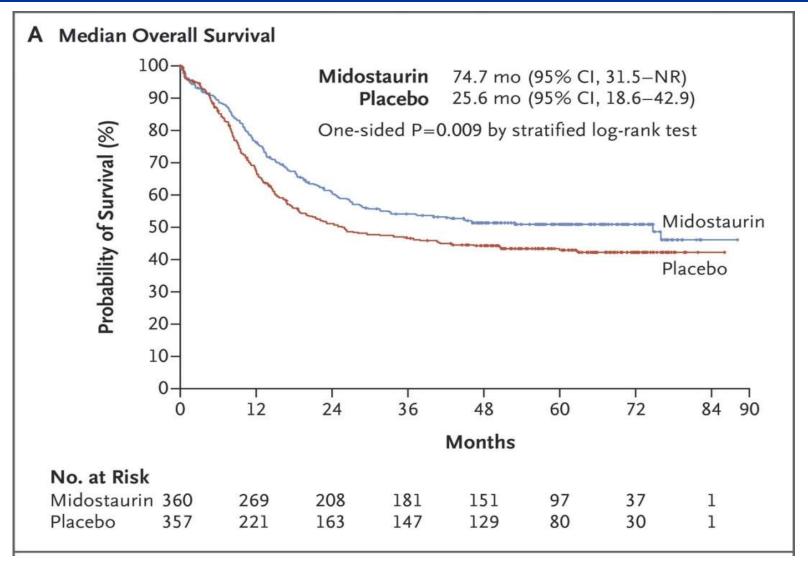



# **Recent FDA Approvals**

- 2017
  - Enasidinib for R/R IDH2 positive AML
  - CPX-351 (liposomal D:A) for sAML and AML-MRC
- 2018
  - Ivosidenib for R/R IDH1 positive AML
  - Hypomethylating agent and venetoclax
  - Low dose cytarabine and glasdegib- elderly/unfit
- 2019
  - Gilteritinib for R/R FLT3-positive AML
  - Quizartinib for R/R FLT-ITD positive AML (pending)



### Activating FLT3 Mutations in AML




Prevalence: ITD: 25-30% High relapse, poor prognosis TKD: 5-10%

Effect: Constitutive tyrosine phosphorylation

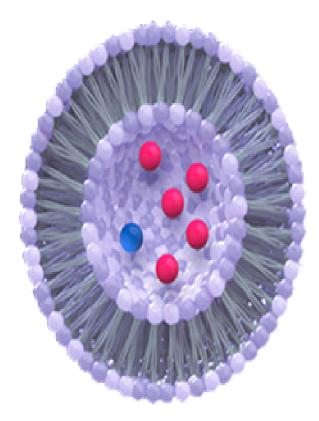
MOFFITT M Malignant Hematology & Cellular Therapy at Memorial Healthcare System

### **Overall Survival**



#### Stone RM et al. N Engl J Med 2017. DOI: 10.1056/NEJMoa1614359

MOFFITT M Malignant Hematology & Cellular Therapy at Memorial Healthcare System


Miami Cance Meeting 2019 ND

# FT3-ITD Today: What we know

- PCR to diagnose- quick turn around time
   Midostaurin ASAP in induction
- Use in consolidation, maintenance<sup>1</sup>
- HCT still important in consolidation
  - Midostaurin is safe post HCT (RADIUS trial results
- Other *FLT-3* inhibitors under study
  - Gilteritinib (BMT CTN 1506)
  - 1. Stone RM, NEJM 2017, 2. Mazirz R, ASH 2018, TCT 2019



### **CPX-351 Uses a Nano-Scale Delivery**



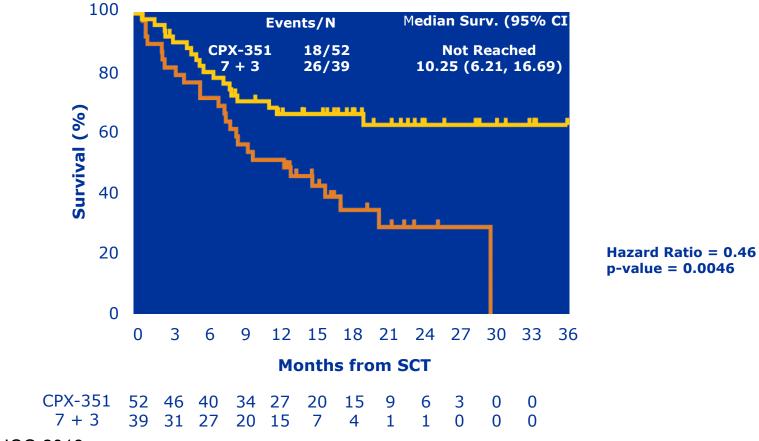
MOFFITT

Malignant Hematology

& Cellular Therapy at Memorial Healthcare System

- 100 nm bilamellar liposomes
- 5:1 molar ratio of cytarabine to daunorubicin
- 1 unit = 1.0 mg cytarabine plus 0.44 mg daunorubicin
- Better BM penetration




#### **Overall Survival Was Greater in the CPX-351 Arm**



Lancet J et al , JCO 2018

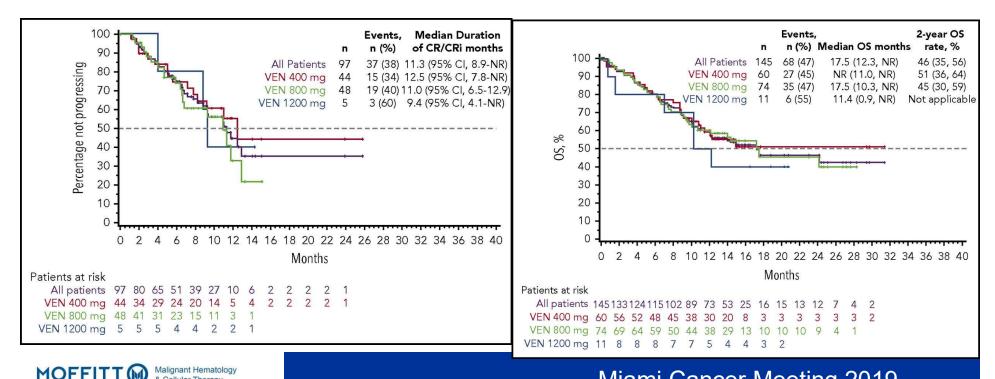
MOFFITT R Malignant Hematology & Cellular Therapy at Memorial Healthcare System

#### Kaplan-Meier Curve for Overall Survival Landmarked at Stem Cell Transplant - ITT Analysis Population



Lancet J et al , JCO 2018

MOFFITT M Malignant Hematology & Cellular Therapy at Memorial Healthcare System


Miami Cancer Meeting 2019 12

### **HMA and venetoclax**

- Phase 1b- 145 patients >65 unfit for IC, Age 74, 49% Poor-risk cyto
- Dec 20 x 5 or Aza 75 x 7 plus Venetoclax 400-1200 mg escalation
- No TLS, well tolerated

& Cellular Therapy at Memorial Healthcare System

- CR+Cri: 67% all, 73%- 400 mg dose, Poor cyto- 60%, >75 yrs- 65%
- Med PFS- 11.3 m, OS 17.5 m, NR for 400 mg arm



# IDH 1 and IDH2 in AML

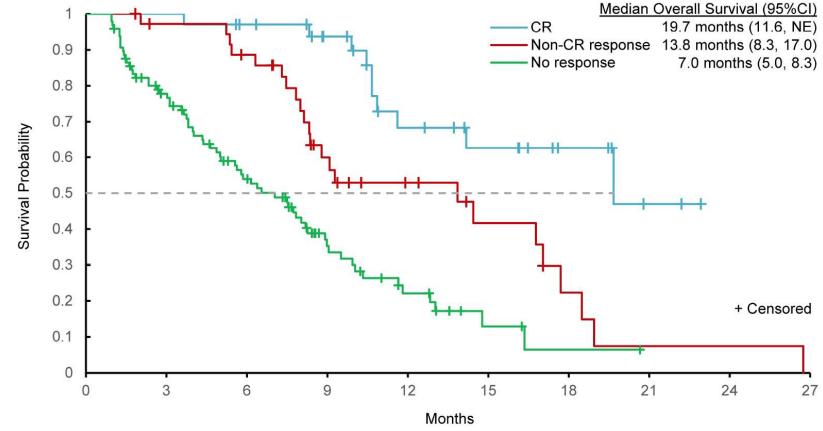
- Identified in 2009
- Recurrent somatic mutations
- ~20% total of AML patients
- Altered pathway of D-2-hydroxyglutarate (D-2HG)
  - Hypermethylation  $\rightarrow$  impaired hematopoietic differentiation
- Older, CN, higher platelets
- Associated with NPM1, FLT3-ITD
- IDH2-R172- responds well to HiDAC



# Enasidenib (AG-221)

- Oral IHD2-R140 and R-172 inhibitor
- MTD 650mg/day from phase I
- Safety on 239 patients
- Phase I- 41% RR, CR of 18%
- Grade 3/4 Side effects
  - Hyperbilirubinemia (UGT1A1) 12%
  - Differentiation syndrome 7%




# IDH inhibitor (NCT01915498)

- phase I/II study of enasidenib
- Patients with AML age <u>>60 with IDH2</u> mutation and relapsed or refectory AML therapy
- 100mg/day effective dose based on PK and IDH blockade efficacy
- 176 patients
- RR= 40.3% duration 5.8 months

Stein & DiNardo et al, Blood 2017



### **Enasidenib AG-221 OS on Response**

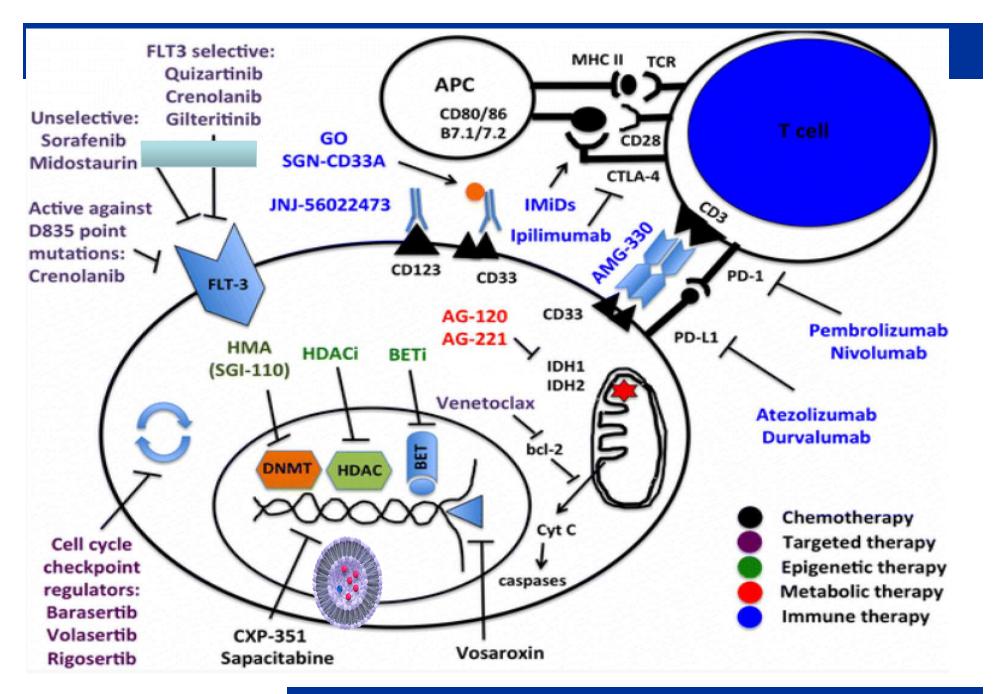


#### Stein & Dinardo et al., Blood 2017



### Ivosidenib

- IDH1 6-10% of AML patients, older
- Associated with DNMT3A, NPM1, ASXL1, SRSF, PHF6
- Phase 1/2 258 patients
- Safety: QT prolongation-7%, Diff Synd-10.6% (4.7%- gr3)
- Efficacy: 125 patients, 67 years old, 2 prior lines
  - ORR- 41.6%, CR-22%, CRh-30%
  - Median time to response 2-3 months, renge 1-8 months
  - DOR- 6 months, 9 months if in CR
  - R/R AML- DOR 9 mo with 18 mo OS for CR/CRh
  - 21% of CR/CRh had no IDH detectable


Dinardo C NEJM 2018



# **IDH differentiation syndrome**

- Clinical Picture: culture-negative fever, edema, hypotension, and pleural and/or pericardial effusions
- Neutrophil-predominant leukocytosis
- Described in ~5% to 10% of patients across IDH inhibitor clinical trials. Can happen at any time
- Treatment
  - Dexamethasone 10 mg Q12 hours
  - Diuretics
  - Hydrea PRN
  - Stop drug until symptoms improve



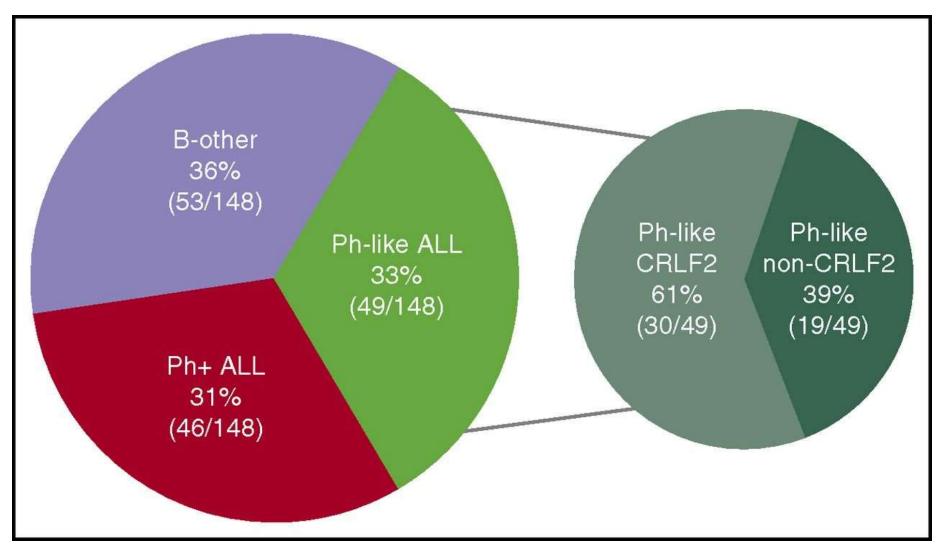


MOFFITT (Malignant Hematology & Cellular Therapy at Memorial Healthcare System

# ALL Prognostic Features Decision points

- Age
  - Children
  - Adolescents and Young Adults (15-39)
  - Older (<u>≥</u>40)
- WBC (B-30K; T- 100K)
- Cytogenetics/mutations
- Minimal residual disease




# **ALL Cytogenetics in Adults**

| • | Good Risk                                                     |    |
|---|---------------------------------------------------------------|----|
|   | <ul> <li>Hyperdiploidy (51-65, +4,+10,+17)</li> </ul>         | 7  |
|   | – t(12;21)(p13;q22): ETV6-RUNX                                | 2  |
| • | Poor risk                                                     |    |
|   | – Ph-like ALL                                                 | 30 |
|   | – t (9;22) <i>BCR/ABL</i>                                     | 25 |
|   | – t (4;11) and t(_;11q23) KMT2A rearranged                    | 10 |
|   | <ul> <li>Hypodiploidy (&lt;44)</li> </ul>                     | 2  |
|   | <ul> <li>Complex (&gt;5 chromosomal abnormalities)</li> </ul> |    |
|   |                                                               |    |

- (iAMP21)



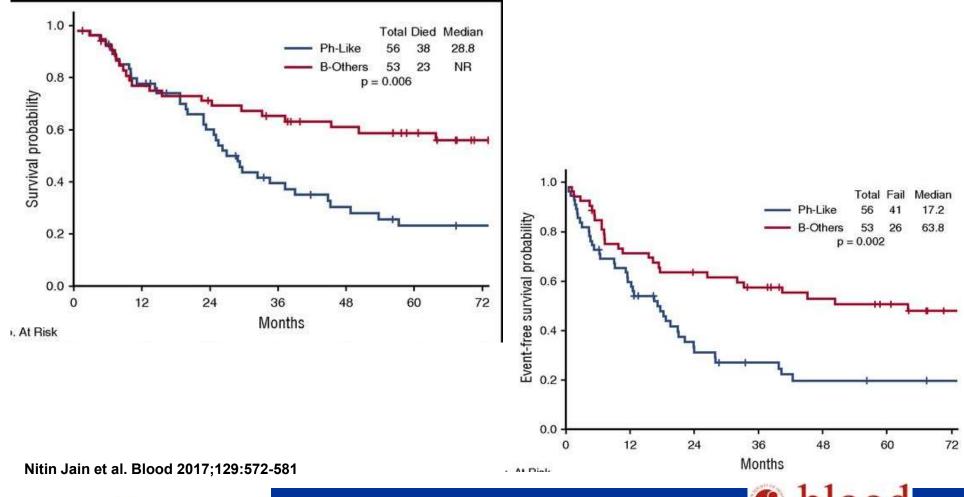
### Frequency of B-ALL subtypes in adults (N = 148)



Nitin Jain et al. Blood 2017;129:572-581

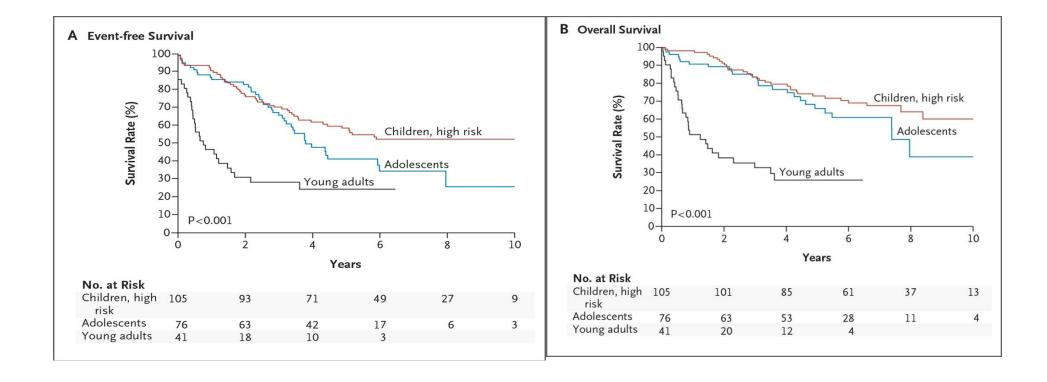
Malignant Hematology & Cellular Therapy at Memorial Healthcare System




## **Ph-like ALL**

- Distinct clinical entity
  - Associated with CRLF2 (51%), JAK2/EPOR(12.4%),
     ABL (9.8%), JAK/STAT (7.2%)
- High WBC at diagnosis ~50K
- Hispanic propensity (68%), male predominance (64%)
- Have a poor prognosis
  - OS 23% vs 59%
- HCT recommended

Roberts, et al, JCO 2017, Jain et al, Blood 2017




### **Ph-like ALL and B-other ALL: OS and EFS**



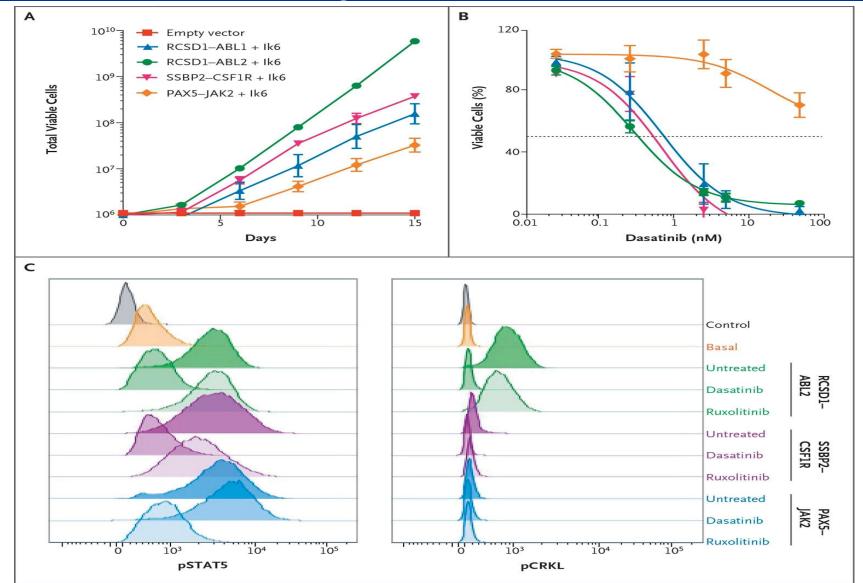
MOFFITT M Malignant Hematology & Cellular Therapy at Memorial Healthcare System Miami Cancer Net DIOC

#### Kaplan–Meier Estimates of EFS and OS among Patients with Ph-like ALL



Roberts KG et al. N Engl J Med 2014;371:1005-1015

MOFFITT M Malignant Hematology & Cellular Therapy at Memorial Healthcare System


#### **Kinase Fusions Identified in Ph-like ALL**

| Kinase Gene | Tyrosine Kinase<br>Inhibitor            | Fusion<br>Partners | Patients | 5' Genes                                                                                                                                      |  |
|-------------|-----------------------------------------|--------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| number      |                                         |                    |          |                                                                                                                                               |  |
| ABL1        | Dasatinib                               | 6                  | 14       | ETV6, <sup>11</sup> NUP214, <sup>11</sup> RCSD1, <sup>11</sup> RANBP2, <sup>11</sup> SNX2, <sup>19</sup> ZMIZ1 <sup>20</sup>                  |  |
| ABL2        | Dasatinib                               | 3                  | 7        | PAG1,* RCSD1,* ZC3HAV1*                                                                                                                       |  |
| CSF1R       | Dasatinib                               | 1                  | 4        | SSBP2*                                                                                                                                        |  |
| PDGFRB      | Dasatinib                               | 4                  | 11       | EBF1, <sup>11-13</sup> SSBP2,* TNIP1,* ZEB2*                                                                                                  |  |
| CRLF2       | JAK2 inhibitor                          | 2                  | 30       | IGH, <sup>21</sup> P2RY8 <sup>22</sup>                                                                                                        |  |
| JAK2        | JAK2 inhibitor                          | 10                 | 19       | ATF7IP,* BCR, <sup>11</sup> EBF1,* ETV6, <sup>23</sup> PAX5, <sup>11</sup> PPFIBP1,* SSBP2, <sup>2</sup><br>STRN3, <sup>11</sup> TERF2,* TPR* |  |
| EPOR        | JAK2 inhibitor                          | 2                  | 9        | IGH, <sup>11</sup> IGK*                                                                                                                       |  |
| DGKH        | Unknown                                 | 1                  | 1        | ZFAND3*                                                                                                                                       |  |
| IL2RB       | JAK1 inhibitor, JAK3 inhibitor, or both | 1                  | 1        | МҮН9*                                                                                                                                         |  |
| NTRK3       | Crizotinib                              | 1                  | 1        | ETV6 <sup>25-27</sup> †                                                                                                                       |  |
| РТК2В       | FAK inhibitor                           | 2                  | 1        | KDM6A,* STAG2*                                                                                                                                |  |
| TSLP        | JAK2 inhibitor                          | 1                  | 1        | IQGAP2*                                                                                                                                       |  |
| ΤΥΚ2        | TYK2 inhibitor                          | 1                  | 1        | MYB*                                                                                                                                          |  |

\* The gene is a previously unreported fusion partner.

† *ETV6–NTRK3* has been reported in multiple cancers, including congenital fibrosarcoma<sup>25,26</sup> and secretory breast carcinoma,<sup>27</sup> but it has not previously been described in acute lymphoblastic leukemia.<sup>28,29</sup>

### **Response to Tyrosine Kinase Inhibitors**



Roberts KG et al. N Engl J Med 2014;371:1005-1015 MOFFITT M Malignant Hematology & Cellular Therapy at Memorial Healthcare System



The NEW ENGLAND JOURNAL of MEDICINE

### **Trials in Ph-Like**

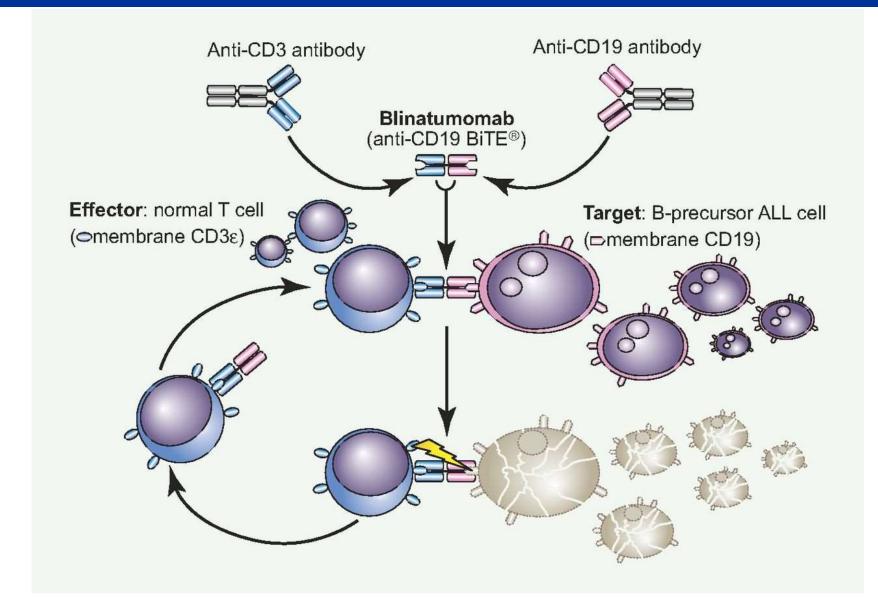
- Over 65
- Dasatinib sensitive mutations and kinase function (DSMKF)
  - NCI Phase 2: Blinatumomab + POMP for Ph negative
  - Blinatumomab, dasatinib, prednisone for Ph positive, Ph-like
- University of Chicago
  - Ruxolitinib + chemotherapy
  - AYA population



# **TKI in Ph<sup>+</sup> ALL-Need to know**

Increased CR rates and duration

- ~90%


- Lower Pre-HCT tumor burden
- Allows for donor search
  - Sib, MUD, Haplo
  - MAC younger, RIC older
- Does not affect HCT toxicities
- Usually stopped 1 week prior to HCT



# **Ph Positive ALL**

- Induction with chemotherapy + TKI
  - BFM+ Imatinib (EsPhALL)
  - HyperC-VAD + dasatinib- MDACC
  - Continuous dosing recommended
- HCT is still mainstay of therapy
- No standard for post HCT maintenance
- MRD post HCT requires indeterminate length of therapy

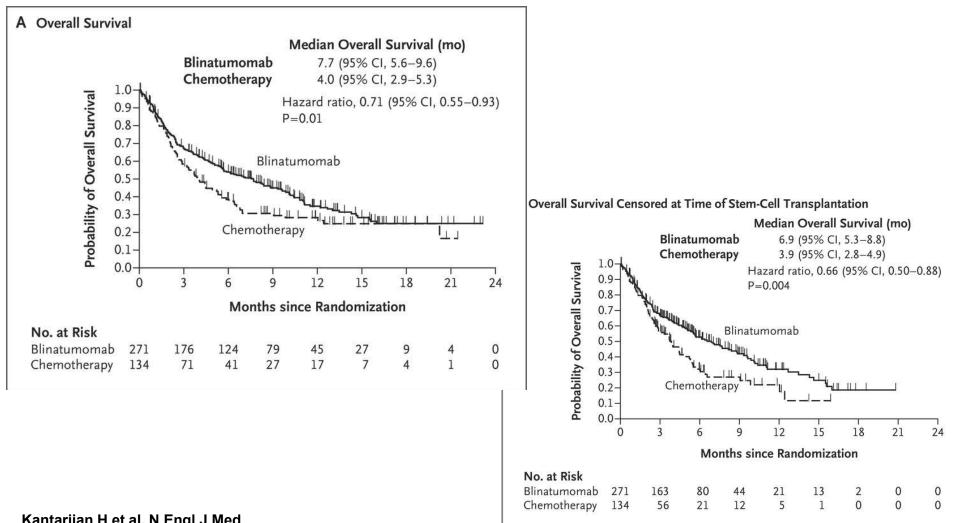




Bassan R Blood 2012;120:5094-5095 MOFFITT M Malignant Hematology & Cellular Therapy ©2012 by American Society of Hematologyem



### **Blinatumomab V Chemotherapy**


- Phase 3, multi-institution
- 405 patients- Blin-271, Chemo-134

| • | Responses     | Blin | Chemo |
|---|---------------|------|-------|
|   | – CR          | 34%  | 16%   |
|   | – OR          | 44%  | 25%   |
|   | – EFS 6 month | 31%  | 12%   |
|   | – OS          | 7.7m | 4.0m  |

Kantarjian H et al. N Engl J Med 2017;376:836-847

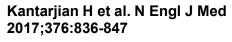


### Blinatumomab: Efficacy End Points.

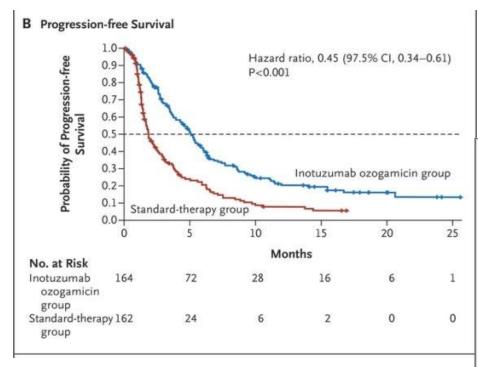


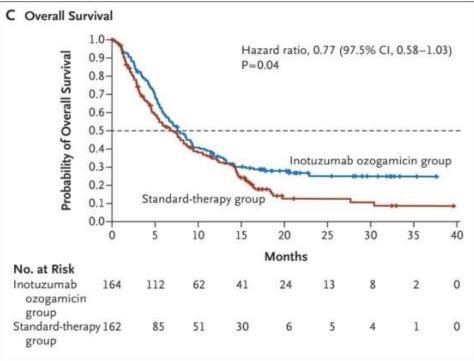
Kantarjian H et al. N Engl J Med 2017;376:836-847




The NEW ENGLAND JOURNAL of MEDICINE

### **Inotuzumab vs Chemo**


- Anti-CD22 moAb + calicheamicin
- Ino v chemo for RR ALL
- 326 patients (218 ITT)


| <ul> <li>– <u>Responses</u></li> </ul> | Ino   | Chemo |
|----------------------------------------|-------|-------|
| – CR/CRi                               | 80.7% | 29.4% |
| – MRD                                  | 78.4% | 28.1% |
| – PFS                                  | 5.8m  | 1.8m  |
| – OS                                   | 7.7m  | 6.7m  |

• VOD occurred in 11% of Ino patatients



### Inotuzumab: PFS, and OS





Kantarjian HM et al. N Engl J Med 2016. DOI: 10.1056/NEJMoa1509277

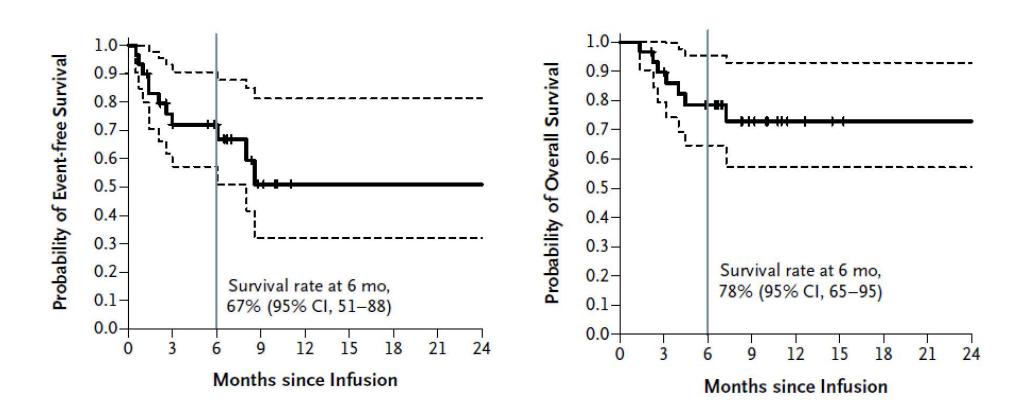




# **Targeting ALL with CAR-Ts**

- Re-induction in R/R disease
- Multiple companies with different constructs
  - Novartis with first FDA filing for Peds, AYA
- Requires specialty center
  - Apheresis
  - Cell processing/GMP (Company driven)
  - Clinical team
    - Heme/Onc
    - $\circ$  Neurology
  - ICU care
  - Guidelines for Cytokine Release Syndrome and Neurotoxicity developed

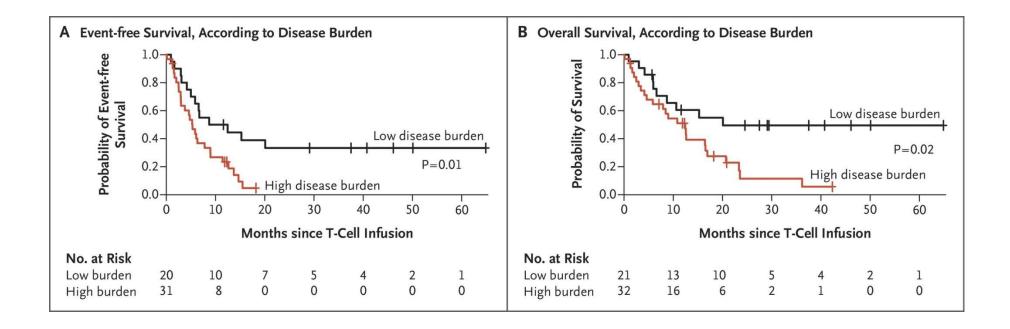



# **CAR-T**

- CD19 directed CAR-T (tisagenleucel)
- Dose escalation 0.76 -20.6 x 10<sup>6</sup> CTL019 cells/kg
- 30 children and adults (15 prior HCT)
- CR- 90%, 6 mo EFS- 67%
- OS- 78%
- CRS was seen in all
  - Treated with anti-IL6-tocilizumab

#### Maude S et al., NEJM 2014




### **CTL019 EFS and OS**



#### Maude S et al., NEJM 2014



### **Event-free Survival and Overall Survival According to Pre-treatment Disease Burden**



Park JH et al. N Engl J Med 2018;378:449-459

MOFFITT R Malignant Hematology & Cellular Therapy at Memorial Healthcare System



The NEW ENGLAND JOURNAL of MEDICINE

## Conclusions

- Unique disorders
  - Aggressive therapy
  - Best chance to do it right is upfront
- Risk stratification requires complete evaluation
  - Cytogenetic and molecular
- Mutations are targetable in both diseases

