PANCREATIC, BILIARY TRACT AND HEPATOCELLULAR CARCINOMA

MITESH J. BORAD, M.D. Associate Professor, Mayo Clinic College of Medicine and Science

16^{тн} ANNUAL MIAMI CANCER MEETING Miami, FL March 29-31, 2019

CONFLICTS OF INTEREST

RESEARCH FUNDING

Boston Biomedical Mirna **Sunbiopharma** Senhwa **Medimmune** Arqule/Basilea Agios Halozyme **Threshold** Celgene Toray **Novartis/QED** Sillajen Eisai

Taiho Ionis EMD Serono Incyte ARIAD Imclone

CONSULTANT

G1 Therapeutics TD2 Fujifilm Insys Novartis Arqule Celgene Inspyr Halozyme

EDUCATIONAL OBJECTIVES

- Review clinical and translational data in the precision medicine space in HPB cancers (hepatopancreato-biliary)
- Review recent studies of importance in HPB cancer using cytotoxic therapies
- Review data on DNA repair targeting in pancreatic cancer
- Review immunotherapy approaches in HPB cancer

PANCREATIC CANCER THE PROBLEM AND CHALLENGES

- New diagnoses US 2017: 53,670
- Mortality US 2017: 43,090
- 9th–10th most common cancer (3% new cancers)
- 1.2% increase/yr → 2nd cause-related deaths by 2020
- Fourth-leading cause of cancer mortality (8%)

American Cancer Society, 2017. www.cancer.org; SEER Cancer Statistics Review, 1975-2006. NCI. www.surveillance.cancer.gov; Hoos WA. J Clin Oncol, 2013; Siegel R. Ca Cancer J Clin, 2014

PDAC: CHALLENGING BIOLOGY

- Drug resistance
- Stroma as a barrier to drug delivery
- Complex and poorly understood
 microenvironment
- Multiple gene mutations
- Non-druggable tumor suppressor genes
- Few validated biomarkers

APPROVED THERAPIES IN ADVANCED PANCREATIC ADENOCARCINOMA (PDAC)

GEMCITABINE VS 5-FLUOROURACIL ADVANCED PDAC

- Median survival
 5.65 vs 4.41 mo (*P* = .0025)
- 1-year survival
 18% vs 2%
- Clinical benefit*
 23.8% vs 4.8% (P = .0022)
- Response rate:
 5.4% vs 0% (*P* = NS)

*Composite of measurements of pain (analgesic consumption and pain intensity), Karnofsky performance status, and weight

FOLFIRINOX VS GEMCITABINE OVERALL SURVIVAL

Conroy, T. NEJM, 2011

MPACT: OVERALL SURVIVAL

Von Hoff, D. N Engl J Med, 2013

CURRENT APPROACH TO TREATMENT SEQUENCING FOR ADVANCED PDAC

TUMOR MICROENVIRONMENT IN PDAC

- Hypovascular, hypoxic
- Physical stromal barrier
 - Hyaluronan (HA)
 glycosaminoglycans
 - Increased EMT, chemoresistance
- PEGPH20 rhuman hyaluronidase
 - Depletes HA in stroma
 - Improves drug delivery

Jaocobetz, et al. Gut, 2013. Provenzano, P. Cancer Cell, 2012. Courtesy: J. Shia (MSKCC)

RANDOMIZED PHASE II NAB-P + GEM +/- PEGHPH20

Primary endpoint: Progression-free survival Secondary endpoints: PFS by Hyaluronan, ORR, OS, Safety, Correlatives

Hingorani, S. J Clin Oncol 2017

RANDOMIZED PHASE II NAB-P + GEM +/- PEGHPH20

Hingorani, S. J Clin Oncol 2017

TUMOR MICROENVIRONMENT IN PDAC

- Phase III trial underway
 - Nab-P + gemcitabine +/- PEGPH20 (HALO-301)
 - Biomarker selected: Hyaluronan-high
 - Primary endpoints: PFS, OS
 - N= 420

A Phase IB/II Randomized Study of mFOLFIRINOX (mFFOX) + Pegylated Recombinant Human Hyaluronidase (PEGPH20) versus mFFOX alone in Patients with Good Performance Status Metastatic Pancreatic Adenocarcinoma (mPC): SWOG- S1313 (NCT #01959139)

Ramesh K. Ramanathan, Shannon L. McDonough, Philip A. Philip, Sunil R. Hingorani, Jill Lacy, Jeremy S. Kortmansky, Jaykumar Thumar, E. Gabriela Chiorean, Anthony F. Shields, Deepti Behl, Paul T. Mehan, Rakesh Gaur, Tara Seery, Katherine A. Guthrie, Howard S. Hochster.

Mayo Clinic, Arizona, Phoenix, AZ; SWOG Statistical Center, Seattle, WA; Fred Hutchinson Cancer Research Center, Seattle, WA; Karmanos Cancer Institute/Wayne State University, Detroit, MI; Yale Cancer Center, New Haven, CT; Saint Francis Hospital & Medical Center, Enfield, MA; Sutter Cancer Research Consortium, Sacramento, CA; Heartland NCORP, Missouri Baptist Medical Center Cancer Center, St. Louis, MO; Kansas City NCORP, Prairie Village, KS; UC Irvine Medical Center, Orange, CA.

PRESENTED AT: 2018 Gastrointestinal Cancers Symposium | #GI18 Slides are the property of the author. Permission required for reuse.

National Clinical Trials Network

Study Design

- Background: PEGPH20 degrades hyaluronan (HA), a major component of the stroma, increases delivery of gemcitabine and prolongs survival in preclinical models. We evaluated the activity of PEGPH20 in combination with mFFOX in mPC, unselected for tumor HA.
- Pertinent eligibility: Untreated mPC, PS of 0-1 and adequate organ function. Standard FFOX was modified to add prophylactic growth factor support and omit bolus 5FU.
- Study Conduct: Following a dose finding cohort of mFFOX + PEGPH20, the Phase II study randomized patients (1:1) to the combination arm or mFFOX alone (n=138). The primary endpoint was overall survival (OS), with a null median OS of 10 mo and an alternative of 15 mo (1-sided type 1 error 0.1, 80% power).
- Amendments: Due to increased thromboembolic (TE) events with PEGPH20, an amendment instituted LMWH prophylaxis in the PEGPH20 arm only.
- Planned interim analysis: Occurred when 35 deaths noted (1/3rd of expected) in 113 patients enrolled and triggered a futility analysis on March 14, 2017.

PRESENTED AT: 2018 Gastrointestinal Cancers Symposium | #GI18 Slides are the property of the author. Permission required for reuse.

Patient Characteristics and Phase II Toxicities

Patient Characteristics	FFOX (N=56)	FFOX+PEGPH20 (N=55)	
Age (median) Sex (M/F) Race Performance status (0/1)	60.5 yrs 55% / 45% 82% White 55% / 45%	63.9 yrs 44% / 56% 78% White 58% / 42%	
Selected Gr 3/ 4 Toxicity	FFOX (N=54)	FFOX+PEGPH20 (N=51)	
Diarrhea	19%	24%	
Dehydration	13%	8%	
Fatigue	11%	20%	
Nausea	١5%	25%	
Vomiting	13%	22%	
TE Events (All grade)	4%	18%	
TE Events after LMWH	5%	9%	
All Grade 3-5 Toxicity	Increased in PEGPH20 arm (P=0.02)	OR 2.7 (95% CI I.I-7.I)	
Response Rate	45% (95% CI 31-59%)	33% (95% CI 21-47%)	
Treatment exposure One Gr 5 event occu	Median: 8 cycles (Range 0-37) urred on FFOX arm due to sepsis.	4 cycles (Range 0-43), P=0.05	

Efficacy Data

HR 0.61 95% CI: 0.40-0.93, P=0.02

HR 0.50 95% CI: 0.31-0.81, P<0.01

PRESENTED AT: 2018 Gastrointestinal Cancers Symposium | #GI18 Slides are the property of the author. Permission required for reuse.

Conclusions

- **OS** in the mFFOX control arm (14.4 mo) is longest yet reported. Addition of PEGPH20 to mFFOX resulted in increased toxicity and appears to be detrimental.
- Inferior results in this arm could be due to increased toxicity and less FFOX treatment exposure in the PEGPH20 arm, median 4 cycles versus 8 for FFOX alone.
- S1313 results are in contrast to favorable results reported for the combination of gemcitabine/nab-paclitaxel + PEGPH20 (Hingorani S et al. JCO epub.2017.74.9564).
- *Mechanistic* effect on stroma needs study. Tumor HA content will be analyzed and preclinical studies are planned.

Funding: NIH/NCI grants CA180888, CA180819; and in part by Halozyme Inc.

TAKE HOME POINTS

•mFOLFIRINOX regimen can be safely administered in U.S. patients

•Median survival is in the range report in the original ACCORD 11 study

 In HA unselected patients, combining PEGPH20 with mFOLFIRINOX results in added toxicity and inferior efficacy

•Results of Phase III study with gemcitabine with PEGPH20 in HA selected patients are awaited

FAMILY HISTORY AND PDAC

- ~10% of PC related to genetic factors
- Several well-defined genetic syndromes (minority)
- Families with multiple individuals affected with PC, but no specific genetic abnormality identified (~70%)

DNA REPAIR DEFECTS COMMON IN HEREDITARY PDAC

Syndrome	Mutated Gene	Relative Risk	Reference
Peutz-Jegher	STK11 (19p13)	RR 132 x	Gastro 2000
Hereditary	PRSSI (7q35)		Pancreat 2001
Pancreatitis	SPINK1 (5q31)	~ 50 x	JNCI 1997
FAMMM	CDKN2A (9p21)	13- 22 X	NEJM 1995
FAP	APC (5q13)	RR 4.5 x	Gastro 2002
Hereditary Breast-	BRCA1 (17q21)	RR 2.2 x	JNCI 1999, 2002
Syndrome	BRCA2 (13q12)	RR 3.5 x	BJC, 2012
	MLHI (3p21)	0	Cancer 1996
ΠΙΝΡΟΟ	MSH2 (2p16)	~ 9	JAMA 2009
Ataxia Telangiect	ATM (11q23)	Increased	Clin Gen 1999
Breast, Pancreas	PALB2 (16p12.2)	Increased	Science 2009

HIGH-RISK FAMILY RECOMMENDATIONS

- Young, sporadic, high-risk families
 - Smoking cessation (only reversible risk factor)
 - Healthy weight maintenance
 - Registry enrollment
 - Screening and prevention trials
 - IPMN precursor lesion in FPC?
- Genetic counseling/ screening Therapeutic implications

TARGETING DNA REPAIR : BRCA and PDAC

- 5-8% of PDAC patients germline BRCA 1 or 2 mutation
 - Ashkenazi Jewish 5-16%
 - Familial PDAC 5-19%
 - Familial breast/ovary cancer 5-10%
- BRCA Founder mutations in AJ descent (2-3%)
 - BRCA 1: 185delAG, 5382insC
 - BRCA 2: 6174delT

Hahn, SA. Gastro, 2003. Murphy, KM. Can Res, 2002. Ozcelik, H. Nat Genetics, 1997. Lal, G. Can Res, 2000. Lucas, AL. CCR, 2013. Ferrone, C. J Clin Oncol, 2009. Stadler, ZK. Can, 2012. Brose, MS. JNCI, 2002

GENOMIC LANDSCAPE PDAC

NCI P#8993: THREE TRIALS

- Phase IB cisplatin, gemcitabine + veliparib in PDAC (completed)
- Single-arm, non-randomized, phase II veliparib in previously-treated BRCA or PALB2 mutated PDAC (completed)
- Randomized phase II cisplatin, gem +/- veliparib in untreated BRCA/PALB2 mutated PDAC (ongoing)
 - Arm A: Gemcitabine, cisplatin, veliparib
 - Arm B: Gemcitabine, cisplatin

PHASE IB: CISPLATIN, GEM, VELIPARIB RECIST RESPONSE: GBRCA(+) VS GBRCA(-)

DURATION ON STUDY: GBRCA(+) VS GBRCA(-)

OVERALL SURVIVAL BRCA(+) VS BRCA(-) CISPLATIN/GEMCITABINE + PARPi

- Germline BRCA(-): OS 11 months (95% CI: 1.5-12.1)
- Germline BRCA(+): OS 23.3 months (95% CI: 3.8-30.2)
- Predictive vs Prognostic effect

PATIENT BRCA1 MUTATION

RANDOMIZED PHASE II TRIAL OF CISPLATIN, GEMCITABINE +/- VELIPARIB IN GERMLINE BRCA/PALB2

Randomization 1: 1 Primary Endpoint: Response Rate

NCT01585805 O'Reilly, EM, Kelsen, D

PHASE III TRIAL MAINTENANCE (POLO) PLATINUM THERAPY -> OLAPARIB/PLACEBO

Randomization 3: 2 Primary Endpoint: PFS (central review mRECIST 1.1)

NCT02184195 (Astra Zenica, Myriad) Golan, T., Kindler, H

IMMUNOTHERAPY IN PANCREATIC CANCER MICROSATELLITE INSTABILITY

				1966 B.B.B.	
2536	Fab	A,	2336-2348.	August.	2902

Cinical Canor Research

Prognostic Value of Microsatellite Instability in Resectable Pancreatic Cancer

NAKATA ET AL, CANCER RESEARCH 2002

IMMUNOTHERAPY IN PANCREATIC CANCER MICROSATELLITE INSTABILITY

NAKATA ET AL, CANCER RESEARCH 2002

IMMUNOTHERAPY IN PANCREATIC CANCER MICROSATELLITE INSTABILITY

BONNEVILLE ET AL, JCO PRECISION ONCOLOGY 2017

LE ET AL, SCIENCE 2017

LE ET AL, SCIENCE 2017

PEMBROLIZUMAB APPROVED IN ADULT AND PEDIATRIC PATIENTS WITH:

- UNRESECTABLE OR METASTATIC, MICROSATELLITE INSTABILITY HIGH (MSI-H) OR MISMATCH REPAIR DEFICIENT (DMMR) SOLID TUMORS THAT HAVE PROGRESSED FOLLOWING PRIOR TREATMENT AND WHO HAVE NO SATISFACTORY ALTERNATIVE TREATMENT OPTIONS
- WITH MSI-H OR DMMR COLORECTAL CANCER THAT HAS PROGRESSED FOLLOWING TREATMENT WITH A FLUOROPYRIMIDINE, OXALIPLATIN, AND IRINOTECAN

First-in-Human Phase 1 Dose Escalation and Expansion of a Novel Combination, Anti–CSF-1 Receptor (cabiralizumab) Plus Anti–PD-1 (nivolumab), in Patients With Advanced Solid Tumors

Zev A. Wainberg,¹ Sarina A. Piha-Paul,² Jason Luke,³ Edward J. Kim,⁴ John A. Thompson,⁵ Carolyn D. Britten,⁶ Jennifer M. Johnson,⁷ Nicklas Pfanzelter,⁸ Michael Gordon,⁹ Drew W. Rasco,¹⁰ F. Stephen Hodi,¹¹ Amy Weise,¹² Sandeep Inamdar,¹³ Serena Perna,¹⁴ Christy Ma,¹³ Janine Powers,¹³ Yeonju Lee,¹³ Majid Ghoddusi,¹³ Michael Carleton,¹⁴ Hong Xiang,¹³ Lei Zhou,¹³ Helen Collins,¹³ James J. Lee¹⁵

¹UCLA Medical Center, Los Angeles, CA; ²The University of Texas MD Anderson Cancer Center, Houston, TX; ³University of Chicago Medical Center, Chicago, IL; ⁴UC Davis Cancer Center, Sacramento, CA; ⁵University of Washington, Seattle Cancer Center, Seattle, WA; ⁶Medical University of South Carolina, Charleston, SC; ⁷Sidney Kimmel Cancer Center, Jefferson University, Philadelphia, PA; ⁸Rush University Medical Center, Chicago, IL; ⁹Honor Health Research Institute, Scottsdale, AZ; ¹⁰South Texas Accelerated Research Therapeutics, San Antonio, TX; ¹¹Dana-Farber Cancer Institute, Boston, MA; ¹²Barbara Ann Karmanos Cancer Institute, Detroit, MI; ¹³FivePrime Therapeutics, South San Francisco, CA; ¹⁴Bristol-Myers Squibb, Princeton, NJ; ¹⁵University of Pittsburgh Cancer Institute, Pittsburgh, PA

Rationale for Cabiralizumab in Combination With Nivolumab

- TAMs inhibit antitumor T-cell activity in the tumor microenvironment^{1,2}
 - In pancreatic and other cancers, high levels of TAMs are associated with poor prognosis³⁻⁵
 - Signaling through the CSF-1 receptor promotes the maintenance and function of TAMs^{1,2}

FPA008-003

CSF-1 = colony stimulating factor 1; TAM = tumor-associated macrophage; PD-1 = programmed death-1 1. Ries CH, et al. *Cancer Cell* 2014;25:846–859. 2. Cannarile M, et al. *J ImmunoTher Cancer* 2017;5:53. 3. Hu H, et al. *Tumour Biol* 2016;37:8657–8664.

4. Kurahara H, et al. J Surg Res 2011;167:e211–e219. 5. Goswami KK, et al. Cell Immunol 2017;316:1–10.

Rationale for Cabiralizumab in Combination With Nivolumab

- TAMs inhibit antitumor T-cell activity in the tumor microenvironment^{1,2}
 - In pancreatic and other cancers, high levels of TAMs are associated with poor prognosis³⁻⁵
 - Signaling through the CSF-1 receptor promotes the maintenance and function of TAMs^{1,2}
- Cabiralizumab is a humanized IgG4 mAb that blocks CSF-1R and depletes TAMs

FPA008-003

CSF-1 = colony stimulating factor 1; TAM = tumor-associated macrophage; IgG = immunoglobulin G, mAb = monoclonal antibody; PD-1 = programmed death-1 1. Ries CH, et al. *Cancer Cell* 2014;25:846–859. 2. Cannarile M, et al. *J ImmunoTher Cancer* 2017;5:53. 3. Hu H, et al. *Tumour Biol* 2016;37:8657–8664. 4. Kurahara H, et al. *J Surg Res* 2011;167:e211–e219. 5. Goswami KK, et al. *Cell Immunol* 2017;316:1–10. 6. Bellovin D, et al. *Cancer Res* 2017;77 (13 suppl) [abstract 1599]).

Escalation Study of Cabiralizumab ± FPA008-003 **Nivolumab in Advanced Solid Tumors**

August 1, 2017, cutoff

Primary objectives: safety/tolerability, dose-limiting toxicities

Secondary objectives: immunogenicity, PK, pharmacodynamics, preliminary antitumor activity^b

^aInitiated after corresponding monotherapy doses were deemed tolerable. ^bPrimary objective for expansion phase IV = intravenous: PK = pharmacokinetics: Q2W = every 2 weeks

Rationale for Targeting CSF-1R in Pancreatic Cancer

- Pancreatic cancer is associated with high TAM infiltration and poor prognosis^{1,2}
- It typically presents as metastatic disease with a 1-year survival rate of 17%-23%³ and a 5-year survival rate of 1%-3%^{4,5}
- Approximately 95%-99% of patients have microsatellite stable (MSS) pancreatic cancer,⁶⁻⁸ lack response to anti–PD-1/L1 therapy,^{5,9} and are in need of new treatment options
- Combination of cabiralizumab and nivolumab may benefit patients with pancreatic cancer by simultaneous reduction of TAMs and inhibition of PD-1 signaling

1. Hu H, et al. *Tumour Biol* 2016;37:8657–8664. 2. Kurahara, et al. *J Surg Res* 2011;167:e211–e219. 3. Von Hoff DD, et al. *N Engl J Med* 2013;369:1691-1703. 4. American Cancer Society. Pancreatic cancer. https://www.cancer.org/cancer/pancreatic-cancer.html. Accessed October 20, 2017. 5. Foley K, et al. *Cancer Lett* 2016;381;244–251. 6. Goggins M, et al. *Am J Pathol* 1998;1501–1507. 7. Luttges J, et al. *Mod Pathol* 2003;16:537–542. 8. Laghi L, et al. *PLOS One* 2012;7:e46002. 9. Brahmer JR, et al. *N Engl J Med* 2012;366;2455–2465.

Pancreatic Cancer Cohort Baseline Demographics and Safety

FPA008-003

 Patient demographics and the safety profile in the pancreatic cohort was similar to those in all patients treated with cabiralizumab + nivolumab

	Cabiralizumab 4 mg/kg + nivolumab 3 mg/kg		Cabiralizumab 4 mg/kg + nivolumab 3 mg/kg			
Baseline demographics and prior therapy	Pancreatic cancer (n = 33)ª		Pancreatic cancer (n = 33)ª			
Median age (range), years < 65 years, n (%)	64 (37–85) 17 (52)	Safety summary	Any grade n (%)	Grade 3/4 n (%)		
Male, n (%)	17 (52)	Any TRAE	31 (94)	20 (61)		
ECOG performance status, n (%)	12 (20)	AEs leading to discontinuation	3 (9)	3 (9)		
0 1 2	19 (58) 1 (3)	Clinical TRAEs in ≥ 15% of patients Fatique	14 (42)	1 (3)		
No. of prior regimens, n (%) 0 1 2 ≥ 3	1 (3) ^b 3 (9) 14 (42) 15 (45)	Periorbital edema Rash Vomiting Hyponatremia Diarrhea Rash masulonapular	10 (30) 7 (21) 7 (21) 6 (18) 5 (15) 5 (15)	0 0 3 (9) 1 (3) 3 (9)		
No. of prior regimens for metastatic disease, n (%) 0 1	7 (21) 4 (12) 12 (26)	Treatment-related laboratory abnormalities of interest Serum enzyme elevations ^c Pancreatic enzyme elevations ^d	17 (52) 2 (6)	11 (33) 1 (3)		
∠ ≥ 3	10 (30)	Treatment-related deaths	0			

^aOf 33 patients, 31 were response evaluable. ^bPatient was ineligible or refused standard therapy. ^cIncludes AE terms indicative of elevated CPK, AST, ALT, and LDH. ^dIncludes AE terms indicative of elevated amylase and lipase

FPA008-003 Deep and Durable Responses Observed in Patients With Pancreatic Cancer

 In this heavily pretreated population, durable clinical benefit was observed in 5 patients (16%)

Confirmed ORR = 10% (Updated confirmed ORR = 13%)

Duration of treatment for responders = 275+, 168+, 258, and 247+ days

- All 4 confirmed responses were observed in patients with MSS disease, who historically have not shown benefit with anti–PD-1/L1 therapy^{1,2}
- Responses were accompanied by steep declines in levels of the pancreatic tumor marker CA19-9 over baseline

^aPlot shows 31 efficacy-evaluable patients; 2 patients discontinued treatment early due to AEs before disease evaluation. BIRC = blinded independent review committee; ORR = objective response rate; PR = partial response; SLD = sum of longest diameters 1. Overman M et al. <u>48</u> Ann Oncol. 2016;27:149-206 [abstract 479P]. 2. Le DT, et al. N Engl J Med 2015;372;2509–2520.

FPA008-003

Durable Response in the Liver of a Heavily Pretreated Patient With MSS Pancreatic Cancer

Images provided by James Lee from the University of Pittsburgh Cancer Institute.

- 58-year-old male patient who received 3 prior chemotherapy regimens
 - Neoadjuvant FOLFIRINOX
 - Gemcitabine + nab-paclitaxel
 - 5-FU + leucovorin
 + liposomal
 irinotecan
- Patient achieved a partial response with a best change in tumor burden of -52%
 - CA19-9 levels declined by 99% from baseline
 - Response is ongoing 49

5-FU = 5-fluorouracil; FOLFIRINOX = leucovorin + fluorouracil + irinotecan + oxaliplatin

FPA008-003

Durable Response in the Lung of a Heavily Pretreated Patient With MSS Pancreatic Cancer

Images provided by Jennifer Johnson from Thomas Jefferson University Hospital.

- 63-year-old male patient who received 4 prior chemotherapy regimens
 - Adjuvant
 FOLFIRINOX
 - FOLFIRINOX
 - Capecitabine
 - Gemcitabine + nabpaclitaxel
 - Patient achieved a partial response with a best change in tumor burden of −50%

•

- CA19-9 levels declined by 96% from baseline
- Response is ongoing

Conclusions

- Cabiralizumab is a new immunotherapeutic agent that targets TAMs in the immunosuppressive microenvironment
- Cabiralizumab with or without nivolumab demonstrated:
 - Tolerable safety profile that is comparable to either monotherapy
 - Dose-dependent reduction of circulating CD14⁺CD16⁺⁺ nonclassical monocytes, reaching maximum at 4 mg/kg Q2W when clearance approaches linear dose range
- Preliminary evidence of durable clinical benefit with cabiralizumab plus nivolumab was observed in heavily pretreated patients with advanced MSS pancreatic cancer
 - Further cohort expansion is ongoing as well as additional biomarker analyses
- These data support further study of cabiralizumab plus nivolumab ± chemotherapy in pancreatic cancer (NCT03336216) SITC 51 Society for Immunotherapy of Cancer

HEPATOBILIARY CANCERS

HEPATOCELLULAR CANCER

- 1. Most common primary cancer of the liver
- Common etiologies include hepatitis B/C, NASH/metabolic syndrome, alcohol and others (e.g. Wilson's disease)
- Estimated 39,230 cases (27,170 deaths) of HCC in 2016 (SEER) in the US
- 4. Global incidence ~782,000 cases (~554,000 deaths : GLOBOCAN)

TUMOR MICROENVIRONMENT IN HEPATOCELLULAR CANCER

LEONARDI ET AL, INT J ONC 2012

Research Article

A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C^{*}

Bruno Sangro^{1,2,*}, Carlos Gomez-Martin³, Manuel de la Mata^{4,2,5}, Mercedes Iñarrairaegui^{1,2}, Elena Garralda³, Pilar Barrera^{4,2}, Jose Ignacio Riezu-Boj⁶, Esther Larrea⁶, Carlos Alfaro⁷, Pablo Sarobe⁶, Juan José Lasarte⁶, Jose L. Pérez-Gracia⁷, Ignacio Melero^{6,7,†}, Jesús Prieto^{1,2,6,†}

¹Liver Unit and HPB Oncology, Clinica Universidad de Navarra, Pamplona, Spain; ²Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Spain; ³Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain; ⁴Hepatology, Hospital Universitario Reina Sofía, Córdoba, Spain; ⁵Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain; ⁶Center for Applied Medical Research (CIMA), Pamplona, Spain; ⁷Medical Oncology, Clinica Universidad de Navarra, Pamplona, Spain

METHODS

Tremelimimumab 15 mg/kg IV on day 1 of a 90-day cycle (up to 4 cycles)

- Inclusion/Exclusion Criteria:
- 1. Age \geq 18 years
- 2. Advanced hepatitis C+ hepatocellular cancer
- 3. ECOG Performance Status 0-1
- 4. Measurable disease
- 5. AST/ALT < 5 x ULN; albumin > 3 g/dl; bilirubin < 3 mg/dl
- 6. Hemoglobin > 9 g/dl; neutrophils > 1.5×10^9 /L; platelets > 75 x 10^9 /L
- 7. Measurable disease
- 8. No systemic immunosuppresants

Sangro et al, J Hepatology 2013

Table 1. Patient characteristics.

Number of patients	21				
Male sex, n (%)	15 (71.4)				
Age in yr, mean (range)	65.2 (48-79)				
HCV genotype 1b	100%				
Hemoglobin (g/dl)	13.6 (12.6-14.3)				
Platelet count (x10 ⁹ /L)	113 [87.6-200]				
Total bilirubin (mg/dl)	1.3 [0.88-2]				
AST (IU/ml)	97 [53-121.5]				
ALT (IU/ml)	58 [38-125]				
Ascites, n (%)	4 (19)				
Child-Pugh score	6.5 [5-7]				
Child-Pugh stage					
A	12 (57.1)				
В	9 (42.9)				
Alpha-fetoprotein ≥400 ng/ml	6 (28.6)				
ECOG performance status, n (%)					
0	15 (71.4)				
1	6 (28.6)				
Portal vein thrombosis	6 (28.6)				
Extrahepatic disease	2 (9.5)				
BCLC stage					
A	3 (14.3)				
В	6 (28.6)				
С	12 (57.1)				
Prior antitumor therapy					
Any	12 (57.4)				
Resection	1 (4.8)				
RFA	4 (19)				
TA(C)E	7 (33.3)				
Radioembolization	6 (28.6)				
Sorafenib	5 (23.8)				
Prior antiviral therapy	7 (33.3)				

All values are expressed as median (IQR) unless otherwise specified. HCV, hepatitis C virus. TA(C)E: transarterial (chemo)embolization.

Sangro et al, J Hepatology 2013

Table 2. Clinical and laboratory adverse events according to CTCAE v 3.0.

	Gr	ade	Most likely cause	
	All N (%)	>3 N (%)		
Clinical				
Skin rash	13 (65)	1 (5)	Treatment	
Fatigue	11 (55)	0	Treatment	
Anorexia	10 (50)	0	Cirrhosis	
Edema	7 (35)	0	Cirrhosis	
Ascites	7 (35)	0	Cirrhosis	
Diarrhea	6 (30)	1 (5)	Treatment	
Respiratory infection	6 (30)	0	Others	
Encephalopathy	5 (25)	3 (15)	Cirrhosis	
Acute renal failure	3 (15)	2 (10)	Cirrhosis	
Syncope	3 (15)	2 (10)	Treatment	
Insomnia	3 (15)	0	Treatment	
Abdominal pain	2 (10)	0	Treatment	
Urinary tract infection	2 (10)	0	Others	
Diverticulitis	1 (5)	1 (5)	Treatment	
Depression	1 (5)	1 (5)	Treatment	
Alopecia	1 (5)	0	Treatment	
Hypothyroidism	1 (5)	0	Treatment	
Arthritis	1 (5)	0	Treatment	
Pleural effusion	1 (5)	0	Treatment	
Gastrointestinal hemorrhage	1 (5)	1 (5)	Cirrhosis	
Cholangitis	1 (5)	1 (5)	Others	
Pneumonia	1 (5)	1 (5)	Others	
Ophthalmic zoster	1 (5)	0	Others	
Oral candidiasis	1 (5)	0	Others	
Laboratory*				
Hypoalbuminemia	15 (75)	1 (5)	Cirrhosis	
AST	14 (70)	9 (45)	Treatment	
Hyponatremia	13 (65)	6 (30)	Cirrhosis	
ALT	11 (55)	5 (25)	Treatment	
Anemia	9 (45)	0	Cirrhosis	
Total bilirubin	7 (35)	2 (10)	Cirrhosis	
Thrombocytopenia	6 (30)	1 (5)	Cirrhosis	
Neutropenia	4 (20)	1 (5)	Treatment	
Hyperglycemia	4 (20)	0	Cirrhosis	

*Only changes in CTCAE grade from baseline are considered an AE.

Sangro et al, J Hepatology 2013

в

EFFICACY

- Total evaluable patients (n=17)
- Complete response (n=0; 0%)
- Partial response (n=3; 17.6%) [Duration of response 3.6, 6.9 and 15.2 mths]
- ■Stable disease (n=10; 58.8%)
- Alpha-fetoprotein evaluable patient (n=11)
- Alpha-fetoprotein response (>50% decrease): n=4 (36%)
- Median time to tumor progression (TTP): 6.48 mth (95% CI: 3.95-9.14 mth)
- Median overall survival (OS): 8.2 mth (95% CI: 4.64-21.34 mth)

El-Khoueiry et al, Lancet 2017

El-Khoueiry et al, Lancet 2017

	Uninfected untreated/ intolerant (n=56)	Uninfected progressor (n=57)	HCV infected (n=50)	HBV infected (n=51)	All patients (n=214)
Objective response*	13 (23%; 13 to 36)	12 (21%; 11 to 34)	10 (20%; 10 to 34)	7 (14%; 6 to 26)	42 (20%; 15 to 26)
Complete response	0	2 (4%)	0	1 (2%)	3 (1%)
Partial response	13 (23%)	10 (18%)	10 (20%)	6 (12%)	39 (18%)
Stable disease	29 (52%)	23 (40%)	23 (46%)	21 (41%)	96 (45%)
Progressive disease	13 (23%)	18 (32%)	14 (28%)	23 (45%)	68 (32%)
Not evaluable	1(2%)	4 (7%)	3 (6%)	0	8 (4%)
Duration of response*					
KM median	8-4 (8-3 to NE)	NR	9-9 (4-5 to 9-9)	NR	9-9 (8-3 to NE)
Ongoing n/N (%)	8/13 (62%)	7/12 (58%)	8/10 (80%)	5/7 (71%)	28/42 (67%)
Disease control*	42 (75%; 62 to 86)	35 (61%; 48 to 74)	33 (66%; 51 to 79)	28 (55%; 40 to 69)	138 (64%; 58 to 71)
Disease control with stable disease for >6 months	22 (39%; 27 to 53)	22 (39%; 26 to 52)	6 to 52) 17 (34: 21 to 49) 18 (35%; 22:		79 (37%; 30 to 44)
Overall survival					
6 months	89% (77 to 95)	75% (62 to 85)	85% (72 to 93)	84% (71 to 92)	83% (78 to 88)
9 months	82% (68 to 90)	63% (49 to 74)	81% (66 to 90)	70% (55 to 81)	74% (67 to 79)
KM median	NR	13-2 (8-6 to NE)	NR	NR	NR
Progression-free survival*					
KM median	5-4 (3-9 to 8-5)	40 (2-6 to 6-7)	4-0 (2-6 to 5-7)	40 (13 to 41)	4-0 (2-9 to 5-4)

Unless otherwise indicated, data are n (%; 95% Cl); n (%); months (95% Cl); or % (95% Cl). HCV-hepatitis C virus. HBV-hepatitis B virus. KM-Kaplan-Meier estimate. NR-not reached. NE-not estimable. RECIST-Response Evaluation Criteria In Solid Tumors. "Determined by investigator assessment using RECIST version 1.1.

Table 4: Nivolumab efficacy in the dose-expansion phase

El-Khoueiry et al, Lancet 2017

	0-1 mg/kg (n=6) 0-3 mg/kg (n=9)		(n=9)	1 mg/kg (n=10) 3 mg/kg (n=10)			10 mg/kg (n=13)		All patients (n= 48)			
	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4
Treatment-related serious AEs	1(17%)*	1(17%)*	1(11%)†	1 (11%)†	0	0	0	0	1 (8%)‡	0	3 (6%)	2 (4%)
AEs leading to discontinuation	0	0	1 (11%)§	1 (11%)§	0	0	1(10%)¶	1(10%)¶	1 (8%)	1 (8%)	3 (6%)	3 (6%)
Treatment-related deaths	0	0	0	0	0	0	0	0	0	0	0	0
Patients with a treatment-related AE	4 (67%)	2 (33%)	8 (89%)	3 (33%)	8 (80%)	5 (50%)	9 (90%)	2 (20%)	11 (85%)	0	40 (83%)	12 (25%)
Treatment-related AEs**												
Rash	1(17%)	0	2 (22%)	0	2 (20%)	0	2 (20%)	0	4 (31%)	0	11 (23%)	0
Prunitus	2 (33%)	0	3 (33%)	0	0	0	1(10%)	0	3 (23%)	0	9 (19%)	0
Diarrhoea	0	0	3 (33%)	0	0	0	1(10%)	0	1 (8%)	0	5 (10%)	0
Decreased appetite	1(17%)	0	2 (22%)	0	1(10%)	0	0	0	1 (8%)	0	5 (10%)	0
Fatigue	1(17%)	1(17%)	2 (22%)	0	1(10%)	0	0	0	0	0	4 (8%)	1(2%)
Asthenia	0	0	1(11%)	0	0	0	1(10%)	0	1(8%)	0	3 (6%)	0
Weight decreased	0	0	1 (11%)	0	0	0	0	0	2 (15%)	0	3 (6%)	0
Nausea	0	0	1 (11%)	0	0	0	1(10%)	0	1(8%)	0	3 (6%)	0
Dry mouth	0	0	1 (11%)	0	1(10%)	0	0	0	1 (8%)	0	3 (6%)	0
Laboratory treatment-related A	Es**											
AST increase	0	0	2 (22%)	2 (22%)	3 (30%)	2 (20%)	1(10%)	1(10%)	4 (31%)	0	10 (21%)	5(10%)
ALT increase	0	0	2 (22%)	2 (22%)	1 (10%)	0	2 (20%)	1(10%)	2 (15%)	0	7 (15%)	3 (6%)
Lipase increase	1 (17%)	1(17%)	1 (11%)	0	4 (40%)	4 (40%)	2 (20%)	1 (10%)	2 (15%)	0	10(21%)	6 (13%)
Amylase increase	1 (17%)	0	0	0	4 (40%)	1 (10%)	2 (20%)	1 (10%)	2 (15%)	0	9 (19%)	Z (4%)
Anaemia	0	0	1 (11%)	0	1(10%)	1 (10%)	0	0	2 (15%)	0	4 (8%)	1(2%)
Hypoalbuminaemia	0	0	1 (11%)	0	1(10%)	0	0	0	1 (8%)	0	3 (6%)	0
Hyponatraemia	0	0	0	0	2 (20%)	0	0	0	1 (8%)	0	3 (6%)	0

Data are n (%). AE-adverse event. AST-aspartate aminotransferase. ALT-alanine aminotransferase. * Pemphigoid (n=1). †Adrenal insufficiency (n=1). ‡Liver disorder (n=1). §Malignant neoplasm progression (n=1). ¶Grade 3 ALT increase (n=1). grade 2 AST increase. ||Grade 3 blood bilirubin increase (n=1). **Treatment-related AEs reported in >5% of all patients, any grade.

Table 3: Safety and tolerability of nivolumab in the dose-escalation phase

Zhu et al, Lancet Onc 2018

PEMBROLIZUMAB IN HCC

UPDATED RESPONSE RATE 32%, PFS = 14.9 MONTHS

Table 3. Common Adverse Events

All-Cause AEs, Any Grade (≥ 20% of patients), n (%)	Safety-Evaluable Population (N = 43)
Decreased appetite	14 (33%)
Fatigue	13 (30%)
Rash	12 (28%)
Proteinuria	11 (26%)
Abdominal pain	11 (28%)
Diarrhea	10 (23%)
Hypertension	9 (21%)
Treatment-Related AEs, Grade 3-4 (≥ 5% of patients),	n
Hypertension	7 (16%)

OTHER CHECKPOINT + ANTI-ANGIOGENIC COMBOS

LENVATINIB + PEMBROLIZUMAB (CLINICALTRIALS.GOV: NCT03006926)

CABOZANTINIB + ATEZOLIZUMAB (CLINICALTRIALS.GOV: NCT03755791)

SORAFENIB + NIVOLUMAB (CLINICALTRIALS.GOV: NCT03439891)

BEVACIZUMAB + NIVOLUMAB (CLINICALTRIALS.GOV: NCT03382886)

REGORAFENIB + PEMBROLIZUMAB (CLINICALTRIALS.GOV: NCT03347292)

CONCLUSIONS

- 1. ANTI-PD-1/PD-L1 AND ANTI-CTLA-4 ANTIBODIES HAVE EXHIBITED PROMISING ACTIVITY IN EARLY TRIALS IN ADVANCED HCC PATIENTS
- 2. COMBINATION VEGF/VEGFR + PD-1/PD-L1 WILL FORM THE BASIS FOR MANY FUTURE INITIATIVES
CANCERS OF THE BILIARY TRACT

•Cholangiocarcinoma Incidence 1-2/100,000 in the United States

•Gallbladder Cancer Incidence 1-2/100,000 in the United States

•Risk factors : PSC/UC NASH/NAFLD Hepatitis B/C Biliary Stones/Gallstones Thorotrast Exposure Salmonella infections *O. viverrini* and *C. sinensis* (Liver Flukes)

CANCERS OF THE BILIARY TRACT

- •Median Age 60s (Rising Incidence in Younger Patients ?)
- Incidence similar in men and women
- •Higher incidence in Native Americans and Eskimos
- •High mortality

GLOBAL DISTRIBUTION OF CHOLANGIOCARCINOMA

PRECISION MEDICINE APPLICATIONS OF GENOMIC PROFILING

ARTICLES

Genomic spectra of biliary tract cancer

Hiromi Nakamura^{1,9}, Yasuhito Arai^{1,9}, Yasushi Totoki^{1,9}, Tomoki Shirota^{1,2,9}, Asmaa Elzawahry^{1,9}, Mamoru Kato³, Natsuko Hama¹, Fumie Hosoda¹, Tomoko Urushidate⁴, Shoko Ohashi¹, Nobuyoshi Hiraoka⁵, Hidenori Ojima^{5,6}, Kazuaki Shimada⁷, Takuji Okusaka⁸, Tomoo Kosuge⁷, Shinichi Miyagawa² & Tatsuhiro Shibata^{1,4}

GENOMIC DIVERSITY BY LOCATION IN BILIARY TRACT

Nakamura et al, Nature Genetics 2015

FGFR2 Gene Fusions Cholangiocarcinoma

PREVALENCE OF FGFR2 FUSIONS IN CHOLANGIOCARCINOMA

 ARAI ET AL
 13.6%
 N=66

GRAHAM ET AL 13% N=96

A Phase 2 Study of BGJ398 in Patients With Advanced or Metastatic FGFR-Altered Cholangiocarcinoma Who Failed or are Intolerant to Platinum-Based Chemotherapy

Milind Javle, ¹Rachna T. Shroff, ¹Andrew X. Zhu, ²Saeed Sadeghi, ³ SuPin Choo, ⁴Mitesh J. Borad, ⁵Maeve Lowery, ⁶Anthony B. El-Khoueiry, ⁷Teresa Macarulla, ⁸ Philip A. Philip, ⁹Do-Youn Oh, ¹⁰ Eric Van Cutsem, ¹¹ Kun-Huei Yeh, ¹² Katie Kelley, ¹³Randi Isaacs, ¹⁴Carolyn McGarry, ¹⁴Suman K. Sen, ¹⁴Tanios Bekaii-Saab¹⁵

¹MD Anderson Cancer Center, Houston, TX² Massachusetts General Hospital, Boston, MA² David Geffen School of Medicine at UCLA, Santa Monica, CA⁴ National Cancer Centre Singapore, ⁵Mayo Clinic, Scottsdale, A2⁵ Memorial Sloan Kettering Cancer Center, New York, WY² University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA⁴ Valid Hebron University Hospital (HUVH) and Val Hebron Institute of Oncology (VHiO)² Karmanos Cancer Center, Nave State University, Detroit, MI² Secul National University Hospital, Secul, South Kores, ²¹ University Hospital, Secue and KULeuven, Leuven, Belgium²¹ National Taiwan University Hospital, Taipe, Taiwan, ²³ UCS Comprehensive Cancer Center, San Francisco, CA⁴ Navaritis Pharmaceuticals Corporation, East Hanover, NI¹² The Ohio State University James Cancer Hospital, Oxidomica, CA⁴ Navaritis Pharmaceuticals Corporation, East Hanover, NI¹² The Ohio State

PROSPECTIVE TRIAL OF FGFR INHIBITOR IN FGFR2 FUSION+ CCA

Figure 2. Best Percentage Change From Baseline in the Size of Target Lesions With BGJ398 Treatment (n = 33)^a

RESPONSE RATE: 18.8%

PFS: 5.8 MTH

PEMIGATINIB IN FGFR2 FUSION+ CHOLANGIOCARCINOMA

RESPONSE RATE: 40.4% PFS: 9.2 MTH

OS: 15.8 MTH

HOLLENBEQUE ET AL, ESMO 2018

MECHANISMS OF RESISTANCE

Goyal et al, Cancer Disc 2016

PROGNOSIS OF PATIENTS WITH FGFR2 FUSION+ CHOLANGIOCARCINOMA PATIENTS

Intrahepatic OS (P = .001241)

Javle et al, Cancer 2016

IDH1 INHIBITOR AG-120 IN CHOLANGIOCARCINOMA PATIENTS

Burris et al, NCI-EORTC-AACR 2015

IDH1 INHIBITOR AG-120 IN CHOLANGIOCARCINOMA PATIENTS

Burris et al, NCI-EORTC-AACR 2015

GLOBAL DISTRIBUTION OF GALLBLADDER CANCER

Nature Reviews | Cancer

DISTRIBUTION OF GENOMIC MARKERS IN GALLBLADDER CANCER

Javle et al, Cancer 2016

TARGETING HER2 IN GALLBLADDER CANCER TRASTUZUMAB IN A PATIENT WITH HER2 AMPLIFIED GB CANCER

Javle et al, J Hemat Onc 2015

Figure 1. KEYNOTE-158 Study Design

Patients

- Unresectable and/or metastatic BTC
- Progression on or intolerance to standard therapy
- ECOG PS 0 or 1
- ≥1 measurable lesion
- Evaluable tumor sample for biomarker assessments
- No autoimmune disease or noninfectious pneumonitis

Pembrolizumab 200 mg IV Q3W Treat for 2 years^a or until progression,^b intolerable toxicity, or study withdrawal

Survival follow-up

Table 1. Baseline Demographics and Disease Characteristics

Characteristic	N = 104
Age, years, median (range) <65 years, n (%)	63.0 (34–81) 60 (57.7)
Male, n (%)	51 (49.0)
Race, n (%) Asian White	37 (35.6) 67 (64.4)
ECOG performance status 1, n (%)	62 (59.6)
Stage M1 disease, n (%)	94 (90.4)
PD-L1-positive tumor, ^a n (%)	61 (58.7)
MSI-H, ^b n (%)	0
Histology, n (%) Adenocarcinoma Adenosquamous Tubular adenocarcinoma	101 (97.1) 2 (1.9) 1 (1.0)
Baseline tumor size, ^c mm, median (range)	84.0 (10.5-434.7)
Prior (neo)adjuvant therapy, n (%)	22 (21.2)
No. prior therapies for recurrent/metastatic disease, n (%) Adjuvant/neoadjuvant 1 2 3 ≥4	7 (6.7) 43 (41.3) 36 (34.6) 12 (11.5) 6 (5.8)

Table 2. Summary of Response (RECIST version 1.1 by Independent Central Review)

	Overall ^a	PD-L1- Positive	PD-L1- Negative
Total population	N = 104	n = 61	n = 34
ORR, ^b % (95% CI)	5.8 (2.1–12.1)	6.6 (1.8-15.9)	2.9 (0.1–15.3)
Best overall response, n (%) Complete response Partial response Stable disease Progressive disease Nonevaluable ^c No assessment ^d	0 6 (5.8) 17 (16.3) 65 (62.5) 2 (1.9) 14 (13.5)	0 4 (6.6) 6 (9.8) 44 (72.1) 2 (3.3) 5 (8.2)	0 1 (2.9) 11 (32.4) 17 (50.0) 0 5 (14.7)
Patients with response	n = 6	n = 4	n = 1
Time to response, months, median (range)	2.2 (1.9–6.0)	3.3 (2.1–6.0)	1.9 (1.9–1.9)
Kaplan-Meier estimate of response ≥15 months, n (%) ^e	2 (50.0)	2 (75.0)	0 (0.0)
Duration of response, months, median (range)	NR (6.2–15.7+)	NR (10.4–15.7+)	7.4 (7.4–7.4)

Figure 2. Best Percentage Change From Baseline in Target Lesion Size (RECIST version 1.1 by Independent Central Review)

Figure 4. Kaplan-Meier Estimate of PFS (RECIST version 1.1 by Independent Central Review)

UENO ET AL, ESMO 2018

Figure 5. Kaplan-Meier Estimate of OS

Table 3. Treatment-Related AEs

AEs, n (%)	N = 104		
Any	57 (54.8)		
Grade 3-4	13 (12.5)		
Grade 5 ^a	1 (1.0)		
Leading to discontinuation	6 (5.8)		
	Any Grade	Grade 3-4	
AEs of any grade that occurred in ≥5 patients or of grade 3–4 that occurred in ≥2 patients			
Fatigue	15 (14.4)	0	
Rash	12 (11.5)	0	
Pruritus	9 (8.7)	1 (1.0)	
Diarrhea	8 (7.7)	1 (1.0)	
Asthenia	7 (6.7)	0	
Hypothyroidism	7 (6.7)	0	
Increased blood alkaline phosphatase	5 (4.8)	2 (1.9)	
Pneumonitis	5 (4.8)	1 (1.0)	

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

D.T. Le, J.N. Uram, H. Wang, B.R. Bartlett, H. Kemberling, A.D. Eyring,
A.D. Skora, B.S. Luber, N.S. Azad, D. Laheru, B. Biedrzycki, R.C. Donehower,
A. Zaheer, G.A. Fisher, T.S. Crocenzi, J.J. Lee, S.M. Duffy, R.M. Goldberg,
A. de la Chapelle, M. Koshiji, F. Bhaijee, T. Huebner, R.H. Hruban, L.D. Wood,
N. Cuka, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, S. Zhou, T.C. Cornish,
J.M. Taube, R.A. Anders, J.R. Eshleman, B. Vogelstein, and L.A. Diaz, Jr.

A Biochemical Response

CGP Findings	IHCCA	EHCCA	GBCA
Total GA/patient	3.6	4.4	4.0
CRGA/patient	2.0	2.1	2.0
ERBB2 Amplification	4%	11%	16%
BRAF Substitutions	5%	3%	1%
KRAS Substitutions	22%	42%	11%
PI3KCA Substitution	5%	7%	14%
FGFR1-3 Fusions and	11%	0	3%
Amplifications			
CDKN2A/B Loss	27%	17%	19%
IDH1/2 Substitutions	20%	0	0
ARID1A Alterations	18%	12%	13%
MET Amplification	2%	0	1%

Javle et al, ASCO Clinical Science Symposium 2015

CONCLUSIONS

•Biliary tract cancers are enriched with targetable genomic alterations

•NGS based approaches represent a promising clinical tool for genomic profiling in the clinic

•Differences in genomic spectra of intrahepatic CCA, extrahepatic CCA and gallbladder cancer may highlight differences in etiologic factors and developmental differences

•FGFR2 is both predictive and prognostic in intrahepatic CCA

•IDH mutations are a promising genomic target in CCA

•ERBB2 may represent a novel therapeutic target in gallbladder cancer

QUESTIONS ? Borad.mitesh@mayo.edu