Management of Thyroid and Thymic Carcinomas

Belisario A. Arango, M.D.

- Relevant financial relationships in the past twelve months by presenter or spouse/partner.
- Consultant: Massive Bio
 Speakers Bureau: Genentech, Daiichi-Sankyo, Tesaro
 Stock Shareholder: Massive Bio

The speaker will directly disclosure the use of products for which are not labeled (e.g., off label use) or if the product is still investigational.

13th Annual New Orleans Summer Cancer Meeting July 20-22, 2018

Outline

- Background information on thyroid carcinomas.
- Postoperative RAI.
- Targeted therapy for metastatic thyroid carcinoma based on histology.
- Background information on thymic carcinomas.
- Chemotherapy combinations for treatment of metastatic thymic carcinomas.
- Novel agents in second line treatment for thymic carcinomas.

Thyroid Tumor Classification

 Follicular cells: papillary, follicular, mixed tumor histology, Hürthle cell, and anaplastic.

Parafollicular C cells: medullary carcinoma.

• Immune cells: lymphomas.

Stromal cells: sarcomas.

Epidemiology and Demographics

• Approximately 56,870 cases in US in 2017.

Occurs 2-3 times more often in women than in men.

More prevalent in Caucasians.

Age of peak incidence is 50 years old.

Etiology and Risk Factors

- Radiation exposure.
- Age.
- Female sex.
- Family history.

*Dietary influence, sex hormones, and environmental exposures have mixed results and no clear associations.

TNM definitions (AJCC 8e)				
for papi	llary, follicular, poorly differentiated, Hürthle cell, medullary, and anaplastic thyroid carcinomas			
TX	Primary tumor cannot be assessed			
T0	No evidence of primary tumor			
T1	Tumor ≤ 2 cm in greatest dimension limited to the thyroid			
T1a	Tumor ≤ 1 cm in greatest dimension limited to the thyroid			
T1b	Tumor > 1 cm but ≤ 2 cm in greatest dimension limited to the thyroid			
T2_	Tumor > 2 cm but ≤ 4 cm in greatest dimension limited to the thyroid			
T3*	Tumor > 4 cm limited to the thyroid or gross extrathyroidal extension invading only strap muscles			
T3a*	Tumor > 4 cm limited to the thyroid			
T3b*	Gross extrathyroidal extension invading only strap muscles (sternohyoid) from a tumor of any size			
T4	Includes gross extrathyroidal extension into major neck structures			
T4a	Gross extrathyroidal extension invading subcutaneous soft tissues, larynx, trachea, esophagus,			
	or recurrent laryngeal nerve from a tumor of any size			
T4b	Gross extrathyroidal extension invading prevertebral fascia or encasing carotid artery			
	or mediastinal vessels from a tumor of any size			
NX	Regional lymph nodes cannot be assessed			
NO *	No evidence of regional lymph nodes metastasis			
N0a*	One or more cytologic or histologically confirmed benign lymph node			
N0b*	No radiologic or clinical evidence of locoregional lymph node metastasis			
N1*	Metastasis to regional nodes			
N1a*	Metastasis to level VI or VII (pretracheal, paratracheal, or prelaryngeal/Delphian, or upper			
N1b*	mediastinal) lymph nodes; this can be unilateral or bilateral disease			
NID	Metastasis to unilateral, bilateral, or contralateral lateral neck lymph nodes (levels I, II, III, IV, or V)			
NAC	or retropharyngeal lymph nodes			
MO Ma	No distant metastasis			
M1	Distant metastasis			
all categor	ies may be subdivided as solitary tumor (s) and multifocal tumor (m) – the largest tumor determines the classification			

Staging guide for thyroid cancer (AJCC 8e)

Staging guide for thyroid caricer (ASCC 8e)							
Age T at diagnosis category		N category	Ancte		Expected 10-yr DSS		
Differentiated thyroid cancer							
<55 years	any T any T	any N any N	M0 M1	1	98–100% 85–95%		
≥ 55 years	T1 T1 T2 T2 T3a/T3b T4a T4b any T	NO/NX N1 NO/NX N1 any N any N any N any N	MO MO MO MO MO MO MO	I II II IVA IVB	98-100% 85-95% 98-100% 85-95% 85-95% 60-70% < 50%		
		Medullary th	yroid cancer				
any T1 T2 T3 T1-3 T4a T1-3 T4b any T		N0 N0 N1a any N N1b any N any N	MO MO MO MO MO MO MO	I II III IVA IVB IVC			
	Anaplastic thyroid cancer						
any	T1-T3a T1-T3a T3b T4 any T	NO/NX N1 any N any N any N	MO MO MO MO M1	IVA IVB IVB IVC			

Who should get postoperative RAI?

RAI recommended	RAI not recommended
Gross extrathyroidal extension.	Papillary microcarcinomas (<1cm) confined to the thyroid.
Primary > 4cm in size.	No detectable anti-Tg antibodies.
Postoperative unstimulated Tg >5-10 ng/ml.	Postoperative unstimulated Tg < 1 ng/ml.

Treatment for metastatic disease

Differentiated disease

Medullary thyroid carcinoma

Anaplastic thyroid carcinoma

Treatments for metastatic differentiated thyroid cancer refractory to RAI

FDA approved: Sorafenib
 Lenvatinib

Non-FDA approved: Axitinib

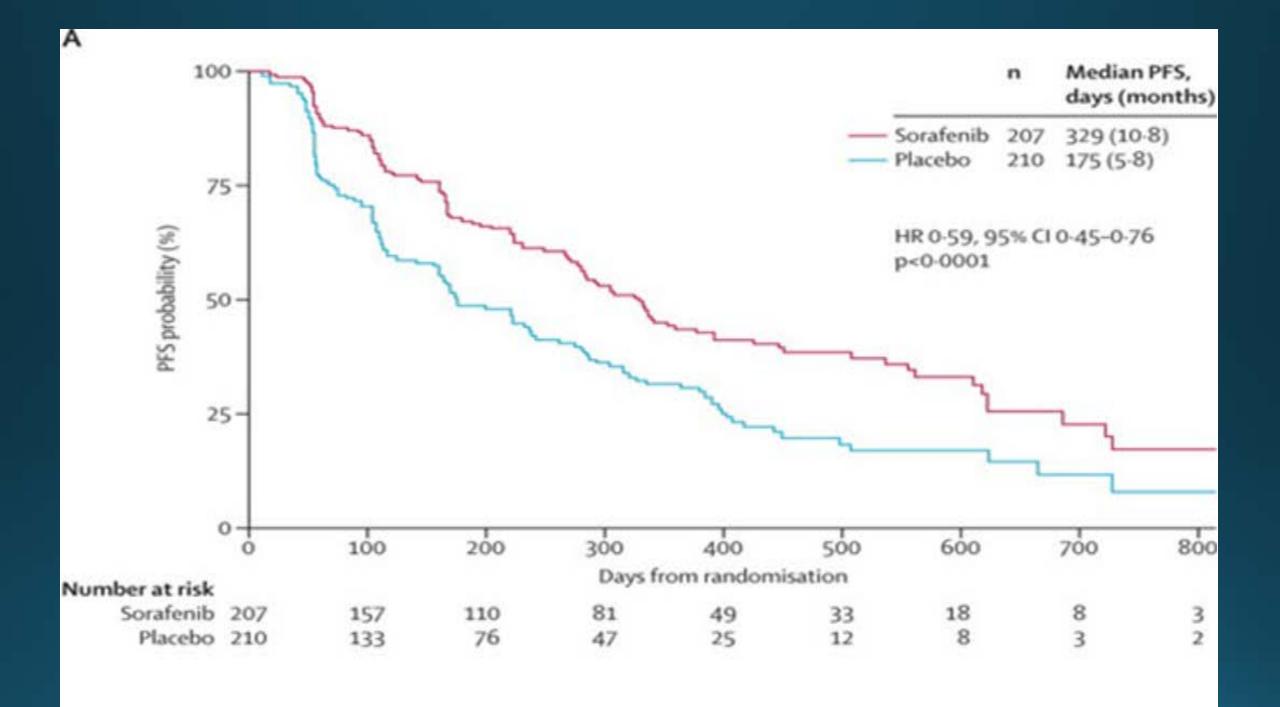
Pazopanib

Sunitinib

Vandetinib

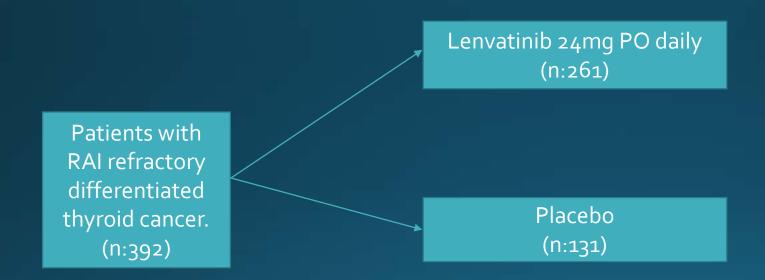
Cabozantinib

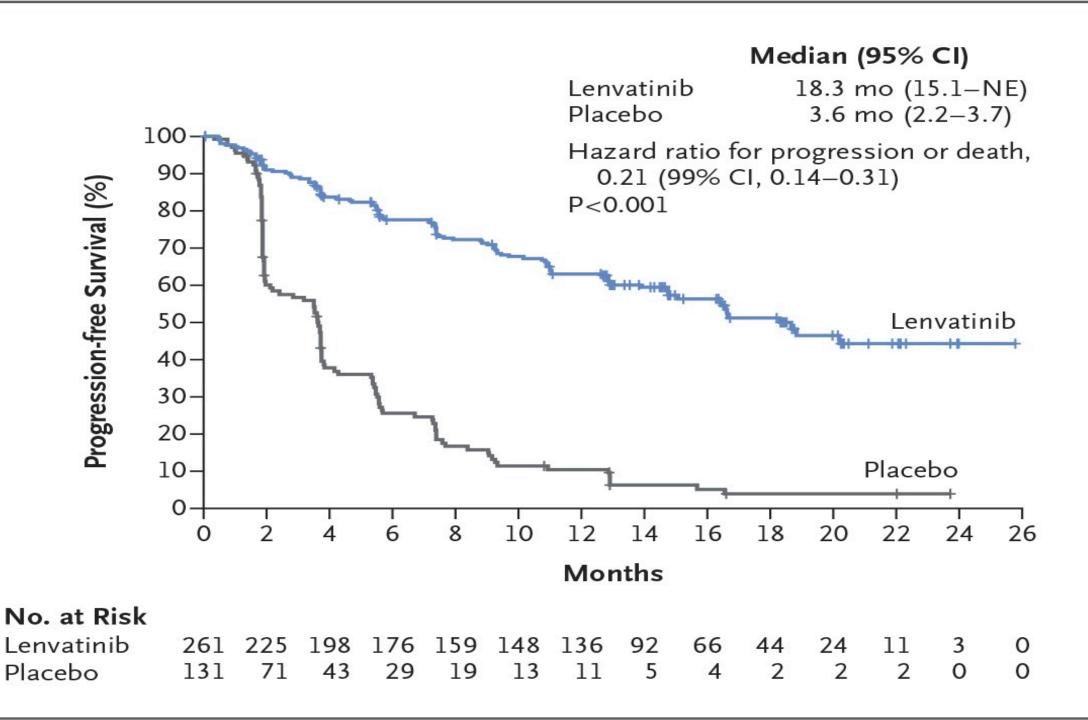
Everolimus


Sorafenib for metastatic differentiated thyroid cancer refractory to RAI.

Phase 3 randomized double-blind.

Sorafenib 400mg PO BID (n:207)


Patients with RAI refractory differentiated thyroid cancer. (n:417)


Placebo (n:210)

Lenvatinib for metastatic differentiated thyroid cancer refractory to RAI.

Phase 3 randomized double-blind.

Sorafenib

Lenvatinib

PFS: 10.8 months

PFS: 18.3 months

RR: 12%

RR: 65%

HR: 0.59

HR: 0.21

Cabozantinib for metastatic differentiated thyroid cancer refractory to RAI.

Phase 2 single-arm.

Patients with RAI refractory differentiated thyroid cancer. (n:35)

Cabozantinib 140mg PO QD (n:35)

- RR: 54%
- PFS: Not reached.

Nintedanib as second line metastatic differentiated thyroid cancer refractory to RAI.

Phase 2 randomized double-blind.

refractory
differentiated
thyroid cancer with
progression after 1
or 2 lines of
treatment.
(n:70)

Nintedanib 400mg PO daily (n:45)

Placebo (n:25)

Progression-free survival

- Nintedanib: 3.7 months
- Placebo: 2.8months

*HR: 0.6

25% of patients had received 2 prior lines of treatment.

Schlumberger M, et al. JCO 36, 2018(suppl;abstract 6021).

Medullary thyroid carcinoma (MTC)

- MTC arises from the neuroendocrine parafollicular cells.
- 80% of MTC are sporadic.
- 20% are related to MEN type 2A and MEN type 2B.
- MTC can cause paraneoplastic syndromes.

*RET mutations seen in 25% of sporadic cases and up to 95% of familial MTC.

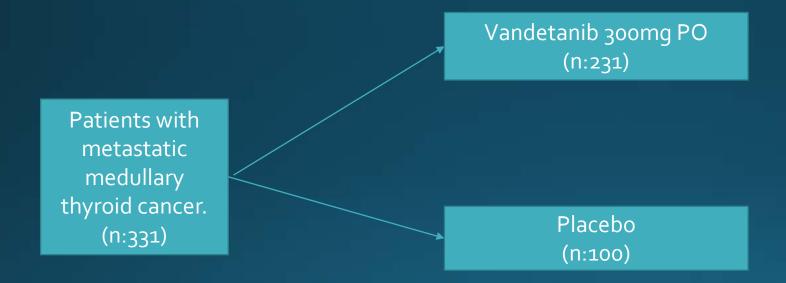
Treatment for metastatic medullary thyroid cancer.

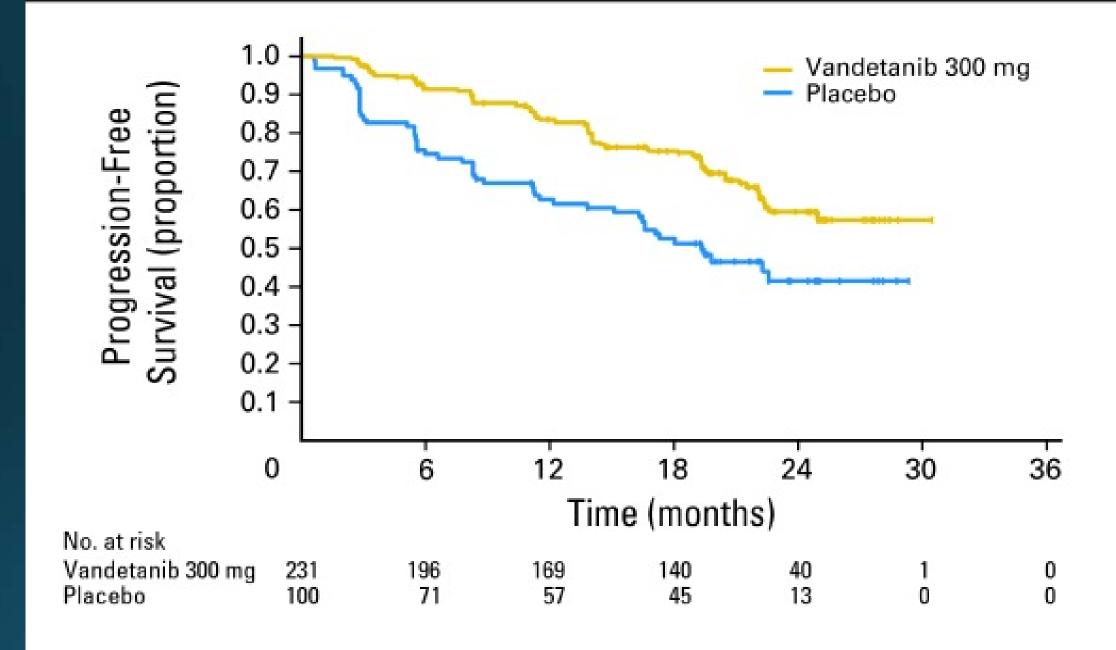
FDA approved: Vandetanib
 Cabozantinib

Non-FDA approved: Anlotinib

Pazopanib

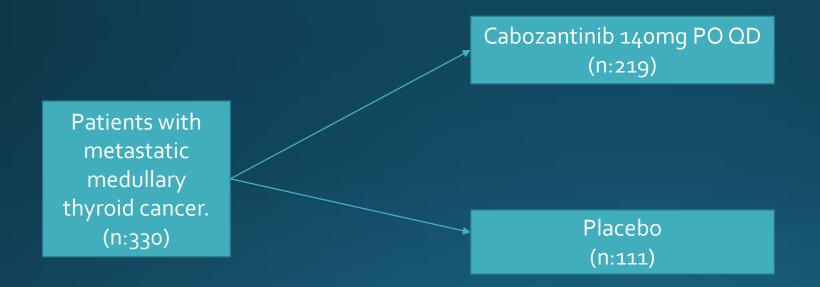
Sunitinib

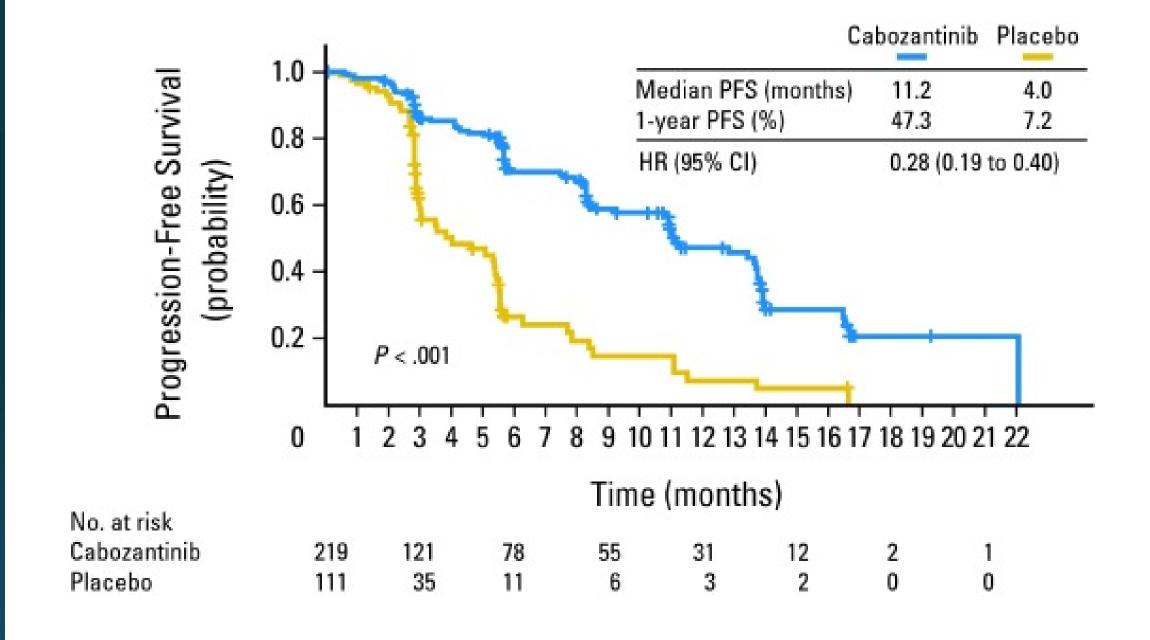

Sorafenib


Lenvatinib

Dacarbazine based chemotherapy

Vandetanib for metastatic medullary thyroid cancer.


Phase 3 randomized double-blind.



Cabozantinib for metastatic medullary thyroid cancer.

Phase 3 randomized double-blind.

Elisei R, et al. JCO 2013;31(29):3639-3646.

Anlotinib for metastatic medullary thyroid cancer.

• Phase 2 single-arm.

Patients with medullary thyroid cancer. (n:58)

Anlotinib 12mg PO QD 2weeks on/one week off (n:35)

• RR: 48%

• PFS: 12.8 months

BRAF inhibition in thyroid cancer

• BRAF mutation is found in approximately 37-50% of papillary thyroid carcinomas and in approximately 25% of anaplastic thyroid carcinomas.

 BRAF mutation might confer a more aggressive behavior and worst prognosis.

 Tumors with BRAF mutations have a decreased ability to incorporate RAI resulting in treatment failure.

Vemurafenib for metastatic BRAF mutated papillary thyroid carcinoma refractory to RAI.

Phase 2 open label non-randomised.

Patients with RAI refractory papillary thyroid cancer. (n:51)

Vemurafenib 960mg PO BID (n:26)

Vemurafenib 960mg PO BID (n:25)

Cohort 2 had been treated with VEGFR TKI

Cohort 1 had not been

treated with VEGFR TKI

Cohort 1

Cohort 2

RR

73%

55%

PFS

18.2 months

8.9 months

MDR

16.5 months

14.4 months

Dabrafenib versus dabrafenib plus trametinib in BRAF mutated papillary thyroid carcinoma.

Phase 2 randomized double-blind.

Patients with RAI refractory papillary thyroid cancer. (n:46)

Dabrafenib 150mg PO BID (n:22)

Dabrafenib 150mg PO BID

Trametinib 2mg PO daily (n:24)

Dabrafenib

Dabrafenib + Trametinib

• RR: 50%

54%

Shah MH, et al. JCO 35, 2017(suppl;abstract 6022).

Anaplastic thyroid carcinoma (ATC)

- Aggressive undifferentiated tumors.
- Stage IV at diagnosis.
- Disease-specific mortality approaching 100%.
- 50% of patients had either a prior or coexisting differentiated thyroid carcinoma.
- Carboplatin/Paclitaxel, Docetaxel/Doxorubicin; RR <15%.
- 20-50% of ATC have BRAF mutations.

Dabrafenib plus trametinib in BRAF mutated anaplastic thyroid carcinoma.

Phase 2 open label non-randomised.

Patients with BRAF mutated anaplastic thyroid cancer. (n:16) Dabrafenib 150mg PO BID + Trametinib 2mg PO daily (n:24)

- RR: 69%
- PFS: Not reached.

Thymic carcinomas

- Very rare and aggressive tumors. Approx. 1.5 cases/ 1 million.
- Squamous and undifferentiated carcinomas.
- Unknown etiology.
- No clear identifiable risk factors.
- Worst prognosis than thymomas.
- Surgical resection for localized disease.
- Postoperative radiation indicated for residual disease.

Table 1 Masaoka staging system			
Stage	Description		
1	Macroscopically encapsulated and no microscopic capsular invasion		
II	Macroscopic invasion into adjacent tissues (fatty or mediastinal pleura) or microscopic capsular invasion		
III	Macroscopic invasion into adjacent organ(s)		
IVA	Pleural or pericardial dissemination		
IVB	Lymphogenous or hematogenous metastasis		

Table 9 The relationship be	tween the IASI	LC/ITMIG TNM proposal staging categories and Masaoka-Koga staging system	
The 8 th edition TNM stage	TNM	Definition (involvement of)	Masaoka-Koga
Stage I	T1aN0M0	Encapsulated or unencapsulated, with or without extension into mediastinal fat	Stage I and II
	T1bN0M0	Extension into mediastinal pleura	Stage III (partial-pleura)
Stage II	T2N0M0	Pericardium	Stage III (partial-pericardium)
Stage Illa	T3N0M0	Lung, brachiocephalic vein, superior vena cava, chest wall, phrenic nerve, hilar (extrapericardial) pulmonary vessels	Stage III (partial-completeness of resection)
Stage IIIb	T4N0M0	Aorta, arch vessels, main pulmonary artery, myocardium, trachea, or esophagus	Stage III (partial-incompleteness of resection)
Stage IVa	TxN1M0	Anterior (perithymic) nodes	Stage IVb
	TxN0M1a	Separate pleural or pericardial nodule(s)	Stage IVa
	TxN1M1a	Anterior (perithymic) nodes, Separate pleural or pericardial nodule(s)	Stage IVb
Stage IVb	TxN2M0	Deep intrathoracic or cervical nodes	Stage IVb
	TxN2M1a	Deep intrathoracic or cervical nodes, Separate pleural or pericardial nodule(s)	Stage IVb
	TxNxM1b	Pulmonary intraparenchymal nodule or distant organ metastasis	Stage IVb
IASI C. the International As	sociation for th	he Study of Lung Cancer: ITMIG, the International Thymic Malignancies Interest Group	

IASLC, the International Association for the Study of Lung Cancer; ITMIG, the International Thymic Malignancies Interest Group.

Metastatic Thymic carcinomas

- *Anthracycline and platinum based chemotherapy combinations.
- Cis/dox/vin/cyclophos (ADOC)
- Cis/adria/cyclophos (PAC)
- Cis/adria/etoposide (PAE)
- Adria/cis/vinc/etoposide (CODE)
- Carbo/paclitaxel
- Cis/etoposide (PE)
- Vinc/ifos/cis (VIP)

Table 1 Unified response rates of advanced thymoma patients treated with anthracycline-based or non-anthracycline-based chemotherapy regimens

Regimen	Author, year	Study design	Stage	No. of patients	Responders	RR	PFS	os
Anthracycline-	containing regimens							
ADOC	Fornasiero et al. (1991)	s	III/IVa/IVb	37	34	91.8 %	12 mos	15 mos
PAC	Loehrer et al. (1994)	G	IV	29	15	51.7 %	11.8 mos	37.7 mos
PAC (+XRT)	Loehrer et al. (1997)	G	III	23	16	69.6 %	-	93 mos
ADOC	Rea et al. (1993)	s	III/IVa	16	12	75.0 %	-	66 mos
ADOC	Berruti et al. (1999)	S	III/IVa	16	13	81.3 %	33.2 mos	47.5 mos
PAC	Kim et al. (2004)	G	III/IVa/IVb	22	17	77.3 %	-	-
PAE (+XRT)	Lucchi et al. (2006)	S	III/IVA	30	22	73.3 %	-	-
CAMP	Yokoi et al. (2007)	s	IVa/IVb	14	13	92.9 %	-	-
Dose-dense CODE	Kunitoh et al. (2009)	G	IVa/IVb	27	16	59.3 %	0.79 year	6.1 year
CarboAMR	Kawashima et al. (2013)	G	Invasive	18	3	16.7 %	7.6 mos	Not reached
Total				232	161	69.4 %		
Non-anthracycline-	c ontaining regimens							
PE	Giaccone et al. (1996)	G	III/IV/rec	16	9	56 %	2.2 year	4.3 year
VIP	Loehrer et al. (2001)	G	III/IVa/IVb	20	7	35 %	11.9 mos	31.6 mos
VIP	Grassin et al. (2011)	G	IIIB/IVA/IVB	16ª	4a	25 %ª	13.1 mos	Not reached
CarboPTX	Takeda et al. (2013)	G	III/IVa/IVb	21	6	42.9 %	16.7 mos	Not reached
CDDP/DTX	Park et al. (2013)	G	III/IVa/IVb	9	5	55.6 %	-	-
Total				82	31	37.8 %		

G prospective multicenter group phase II trial, S single-center experience, mos months, RR objective response rate, ADOC adriamycin, cisplatin, vincristine and cyclophosphamide, PAC cisplatin, adriamycin and cyclophosphamide, PAE cisplatin, adriamycin and etoposide, CAMP PAC = cisplatin, adriamycin, methylprednisolone and cyclophosphamide, CODE adriamycin, cisplatin, vincristine and etoposide,

PE cisplatin and etoposide, VIP vincristine, ifosfamide and cisplatin, CarboPTX carboplatin and paclitaxel

Sunitinib for previously treated advanced thymic carcinoma.

Phase 2 single-arm.

Patients with previously treated thymic carcinoma.
(n:20)

Sunitinib 50mg PO QD for 4 wks the 2 weeks off (n:20)

• RR: 16%

• PFS: 3.3 months

• OS: 12.3 months

Everolimus for advanced thymic carcinoma previously treated with cisplatin.

• Phase 2 single-arm.

Patients with previously treated thymic carcinoma.
(n:18)

Everolimus 10mg PO QD (n:18)

- RR: 20%
- PFS: 5.6 months
- OS: 14.7 months

*36% incidence of pneumonitis. 3 deaths pneumonitis.

Pembrolizumab for advanced thymic carcinoma previously treated with cisplatin.

• Phase 2 single-arm.

Patients with previously treated thymic carcinoma. (n:26)

Pembrolizumab 200mg iv q 3wks (n:26)

- RR: 19%
- PFS: 6.1 months
- OS: 14.5 months
- *High rate of irAEs

Pembrolizumab for recurrent metastatic thymic carcinoma.

• Phase 2 single-arm.

Patients with previously treated thymic carcinoma.
(n:40)

Pembrolizumab 200mg iv q 3wks (n:26)

• RR: 22%

*High rate of irAEs

Conclusions

Thyroid carcinomas

- Small-molecules TKI are the treatment of choice of metastatic differentiated thyroid carcinoma refractory to RAI.
- Small-molecules TKI that target the RET gene mutations are the treatment of choice for metastatic medullary carcinoma.
- BRAF inhibitors offer an alternative treatment pathway for BRAF mutated thyroid carcinomas.
- BRAF inhibitors should be the treatment of choice for BRAF mutated ATC.

Thymic carcinomas

 Anthracycline and platinum based chemotherapy combinations remain the standard treatment of choice for metastatic thymic carcinomas.

Sunitinib and everolimus are treatment options in second-line.
 Everolimus has a high incidence of pneumonitis.

 Pembrolizumab demonstrates activity second line but is associated with a high rate of severe immune related adverse events.