

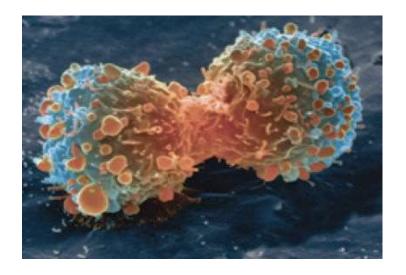
Triple Negative Breast Cancer / BRCA Mutated Breast Cancer: What's New?

Mili Arora, MD UC Davis Comprehensive Cancer Center August 19, 2019

Disclosures

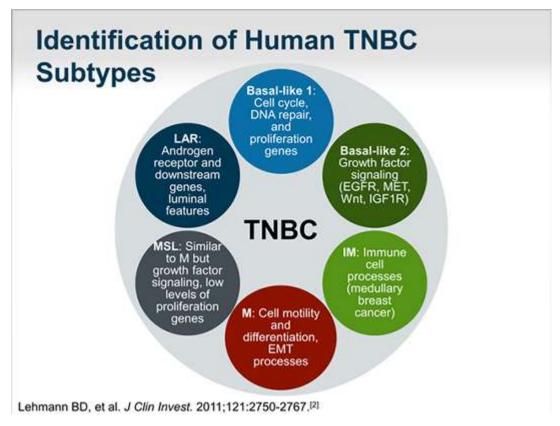
No relevant financial disclosures to report

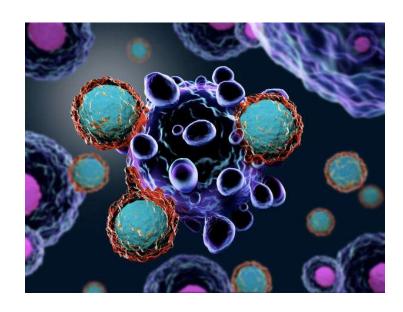
Outline


- I. Immunotherapy
 - A. IMpassion 130
- II. PARP inhibitors
 - A. TOPACIO/KEYNOTE 162
- III. Sacituzumab govitecan-hziy
- IV. Androgen receptor

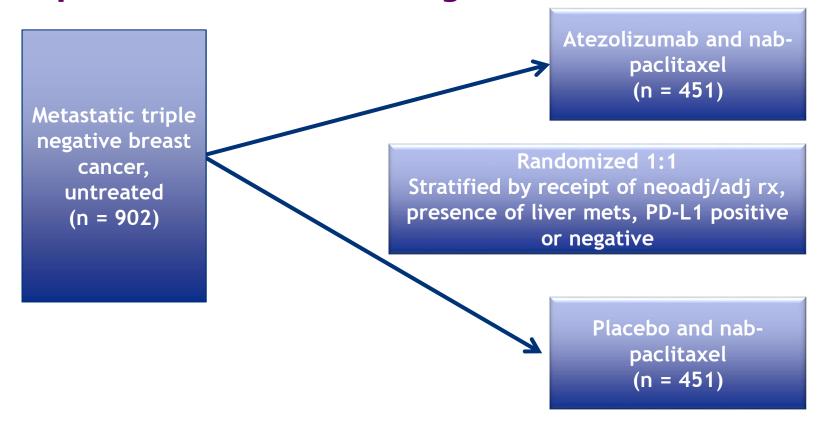
Triple Negative Breast Cancer (TNBC)

- Estrogen- and progesteronereceptor negative and HER2 nonamplified
- ~15% breast cancers
- Characterized by persistent tumor growth, treatment resistance, metastasis
- Disproportionate toll of breast cancer mortality
- Greatest unmet need in breast oncology
- ~20% BRCA mutant cancers

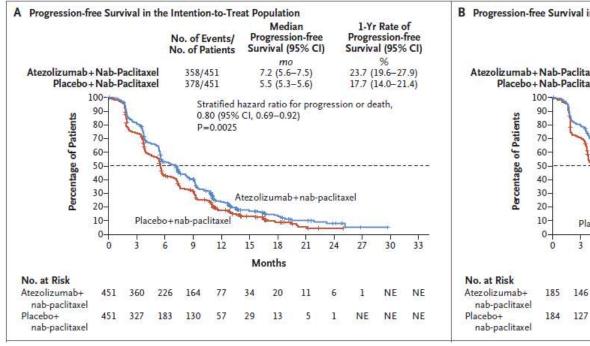


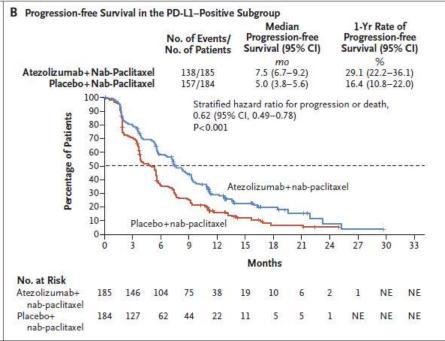

Source: Harvard Stem Cell Institute 4

Heterogeneity of TNBC

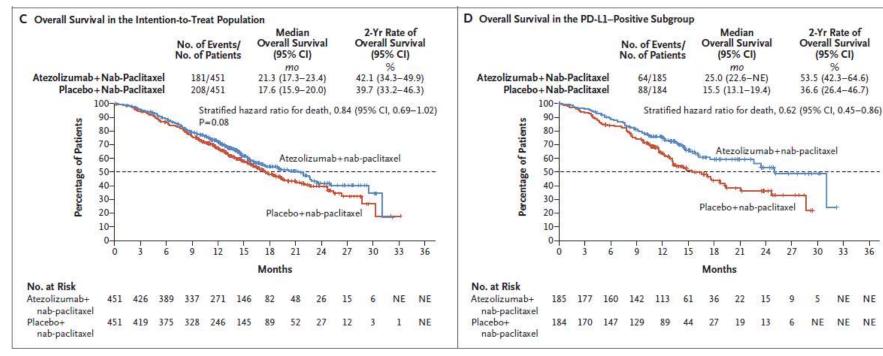


Immunotherapy




IMpassion130 - Trial Design

IMpassion 130: PFS



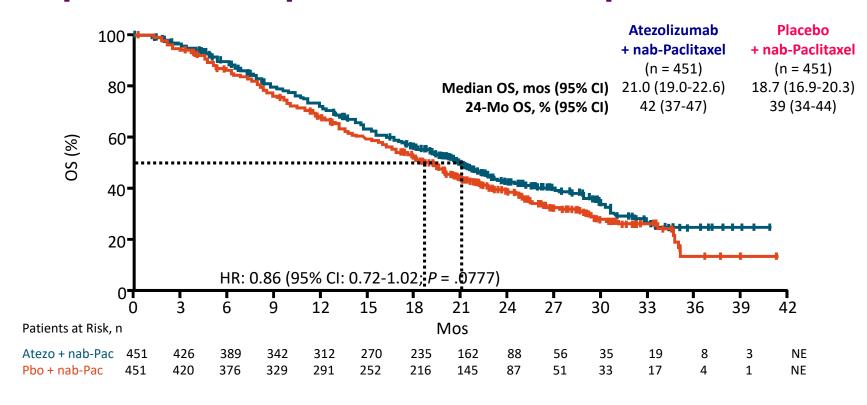
IMpassion 130: OS

Source: Schmid, P., Adams, S., Rugo, H. S., Schneeweiss, A., Barrios, C. H., Iwata, H., ... Emens, L. A. (2018). Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. New England Journal of Medicine, 379(22), 2108–2121.

IMpassion 130: Adverse Events

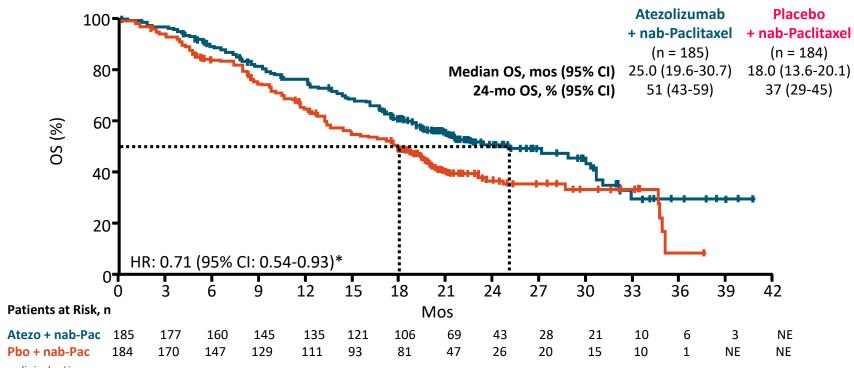
Event	Atezolizumab + Nab-Paclitaxel (N = 452)		Placebo + Nab-Paclitaxel (N=438)	
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4
		with event (percen	h event (percent)	
Alopecia	255 (56.4)	3 (0.7)	252 (57.5)	1 (0.2)
Cough	112 (24.8)	0	83 (18.9)	0
Peripheral neuropathy	98 (21.7)	25 (5.5)	97 (22.1)	12 (2.7)
Pyrexia	85 (18.8)	3 (0.7)	47 (10.7)	0
Hypothyroidism	62 (13.7)	0	15 (3.4)	0

Source: Schmid, P., Adams, S., Rugo, H. S., Schneeweiss, A., Barrios, C. H., Iwata, H., ... Emens, L. A. (2018). Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. New England Journal of Medicine, 379(22), 2108–2121.


IMpassion130

- FDA approved atezolizumab with nab-paclitaxel, along with Ventana Medical Systems' SP142 PD-L1 IHC assay as companion diagnostic test to identify PD-L1 IC ≥ 1% in March 2019
- ASCO 2019 Updated OS Analysis
 - Second interim OS: median f/u time 18 months

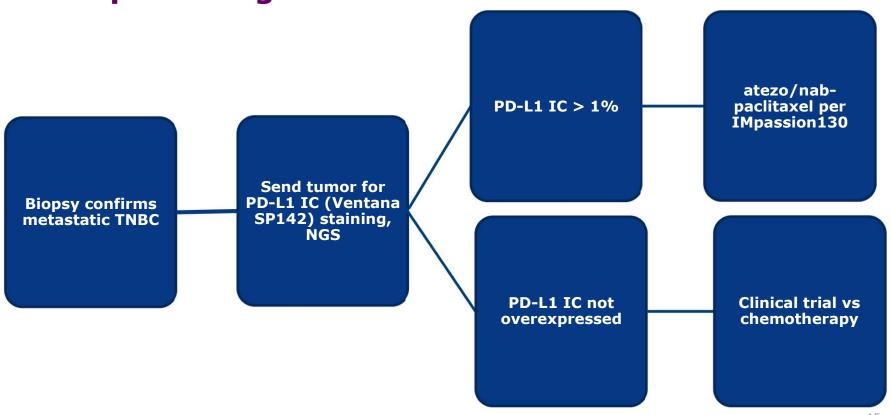
IMpassion130 Update: OS in ITT Population



Source: clinicaloptions.com

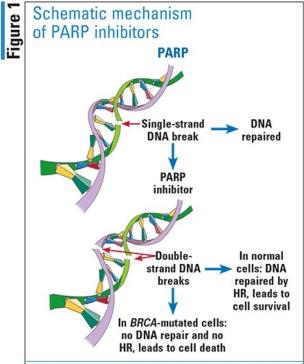
IMpassion130 Update: OS in PD-L1+ Subgroup

Source: clinicaloptions.com


IMpassion 130: Biomarker Analysis

- 15% patients BRCA mutated
 - PD-L1 IC negative group: no association between treatment and survival noted
 - PD-L1 IC positive group: significant benefit of PFS and OS
 - Small numbers
- PD-L1 IC
 - PD-L1 IC most predictive of atezolizumab/nab-paclitaxel efficacy on PFS and OS with expression > 1%

Therapeutic Algorithm in TNBC


PARP inhibitors

PARP inhibitors (PARPi) MOA

- PARP enzymes detect and repair DNA damage
- PARPi
 - Cancer cells synthetic lethality in homologous recombination deficient (HRD) cells → cell death
 - Normal cells homologous recombination repairs cell → cell survival

SSBs in DNA recruit PARP. With a PARP inhibitor, more DSBs occur. In normal cells, SSBs and DSBs can be repaired. In BRCA-mutated cells, DSBs are not repaired effectively. DSB: double-strand break; HR: homologous recombination; PARP: Poly (ADP-ribose) polymerase; SSB: single-strand break. Source: References 1, 2.

OlympiAD

- Olaparib
- Germline BRCA 1/2 mutated patients
- Appx 72% pts ECOG 0
- No prior platinum allowed
- Randomized 2:1
- Primary endpoint- PFS
- ORR 55%
- PFS 7.0 vs 4.2 months
- FDA approved Jan 2018

EMBRACA

- Talozaparib
- Germline BRCA 1/2 mutated patients
- Appx 55% pts ECOG 0
- Prior platinum allowed if no progression on the agent
- Randomized 2:1
- Primary endpoint- PFS
- ORR 62%
- PFS 8.6 vs 5.6 months
- FDA approved Oct 2018

PARP Inhibitors

- Optimal sequence?
- Other HRD?
- Overcome resistance by inhibiting other repair pathways?
- Monotherapy
 - Platinum combination?
 - SWOG 1416
 - Immunotherapy w/PARPi?
 - TOPACIO/KEYNOTE-162

TOPACIO/KEYNOTE-162

- Niraparib in Combination with Pembrolizumab in Patients with Ovarian Cancer and Triple Negative Breast Cancer
- Hypothesis
 - Combination of Niraparib and Pembrolizumab would be safe and effective for advanced or metastatic TNBC
- Preclinical data: synergistic activity of PARPi and PD-L1 antibodies in cells irrespective of BRCA mutation status or PD-L1 expression
- Phase II trial with phase I lead in portion reported previously

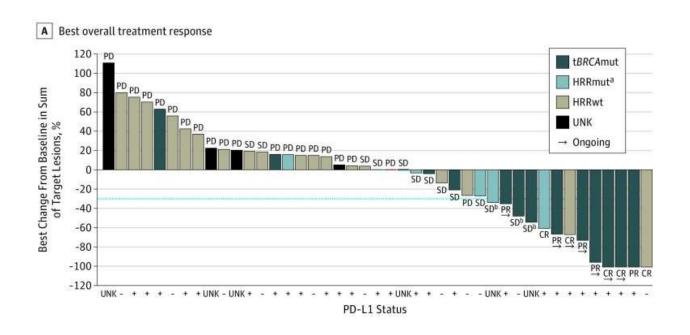
Advanced/metast
atic triple
negative breast
cancer, up to 3
prior lines
(n = 55)

Niraparib 200 mg daily
Pembrolizumab 200 mg IV
q 21 days
(n = 47)

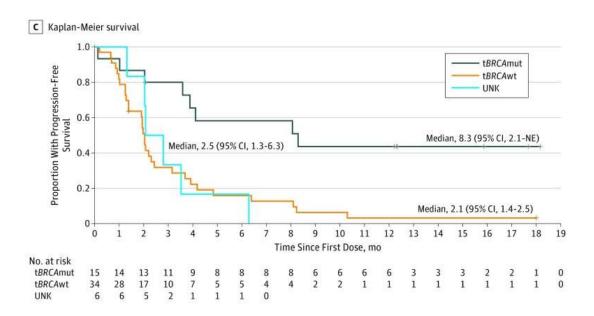
Endpoints:
Primary- ORR (objective response rate)
Secondary- safety, DOR, DCR, PFS, OS

	Study Population		
	Full Analysis (N = 55)	Efficacy Evaluable (n = 47)	
Stable disease, No. (%)	13 (24)	13 (28)	
Progressive disease, No. (%)	24 (44)	24 (51)	
Not performed or not evaluable, No. (%)	8 (15)	NA	

Abbreviations: DCR, disease control rate; NA, not applicable; ORR, objective response rate.


^a Includes complete and partial responses.

 $^{^{\}rm b}$ Includes complete and partial responses and stable disease.


- 15/47 patients with tumor *BRCA* mutation
 - 47% ORR
 - 80% DCR
 - mPFS 8.3 months
- 27/47 patients with tumor BRCA wild type
 - 11% ORR
 - 33% DCR
 - mPFS 2.1 months
- 5/47 patients with unknown tumor BRCA status

Source: Vinayak, Shaveta, et al. "Open-Label Clinical Trial of Niraparib Combined With Pembrolizumab for Treatment of Advanced or Metastatic Triple-Negative Breast Cancer." JAMA Oncology, American Medical Association, 13 June 2019, www.ncbi.nlm.nih.gov/pmc/articles/PMC6567845/figure/coi190028f2/.

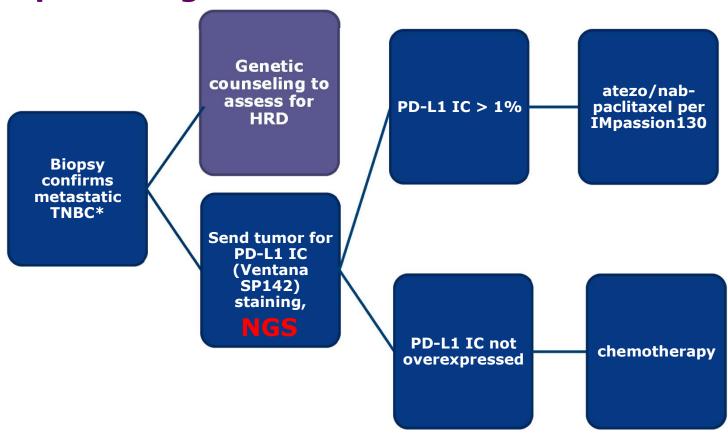
PFS

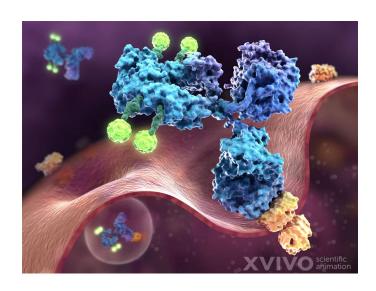
Source: Vinayak, Shaveta, et al. "Open-Label Clinical Trial of Niraparib Combined With Pembrolizumab for Treatment of Advanced or Metastatic Triple-Negative Breast Cancer." JAMA Oncology, American Medical Association, 13 June 2019, www.ncbi.nlm.nih.gov/pmc/articles/PMC6567845/figure/coi190028f2/.

- 28 patients with PD-L1 positive disease
 - 32% ORR
 - 50% DCR
- 13 patients with PD-L1 negative disease
 - 8% ORR
 - 46% DCR

TOPACIO: Adverse Events

- Adverse Events ≥ grade 3
 - Anemia 18%
 - Thrombocytopenia 15%
 - Fatigue 7%
- Immune related side effects 15%
 - Hypothyroidism 7%
 - Grade 3 events in 2 patients
 - Adrenal insufficiency
 - PMR


TOPACIO Summary


- First trial to report on safety and efficacy of PARPi and immunotherapy
- Niraparib and pembrolizumab promising antitumor activity in metastatic TNBC cohort
- Better response in BRCA mutated tumors
- Tolerable safety profile
- Data warrants further investigation

Therapeutic Algorithm in TNBC

Antibody-drug conjugate

Sacituzumab govitecan-hziy

- Antibody drug conjugate: human trophoblast cell-surface antigen 2 (Trop-2) with SN-38 (topoisomerase-I inhibitor)
 - Trop-2 overexpressed in many epithelial cells including up to 85% of TNBC
 - SN-38 released intracellularly and in tumor microenvironment
- IMMU-132-01
 - Phase I/II open label, multi-center, basket design, single group trial
 - Prelim data reported on 69 pts TNBC who rec'd at least 1 prior line of therapy (J Clin Oncol 2017; 35: 2141-8)
 - Breakthrough therapy designation by FDA for TNBC patients in Feb 2016 who had rec'd at least 2 prior lines of therapy
 - NEJM Feb 2019 reporting on patients rec'd as third line or beyond in metastatic TNBC

Metastatic triple negative breast cancer, at least 2 prior lines (n = 108)

Sacituzumab govitecanhziy 10 mg/kg IV on days 1, 8 of 21 day cycle (n= 108)

Endpoints:
Primary- ORR (objective response rate)
Secondary- TTR, DOR, CBR, PFS, OS

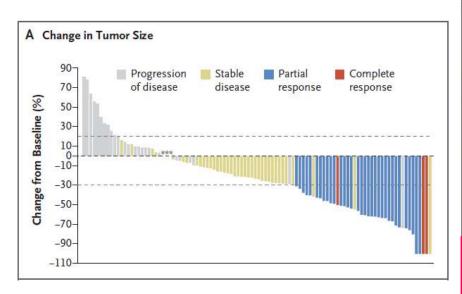
Baseline Characteristics

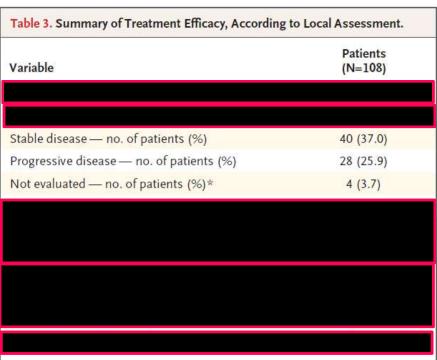
Characteristic	Patients (N=108)
Sex — no. (%)	
Female	107 (99.1)
Male	1 (0.9)
Median age (range) — yr	55 (31–80)
Race or ethnic group — no. (%)*	
White	82 (75.9)
Black	8 (7.4)
Asian	3 (2.8)
Other or not specified†	15 (13.9)
ECOG performance-status score — no. (%)‡	
0	31 (28.7)
1	77 (71.3)

Previous use of taxanes or anthracyclines for metastatic or nonmetastatic disease — no. (%)

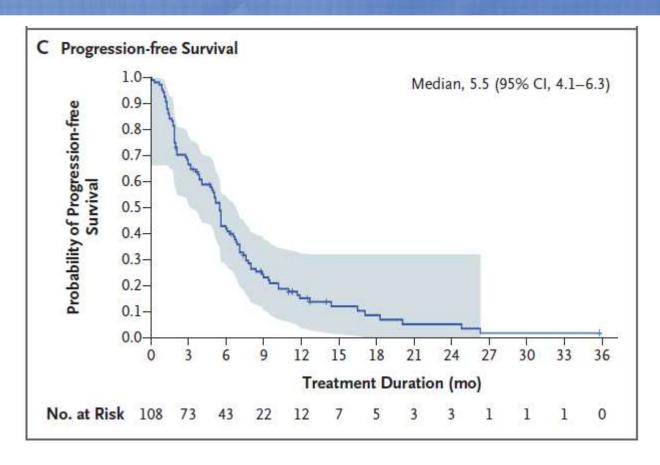
revious use of chemotherapy drugs for metastatic di — no. (%)	isease
Cyclophosphamide	20 (18.5)
Platinum agents	74 (68.5)
Gemcitabine	59 (54.6)
Fluoropyrimidine agents	56 (51.9)
Eribulin	49 (45.4)
Vinorelbine	17 (15.7)

Source: Bardia, A., Mayer, I. A., Vahdat, L. T., Tolaney, S. M., Isakoff, S. J., Diamond, J. R., ... Kalinsky, K. (2019). Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer. New England Journal of Medicine, 380(8), 741–751.




Adverse Events

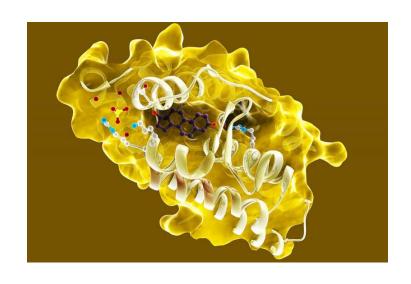
Adverse Event	Patients (N=108)			
	Any Grade	Grade 3	Grade 4	
	number of patients with event (percent)			
Any adverse event	108 (100)	71 (66)	21 (19)	
Gastrointestinal disorders	102 (94)	21 (19)	0	
Nausea	72 (67)	7 (6)	0	
Vomiting	53 (49)	7 (6)	0	
Constipation	37 (34)	1 (1)	0	
Abdominal pain†	27 (25)	1 (1)	0	
Mucositis‡	15 (14)	0	0	
General disorders and administration-site conditions	82 (76)	10 (9)	0	
Fatigue and asthenia	59 (55)	9 (8)	0	
Peripheral edema	17 (16)	0	0	
Pyrexia	13 (12)	0	0	
Blood and lymphatic system disorders	80 (74)	25 (23)	15 (14)	


Source: Bardia, A., Mayer, I. A., Vahdat, L. T., Tolaney, S. M., Isakoff, S. J., Diamond, J. R., ... Kalinsky, K. (2019). Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer. New England Journal of Medicine, 380(8), 741–751.

Source: Bardia, A., Mayer, I. A., Vahdat, L. T., Tolaney, S. M., Isakoff, S. J., Diamond, J. R., ... Kalinsky, K. (2019). Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer. New England Journal of Medicine, 380(8), 741–751.

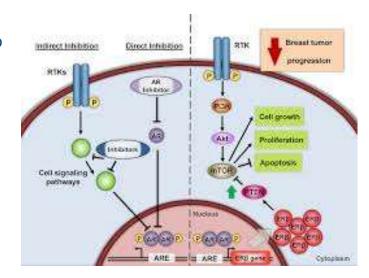
Summary

- Sacituzumab govitecan-hziy novel MOA with efficacy in heavily pretreated TNBC
 - ORR 33.3%
 - Median PFS 5.5 months
- Adverse events- myelotoxic, GI

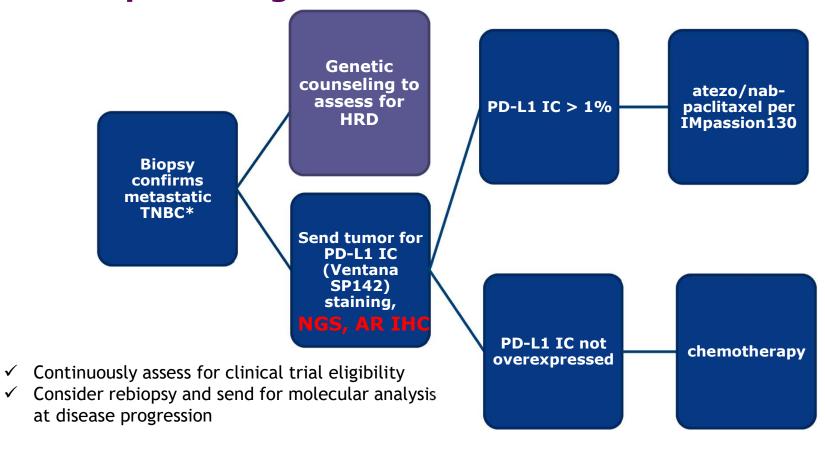


Sacituzumab govitecan-hziy

- FDA rejected in Jan 2019
 - Manufacturing facility issues
 - Immunomedics management change
- Ongoing phase III trial
 - FDA to wait on these results?



Androgen Receptor


Androgen Receptor (AR) in Breast Cancer

- Steroid hormone
 - Expression can be ID'd by immunohistochemistry (IHC)
- Up regulated in 30% of TNBC- higher expression correlates to higher response?
- Multiple phase I and II trials
 - 20% responded to anti-androgen therapy
 - Durable responses (up to years)
 - Bicalutamide/Enzalutamide
- Combination therapy
 - GTx-024 (enobosarm) and pembrolizumab in AR+ TNBC
 - clinical activity to warrant ongoing investigation

Therapeutic Algorithm in TNBC

Summary

- Highly heterogeneous disease
- PD-L1 IC staining up front in metastatic setting as well as NGS
- Genetic testing for HRD
- Clinical trial whenever possible

Questions?