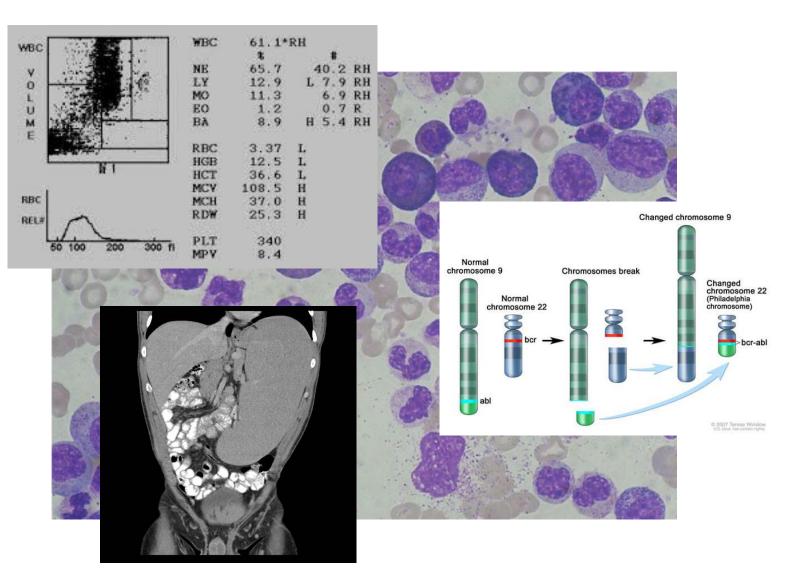


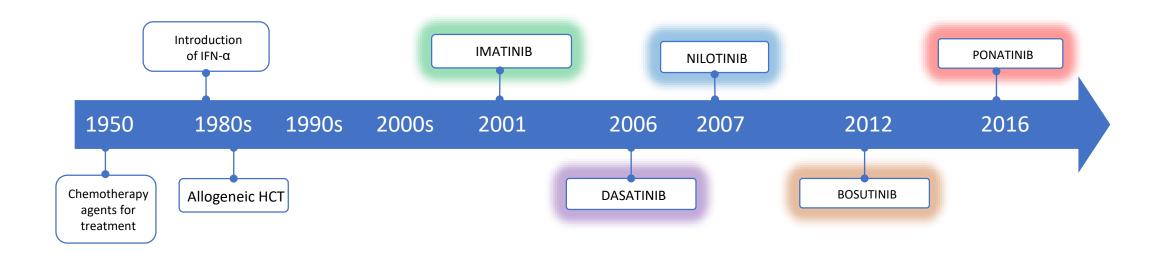
Updates in CML and CLL

Alexis M. Cruz Chacon MD Hematology and Medical Oncology Adult Blood and Marrow Transplantation



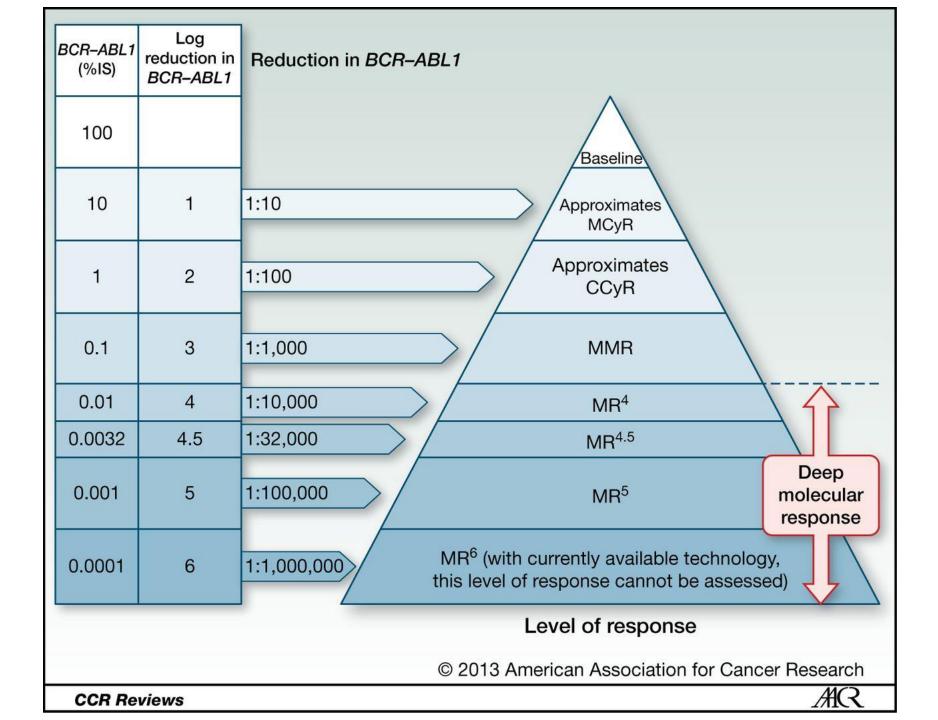
Disclosures

- Alexis M. Cruz-Chacon, MD has disclosed the following relevant financial relationships:
 - Speaker: Celgene, Bristol-Myers Squibb, Takeda
 - Consultant/Advisor: Bristol-Myers Squibb, Abbie, Merck


Chronic Myelogenous Leukemia

- Myeloproliferative disorder
 - Myeloid proliferation
- Philadelphia chromosome t(9;22)
 - Results in fusion gene BCR-ABL with enhanced proliferation signaling
- Fatal disease
 - Conversion to resistant AML in 5 years
- Treatment options before year 2000
 - Chemotherapy
 - Interferon-alpha
 - Only curative therapy was allogeneic HCT

CML in the Post-Imatinib Era



Targeted BCR-ABL Inhibition Revolutionized Therapy for CML

Pivotal phase III trials of approved tyrosine kinase inhibitors for the frontline treatment of CML

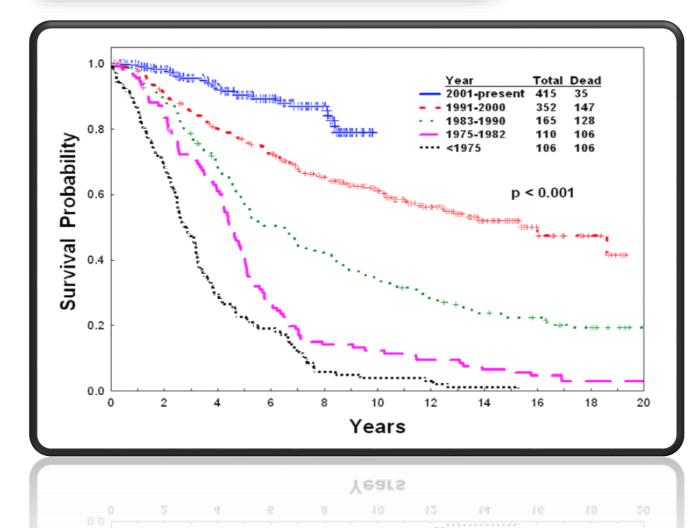
Trial	Treatment	CCyR (%)	MMR (%)	BCR-ABL < 10% at 3 months (%)	EFS/PFS (%)	OS (%)	Longest follow-up (years)
		At 10 years			At 10 years		
IRIS	Imatinib (<i>n</i> = 304)	83	93	NR	80	83	11
		At 2 years	At 5 years		At 5 years		
DASISION	Dasatinib ($n = 259$)	86	76	84	85	91	5
	Imatinib (<i>n</i> = 260)	82	64	64	86	90	
		At 2 years	At 5 years		At 5 years	At 6 years	
ENESTnd	Nilotinib 300 mg (n = 282)	87	77	91	95	92	6
	Nilotinib 400 mg (n = 281)	85	77	89	97	96	
	Imatinib (<i>n</i> = 283)	77	60	67	93	91	
		At 12 months	5		At 12 months		
BEFORE	Bosutinib 400 mg ($n = 268$)	77	47	75	96	99.9	18 months
	Imatinib ($n = 268$)	66	37	57	94	99.7	

NR, Not reported.

ve NCCN Guidelines Version 4.2018 Chronic Myeloid Leukemia

RESPONSE MILESTONES^{c,e}

BCR-ABL1 (IS)	3 months	6 months	12 months	>12 months
>10% ^f	YELLOW			
>1%–10%	GRI	EEN YELLOW		RED
>0.1%–1%	GREEN		YELLOW	
≤0.1%	GREEN			


	CLINICAL CONSIDERATIONS	SECOND-LINE AND SUBSEQUENT TREATMENT OPTIONS
RED	 Evaluate patient compliance and drug interactions Mutational analysis 	Switch to alternate TKI (<u>CML-5</u>) and Evaluate for HCT (<u>CML-6</u>)
YELLOW	 Evaluate patient compliance and drug interactions Mutational analysis 	Switch to alternate TKI (<u>CML-5</u>) or Continue same TKI (<u>CML-F)^g</u> or Dose escalation of imatinib (to a max of 800 mg) and Evaluate for HCT (<u>CML-6</u>)
GREEN	Monitor response (<u>CML-F</u>) and side effects	Continue same TKI <u>(CML-F)</u> ^h

blood Pre


Prepublished online January 6, 2012; doi:10.1182/blood-2011-08-358135

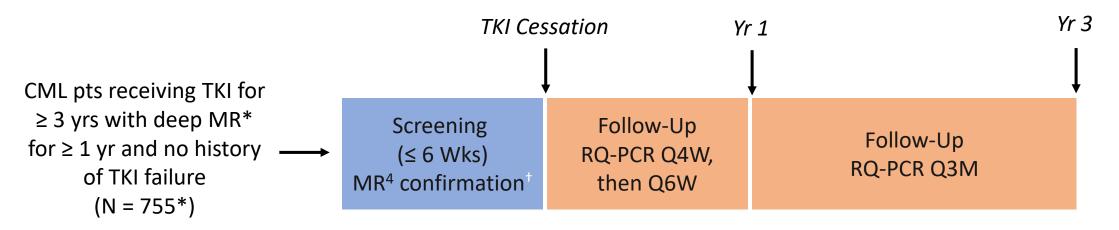
Improved survival in chronic myeloid leukemia since the introduction of imatinib therapy: a single-institution historical experience

Hagop Kantarjian, Susan O'Brien, Elias Jabbour, Guillermo Garcia-Manero, Alfonso Quintas-Cardama, Jenny Shan, Mary Beth Rios, Farhad Ravandi, Stefan Faderl, Tapan Kadia, Gautam Borthakur, Xuelin Huang, Richard Champlin, Moshe Talpaz and Jorge Cortes

Discontinue therapy?

EURO-SKI: Defining Cutoffs for Tyrosine Kinase Inhibitor Cessation in Patients With Chronic Myeloid Leukemia

EURO-SKI: Background


- 40% to 55% of CML pts have achieved TFR after long-term TKI treatment with durable deep MR
 - Most pts (85% to 90%) experience molecular relapse within 6 mos of discontinuing TKI
 - Restarting TKI treatment regains MR in almost all pts (90% to 95%)
- Data on prognostic indicators of sustained TFR incomplete or inconsistent
 - Imatinib data: TKI treatment duration ≥ 5-6 yrs and deep MR (≥ 3 yrs) associated with sustained TFR following TKI cessation in CML pts^[1,2]
 - No data on prognostic markers for dasatinib or nilotinib cessation
- EURO-SKI designed to establish stopping criteria for TKIs in CML pts^[3]

1. Mahon FX, et al. Lancet Oncol. 2010;1029-1035. 2. Etienne G, et al. J Clin Oncol. 2017;35:298-305.

3. Sauselle S, et al. ASH 2017. Abstract 313.

EURO-SKI: Study Design

Observational cohort study

*In primary analysis of 868 preregistered pts.

⁺MR⁴, defined as detectable BCR-ABL \leq 0.01%, or undetectable BCR-ABL in samples with \geq 10,000 ABL or \geq 24,000 GUS transcripts, respectively.

Primary endpoint: molecular recurrence (BCR-ABL > 0.1%, ie, loss of MMR)

Sauselle S, et al. ASH 2017. Abstract 313.

EURO-SKI: Pt Population

- N = 821 pts recruited
 - Male: 52%
 - Median age: 60 yrs (range: 19-90)
- N = 755 included in MRFS analysis
 - MMR loss after TKI cessation: n = 371 (49%)
 - TKI restarted in MMR: n = 13 pts
 - Death in MMR: n = 4 pts

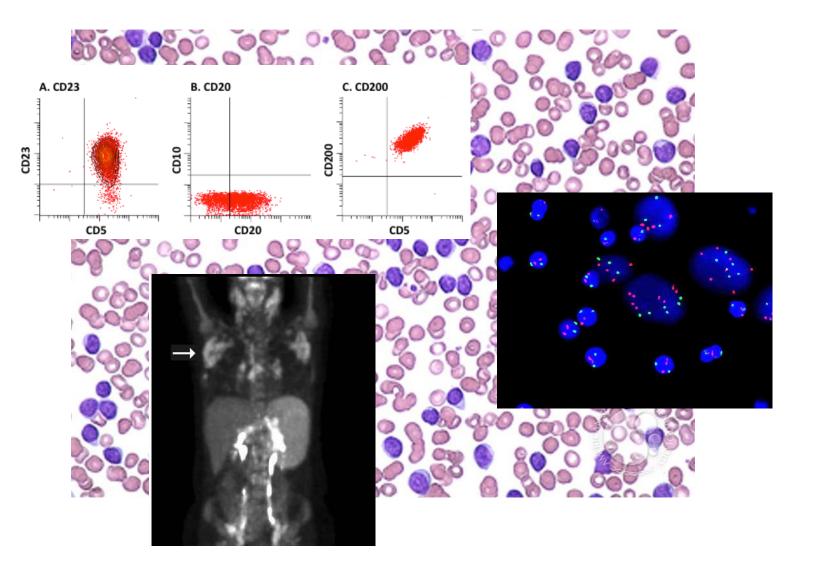
EURO-SKI: Molecular Recurrence-Free Survival

Month	Pts at Risk, n	MRFS, % (95% CI)
6	457	61 (58-65)
12	396	55 (51-58)
18	333	52 (49-56)
24	219	50 (47-54)
36	31	47 (43-51)

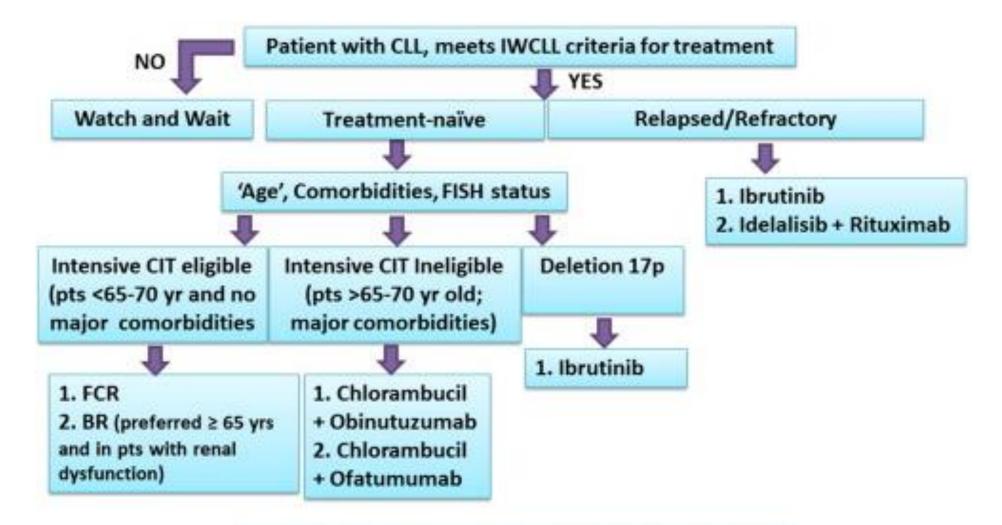
EURO-SKI: Cutoffs for MMR at 6 Mos

- Cutoffs for 6-mo probability of MMR loss (minimal P value approach)
 - TKI (imatinib) cutoff: 5.8 yrs
 - MMR loss if discontinued at ≤ 5.8 yrs: 57% (95% CI: 48% to 64%)
 - MMR loss if discontinued at > 5.8 yrs: 34% (95% CI: 29% to 39%)
 - MR⁴ cutoff: 3.1 yrs
 - MMR loss if MR⁴ duration ≤ 3.1 yrs: 56% (95% CI: 47% to 64%)
 - MMR loss if MR⁴ duration > 3.1 yrs: 38% (95% CI: 33% to 44%)

EURO-SKI: Conclusions

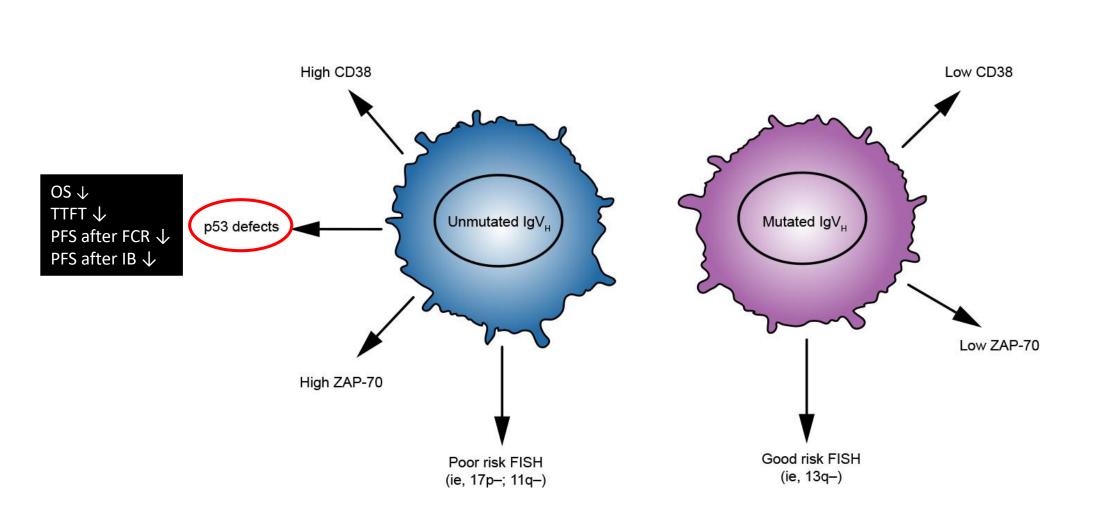

- Study defined stopping criteria for TKI cessation in CML pts who achieve durable deep MR
- Preferred cutoffs for 6-mo probability of MMR loss
 - TKI duration: 5.8 yrs
 - MR⁴ duration: 3.1 yrs
- Probability of treatment-free remission increased almost linearly per each additional year of first-line imatinib and duration of MR⁴

When consider to STOP therapy...

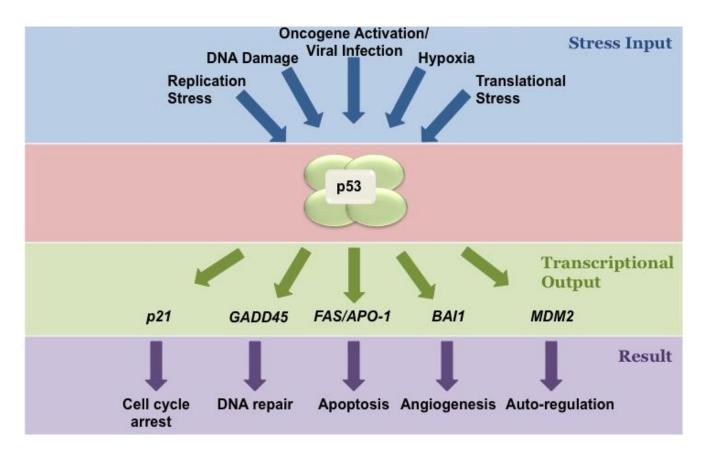

	Discontinuation of TKI	
Parameter	Yes	No
Sokal risk	Low-intermediate	High
BCR-ABL1 transcripts	Quantifiable (e13a2 or e14a2)	Not quantifiable
CML stage	Chronic	Accelerated/blast phase
Response to first TKI	Optimal	Failure
Duration of all TKIs therapy	>6-8 years	<3 years
Depth of molecular response	CMR (MR4.5)	Less than MR4
Duration of molecular response	>3+ years	< 3 years
Monitoring availability	Ideal (every 2 months in years 1–2)	Poor; noncompliant

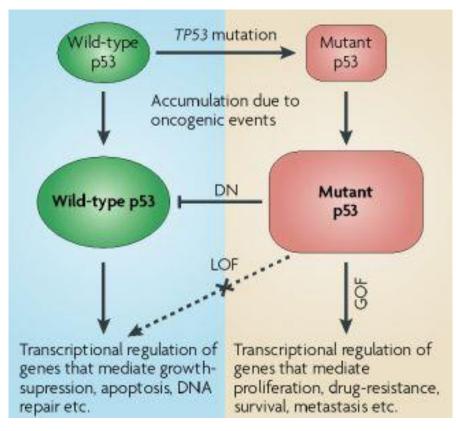
Chronic Lymphocytic Leukemia

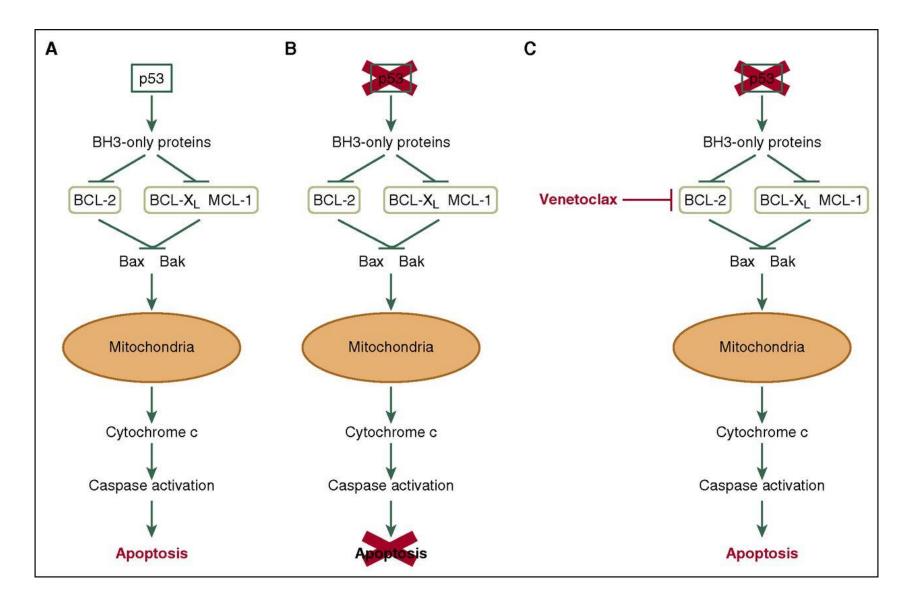
- Most common leukemia in adults
 - Median age at diagnosis 67-72 years
- Older population
 - Median age at diagnosis 67-72 years
 - Comorbidities
- Standard therapy: FCR (CLL8 study)
 - High frequency of grade 3-4 toxicity
 - Unsuitable for elderly population
- Other First line treatment options:
 - Bendamustine + rituximab
 - Obinutuzumab + chlorambucil
 - Ibrutinib


Current Standard Treatment for CLL

Clinical Trial Enrollment is the Preferred for all Patients

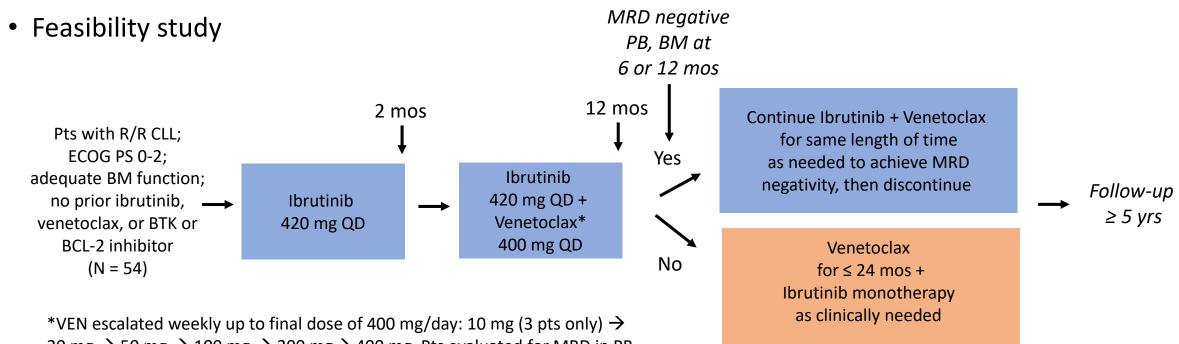

Prognostic factors in CLL


Median survival 25 years


Median survival 8 to 10 years

p53 Tumor Suppressor Gene: A Master Regulator

Venetoclax induces apoptosis of CLL cells independently of p53



CLARITY: Feasibility Study of Combination Ibrutinib + Venetoclax in R/R CLL

Ibrutinib + Venetoclax in R/R CLL (CLARITY): Background

- MRD is associated with improved outcomes in CLL^[1]
- CLL pathophysiology driven by cell proliferation with high Ki-67 expression plus apoptosis with BCL-2 expression^[2]
- Ibrutinib: BTK inhibitor; FDA approved as monotherapy in CLL ± del(17p)^[3]
 - Improved PFS, OS in R/R CLL but does not lead to disease eradication^[4,5]
- Venetoclax: BCL-2 inhibitor; FDA approved in CLL pts with del(17p) who have been treated with at least 1 prior therapy^[6]
 - Dramatic activity in CLL with TLS, high rates of MRD negativity^[5,7]
- Current feasibility study evaluated safety, efficacy of ibrutinib + venetoclax in pts with R/R CLL^[8]

CLARITY: Study Design

*VEN escalated weekly up to final dose of 400 mg/day: 10 mg (3 pts only) \rightarrow 20 mg \rightarrow 50 mg \rightarrow 100 mg \rightarrow 200 mg \rightarrow 400 mg. Pts evaluated for MRD in PB every 3 mos, in BM (along with CT) at BL and at 6, 12, 24 mos of IBR + VEN. MRD negativity = < 0.01% CLL cells. IBR + VEN stopped at 14 mos if 8-mo BM MRD negative; at 26 mos if 14-mo BM MRD negative. VEN stopped, IBR continued at 26 mos if BM MRD positive. Datalock: 12/1/17.

- Primary endpoint: MRD eradication in
 BM after 12 mos of IBR + VEN
 - Key secondary endpoints: MRD eradication in BM after 6, 24 mos of IBR + VEN, response, PFS, OS, safety

CLARITY: MRD in PB Over Time for Pts Receiving \geq 2 Mos of Ibrutinib + Venetoclax

Median MRD in PB, cells x 10 ⁹ /L (IQR) for Pts Reaching ≥ Mo 4*	IBR + VEN (n = 46)
At screening (n = 46)	54.5 (13-92)
Day 0 (before therapy initiation; n = 46)	43.5 (10.3-94)
Wk 8 (end of IBR monotherapy; n = 46)	60 (14-150)
Wk 12 (end of VEN escalation; n = 45)	1.1 (0.23-6.25)
Mo 4 (after 8 wks of IBR + VEN; n = 46)	0.019 (0.0028-0.21)
Mo 5 (after 12 wks of IBR + VEN; n = 45)	0.012 (0.0011-0.1)
Mo 8 (after 6 mos of IBR + VEN; n = 37)	0.001 (0-0.025)

*Corresponds to 2 mos of IBR + VEN.

CLARITY: Responses With 6 Mos of Ibrutinib + Venetoclax

Response at Mo 8, n (%)	CR	CRi	PR	ORR
All pts reaching this time point (n = 38)*	15 (39)	3 (8)	20 (53)	38 (100)
Prior FCR or BR with relapse < 36 mos (n = 17)	9 (53)	2 (12)	6 (35)	17 (100)
Prior idelalisib (n = 7)	3 (43)	0	4 (57)	7 (100)

*Pts who received \geq 6 mos of IBR + VEN and had clinical response assessment by iwCLL, BM, and CT scan.

CLARITY: BM MRD With 6 Mos of Ibrutinib + Venetoclax

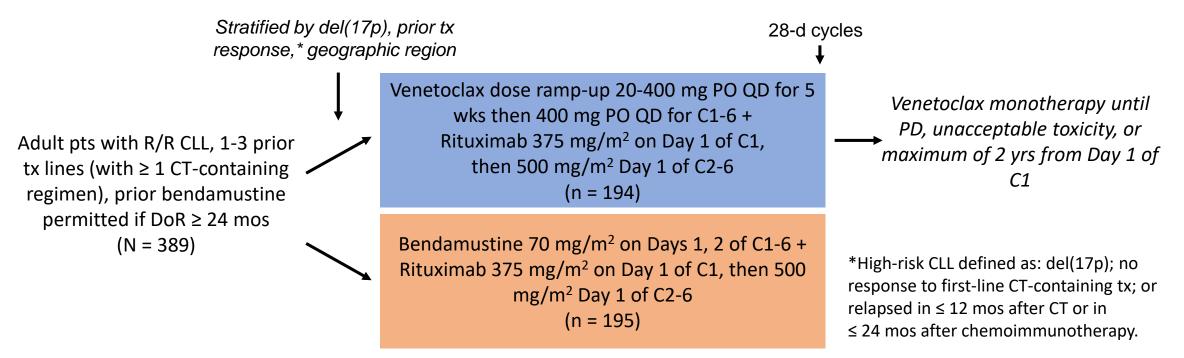
Response at Mo 8, n/N (%)	MRD-Negative PB	MRD-Negative BM	Trephine Normal
All pts reaching this timepoint (n = 38)*	15/38 (37)	12/38 (32)	32/38 (84)
Prior FCR or BR with relapse < 36 mos (n = 17)	9/17 (52)	7/17 (41)	16/17 (94)
Prior idelalisib (n = 7)	4/7 (57)	3/7 (43)	7/7 (100)

*Pts who received \geq 6 mos of IBR + VEN and had BM or PB MRD < 0.01% CLL (10⁻⁴) cells by flow cytometry.

 MRD negativity in PB and BM increased over time with IBR + VEN combination therapy up to 6 mos

CLARITY: Conclusions

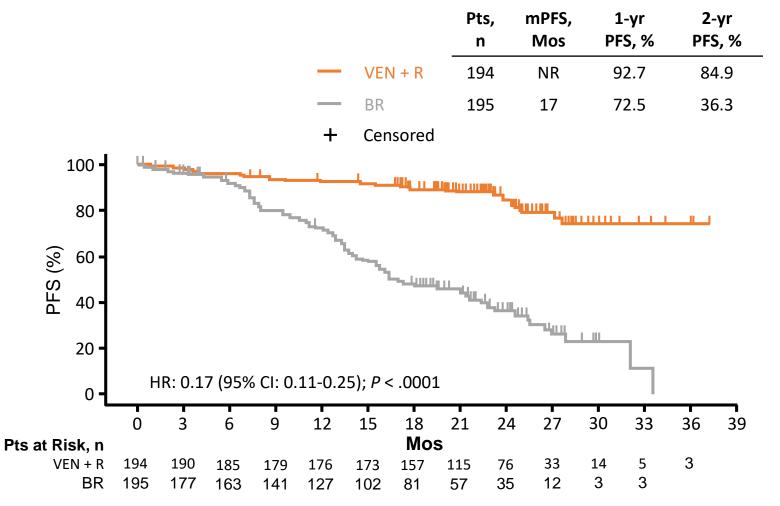
- In 54 pts with R/R CLL, combination therapy with ibrutinib + venetoclax was well tolerated with predictable, mostly low-grade AEs
 - Only 1 case of TLS
- 100% of pts had an objective response after 6 mos of combination therapy
 - Nearly one half (47%) in CR or CRi
 - Nearly one third (32%) with MRD negative BM
- Investigators report that results from CLARITY in R/R CLL informed modification of phase III NCRI FLAIR study to include ibrutinib + venetoclax as first-line therapy in newly diagnosed CLL


MURANO Interim Analysis: Venetoclax + Rituximab vs Bendamustine + Rituximab in Patients With Relapsed/Refractory CLL

Venetoclax + Rituximab in R/R CLL (MURANO Interim Analysis): Background

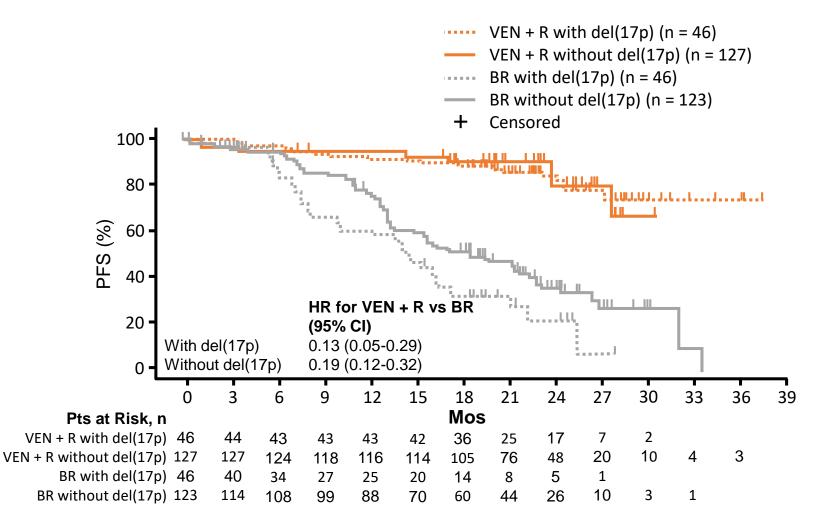
- Bendamustine + rituximab associated with limited efficacy in R/R CLL
 - Phase II trial reported mPFS of 15.2 mos and ORR of 59% (CR: 9%) in R/R CLL^[1]
- Venetoclax: BCL-2 inhibitor approved for R/R CLL pts with del(17p)^[2]
 - Single-agent venetoclax active (ORR: 79%) in R/R CLL, including in pts with del(17p)^[3,4]
 - Common AEs: TLS, neutropenia, infections^[2-4]
- Phase Ib study of venetoclax + rituximab in R/R CLL/SLL reported ORR in 42/49 (86%) pts (CR: 51%, negative MRD: 57%)^[5]
 - Disease control maintained in 11 pts with MRD-negativity off therapy
- Current preplanned interim analysis evaluated efficacy, safety of time-limited venetoclax
 + rituximab vs bendamustine + rituximab in pts with R/R CLL^[6]
 - After ~ 140 investigator-assessed PFS events (75% of total data)

MURANO Interim Analysis: Study Design


• Multicenter, randomized, open-label phase III trial

- Primary endpoint: investigator-assessed PFS
- Secondary endpoints: IRC-assessed PFS and MRD negativity, IRC-assessed CR \rightarrow ORR \rightarrow OS (hierarchical testing), safety

Seymour JF, et al. ASH 2017. Abstract LBA-2. ClinicalTrials.gov. NCT02005471.


MURANO Interim Analysis: Investigator-Assessed PFS (Primary Endpoint)

- Median f/u: 23.8 mos (0-37.4)
 - Completed 2-yrs without progression, n = 65; pts with ≥ 3-mo f/u, n = 12
- IRC-assessed PFS concordant with investigator assessment
 - mPFS for VEN + R vs BR: NR vs 18.1 mos (HR: 0.19; 95% CI: 0.13-0.28; P < .0001)

Seymour JF, et al. ASH 2017. Abstract LBA-2.

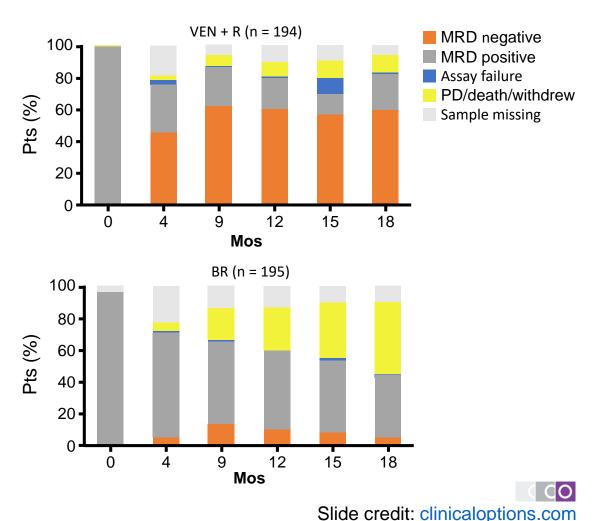
MURANO Interim Analysis: Investigator-Assessed PFS by Del(17p) Status

Venetoclax + rituximab consistently favored across subgroups stratified by del(17p) status, TP53 status, baseline *IGHV* status, no. prior tx, refractory vs relapse to last tx

MURANO Interim Analysis: Response, Survival

Response, %	VEN + R (n = 194)	BR (n = 195)	P Value
Per INV			
ORR*	93.3	67.7	< .0001 ⁺
 CR[‡] 	26.8	8.2	< .0001 ⁺
■ PR [§]	66.5	59.5	
■ SD	2.1	22.6	
Per IRC			
ORR*	92.3	72.3	< .0001 ⁺
CR [‡]	8.2	3.6	.0814
■ PR [§]	84.0	68.7	
SD	7.2	23.6	

*ORR: CR + initial CR + PR + nodular PR. [†]Descriptive. [‡]CR: CR/initial CR. [§]PR: PR/nodular PR.


- Discrepant investigator-assessed CRs in VEN + R arm, n = 42
 - n = 28 attributed to residual CT scan nodes 16-30 mm diameter, 88% with PB MRD negativity
- Survival significantly improved with VEN + R vs BR
 - Median OS: NR vs NR (HR: 0.48; 95% CI: 0.25-0.90; P = .0186)

MURANO Interim Analysis: MRD Negativity

• Higher rates of blood MRD negativity achieved and maintained with VEN + R vs BR

MRD Negativity,* (n) %	VEN + R (n = 194)	BR (n = 195)
BL	0	0
4 mos	88 (45)	11 (6)
9 mos ⁺	121 (62)	26 (13)
12 mos	117 (60)	20 (10)
15 mos	110 (57)	19 (9)
18 mos	116 (60)	10 (5)

*MRD negative: < 1 CLL cell/10,000 leukocytes (10⁻⁴). Centrally assessed every 3 mos after end of combination therapy or at response by multicolor flow cytometry and/or ASO-PCR; only 1 positive assay needed to report as MRD positive. ITT analysis with missing MRD data or failed assay reported as MRD positive. [†]End of combination therapy.

MURANO Interim Analysis: Safety

AE, n (%)	VEN + R (n = 194)	BR (n = 188)
Pts with ≥ 1 any-grade AE	194 (100)	185 (98)
Serious AE	90 (46)	81 (43)
Grade 3/4	159 (82)	132 (70)
Grade 5	10 (5)*	11 (6)+

*Pneumonia, n = 3; n = 1 each for following: sepsis, cardiac failure, MI, sudden cardiac death, CRC, status epilepticus, acute respiratory failure. ⁺Sepsis, n = 2; lung CA, n = 2; n = 1 each for following: Listeria sepsis, Scedosporium infection, lymphoma, hemorrhagic stroke, pulmonary embolism, AML, sudden death.

 Single-agent VEN grade 3/4 AEs: neutropenia, 11%; anemia, 3%; thrombocytopenia, 2%; pneumonia, 2%

Grade 3/4 AE With ≥ 2% Diff. Between Arms,* n (%)	VEN + R (n = 194)	BR (n = 188)
Neutropenia	112 (58)	73 (39)
Anemia	21 (11)	26 (14)
Thrombocytopenia	11 (6)	19 (10)
Febrile neutropenia	7 (4)	18 (10)
Pneumonia	10 (5)	15 (8)
Infusion-related reaction	3 (2)	10 (5)
TLS	6 (3)	2 (1)
Hypotension	0	5 (3)
Hyperglycemia	4 (2)	0
Hypogammaglobulinemia	4 (2)	0

MURANO Interim Analysis: Conclusions

- In a preplanned interim analysis, VEN + R significantly increased median PFS vs BR in pts with R/R CLL across subgroups and independent of del(17p) status
 - Overall median PFS: NR vs 17 mos (HR: 0.17; *P* < .0001)
- VEN + R demonstrated improved ORR with durable improvements in PB MRD negativity vs BR
 - ORR: 93.3% vs 67.7%
 - PB MRD negativity at Mo 18: 60% vs 5%
- No new safety signals observed
 - TLS in 3% of pts receiving VEN + R
- Investigators conclude that VEN + R represents a standard tx option in R/R CLL

THANKS