Melanoma: Beyond Checkpoint Inhibitors

Sanjiv S. Agarwala, MD

Professor of Medicine Temple University School of Medicine Chief, Oncology & Hematology St. Luke's Cancer Center, Bethlehem, PA

- Where we are now
- Where we are going

Where We Are Now

- Metastatic Melanoma
 - Current data with CPI
 - Choosing between CPI and targeted therapy
- Adjuvant Therapy
 - Current Options

Where We Are Now

- Metastatic Melanoma
 - Current data with CPI
 - Choosing between CPI and targeted therapy
- Adjuvant Therapy
 - Current Options

Check-Point Inhibitors Approved for Metastatic Melanoma

- Anti CTLA4 antibody: Ipilimumab
- Anti PD-1 inhibitors: pembrolizumab, nivolumab
- Combination anti CTLA-4 and anti-PD1 (ipilimumab and nivolumab)

Clinical Results with Ipilimumab (2nd and 1st line) Ipilimumab vs vaccine and Ipi + DTIC vs DTIC

Immune Checkpoint Inhibitors Provide Durable Long-term Survival for Patients with Advanced Melanoma

1. Schadendorf et al. J Clin Oncol 2015;33:1889-1894; 2. Current analysis; 3. Poster presentation by Dr. Victoria Atkinson at SMR 2015 International Congress.

Keynote-006 Front-line Pembrolizumab vs Ipilimumab

^aPatients enrolled from 83 sites in 16 countries.

^bPrior anti-BRAF targeted therapy was not required for patients with normal LDH levels and no clinically significant tumor-related symptoms or evidence of rapidly progressing disease.

^cDefined as membranous PD-L1 expression in ≥1% of tumor cells as assessed by IHC using the 22C3 antibody.

Overall Survival Median Follow-Up 45.9 (0.3-50.0) Months

^aBased on Cox regression model with treatment as covariate stratified by line of therapy (1st vs 2nd), PD-L1 status (positive vs negative), and ECOG (0 vs 1); if no patients are in one of the treatment groups involved in a comparison for a particular stratum, then that stratum was excluded from treatment comparison.^bDerived by the product-limit (Kaplan-Meier) method for censored data. Data cutoff: Dec 4, 2017.

Disposition of Patients Completing ≥94 Weeks of Pembrolizumab Treatment

early with CR and then progressed. Data cutoff: Dec 4, 2017.

Abstract 9503, 2018 ASCO Annual Meeting

^aPer immune-related response criteria by investigator review; time is measured from last dose of pembrolizumab. Data cutoff: Dec 4, 2017.

Abstract 9503, 2018 ASCO Annual Meeting

CA209-067: Study Design

**Patients could have been treated beyond progression under protocol-defined circumstances.

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

6

ASCO Meeting

PRESENTED AT:

Annual 15

Presented By Jedd Wolchok at 2015 ASCO Annual Meeting

Updated Response To Treatment

	NIVO+IPI (N=314)	NIVO (N=316)	IPI (N=315)
ORR, % (95% CI)*	58.9 (53.3–64.4)	44.6 (39.1–50.3)	19.0 (14.9–23.8)
Best overall response — %			
Complete response	17.2	14.9	4.4
Partial response	41.7	29.7	14.6
Stable disease	11.5	9.8	21.3
Progressive disease	23.6	38.6	51.1
Unknown	6.1	7.0	8.6
Median duration of response, months (95% CI)	NR (NR–NR)	31.1 (31.1–NR)	18.2 (8.3–NR)

*By RECIST v1.1; NR = not reached.

• At the 18-month DBL, the CR rate for NIVO+IPI, NIVO and IPI was 12.1%, 9.8% and 2.2%, respectively

Database lock: Sept 13, 2016, minimum f/u of 28 months

CM-67 Progression-Free Survival

Database lock May 24, 2017

Wolchok, NEJM, 2017

CM-67 Overall Survival

Database lock May 24, 2017

Wolchok, NEJM, 2017

Safety Summary

With an additional 19 months of follow-up, safety was consistent with the initial report¹

	NIVC (N=	D+IPI 313)	NIVO (N=313)		IPI (N=311)	
Patients reporting event, %	Any Grade	Grade 3-4	Any Grade	Grade 3-4	Any Grade	Grade 3-4
Treatment-related adverse event (AE)	95.8	58.5	86.3	20.8	86.2	27.7
Treatment-related AE leading to discontinuation	39.6	31.0	11.5	7.7	16.1	14.1
Treatment-related death, n (%)	2 (0.6)ª		1 (0.3) ^b		1 (0.3) ^b	

- Most select AEs were managed and resolved within 3-4 weeks (85–100% across • organ categories)
- ORR was 70.7% for pts who discontinued NIVO+IPI due to AEs, with median OS not reached

^aCardiomyopathy (NIVO+IPI, n=1); Liver necrosis (NIVO+IPI, n=1). Both deaths occurred >100 days after the last treatment. ^bNeutropenia (NIVO, n=1); colon perforation (IPI, n=1).¹

1. Larkin J, et al. *NEJM* 2015;373:23–34.

Checkmate 067: Safety Onset Grade 3–4 Treatment-Related Select AEs

Larkin J et al ECC 2015

Where We Are Now

- Metastatic Melanoma
 - Current data with CPI
 - Choosing between CPI and targeted therapy
- Adjuvant Therapy
 - Current Options

MAPK Pathway Targeted Therapy

Proliferation, Survival, Invasion, Metastasis

BRAFi + MEKi ph III studies

Dabrafenib + trametinib (D + T) PFS HR, 0.67 vs dabrafenib⁴ OS HR, 0.71 vs dabrafenib⁴

PFS HR, 0.56 vs vemurafenib⁵ **OS HR, 0.69** vs vemurafenib⁵

Vemurafenib + cobimetinib

PFS HR, 0.58 vs vemurafenib⁶ OS HR, 0.70 vs vemurafenib⁶

Decreased hyperproliferative skin AEs^{4,5,6}

- 1. Hauschild A, et al. Lancet. 2012;380(9839):358-365.
- 2. McArthur GA, et al. Lancet Oncol. 2014;15(3):323-332.
- 3. Flaherty KT, et al. N Engl J Med. 2012;367(2):107-114.
- 4. Long GV, et al. *Lancet.* 2015;386(9992):444-451.
- 5. Robert C, et al. N Engl J Med. 2015;372(1):30-39.
- 6. Atkinson V, et al. Presented at:Society for Melanoma Research 2015 Congress.

Adjuvant BRAF/MEK Combi-AD

Hauschild A, et al. Oral presented at: ESMO 2017 [abstract LBA6PR].

NR, not reached.

Hauschild A, et al. Oral presented at: ESMO 2017 [abstract LBA6PR].

Where We Are Now

- Metastatic Melanoma
 - Current data with CPI
 - Choosing between CPI and targeted therapy
- Adjuvant Therapy
 - Current Options

Available Options

- High-dose Interferon
- High-dose Ipilimumab
- Anti-PD1
 - Nivolumab
 - Pembrolizumab
- BRAF/MEK combination for BRAF+ patients

EORTC 18071: phase 3 study design^{1,2}

DMFS, distant metastasis-free survival; HRQOL, health-related quality of life; OS, overall survival; PFS, progression-free survival; Q3W, every 3 weeks; Q12W, every 12 weeks; RFS, relapse-free survival.

1. Eggermont AM, et al. J Clin Oncol 2014;32:5s(suppl; abstr LBA9008); 2. Eggermont A, et al. ESMO. 2016;[abstr LBA2_PR].

EORTC 18071 Ipilimumab vs Placebo

Safety Summary

	lpilimumab (n = 471)		
	Any Grade	Grade 3/4	
Any AE, %	98.7	54.1	
Treatment-related AE, %	94.1	45.4	
Treatment-related AE leading to discontinuation, %	48.0	32.9	
Any immune-related AE, %	90.4	41.6	

Deaths due to drug-related AEs

- 5 patients (1.1%) in the ipilimumab group
 - 3 patients with colitis (2 with gastrointestinal perforations)
 - 1 patient with myocarditis
 - 1 patient had multiorgan failure with Guillain-Barré

Eggermont et al. NEJM 2016

CheckMate 238: Study Design

Enrollment period: March 30, 2015 to November 30, 2015

Jeffrey Weber, Oral Presentation ASCO 2018

Primary Endpoint: RFS in All Patients

Jeffrey Weber, Oral Presentation ASCO 2018

NIVO

IPI

Safety Summary

	NIVO (n = 452)		IPI (n = 453)	
AE, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4
Any AE	438 (97)	115 (25)	446 (98)	250 (55)
Treatment-related AE	385 (85)	65 (14)	434 (96)	208 (46)
Any AE leading to discontinuation	44 (10)	21 (5)	193 (43)	140 (31)
Treatment-related AE leading to discontinuation	35 (8)	16 (4)	189 (42)	136 (30)

• There were no treatment-related deaths in the NIVO group

• There were 2 (0.4%) treatment-related deaths in the IPI group (marrow aplasia and colitis), both >100 days after the last dose

Weber, J et al ESMO 2017

L. Eggermont AACR 2018

EORTC 1325/KEYNOTE-54: Study Design

Stratification factors:

- ✓ Stage: IIIA (>1 mm metastasis) vs. IIIB vs. IIIC 1-3 positive lymph nodes vs. IIIC ≥4 positive lymph nodes
- ✓ Region: North America, European countries, Australia/New Zealand, other countries

Primary Endpoints:

- RFS (per investigator) in overall population, and RFS in patients with PD-L1-positive tumors Secondary Endpoints:
- DMFS and OS in all patients, and in patients with PD-L1-positive tumors; Safety, Health-related quality of life

The future of cancer therapy

L. Eggermont AACR 2018

Adjuvant BRAF/MEK Combi-AD

Hauschild A, et al. Oral presented at: ESMO 2017 [abstract LBA6PR].

NR, not reached.

Hauschild A, et al. Oral presented at: ESMO 2017 [abstract LBA6PR].

Interferon

- Where we are now
- Where we are going

Where Are We Going?

- Tumor biology vs tumor type
- Overcoming resistance
- A glimpse into the future

Somatic Mutation Load Immunogenicity

Mutational Burden

Mutational Burden

D. Le. Presented May 30, 2015.

Mutations per tumor

A New Paradigm in FDA Approval That is Agnostic to Histology and Primary Site: Pembrolizumab Approved for MSI-H or Mismatch Repair Deficient Tumors

Where Are We Going?

- Tumor biology vs tumor type
- Overcoming resistance
- A glimpse into the future

Figures adapted from Topalian et al.(April 2014), 32(10); 1020-1030

The T Cell-Inflamed Tumor Microenvironment is Characterized by Expression of Immune-Inhibitory Pathways and Predicts Outcomes to Immunotherapy

Non-T cell-

T cell-inflamed

PFS and OS in Patients With Melanoma and IFNy Signature Score Above and Below the Cutoff

Harlin *et al.* Clin Can Res 2009 Ribas *et al.* J Clin Oncol 33, 2015 (suppl; abstr 3001)

Predicting Which Patients are Unlikely to Respond to PD-1 antibodies

Daud AI et al. J Clin Invest. 2016;126(9):3447-3452

How Can We Overcome Resistance?

- Can we "Injure" the tumor to render it more vulnerable to systemic immune attack?
 - Oncolytic therapy
 - Radiation/Chemotherapy

Total and activated CD8 T-cells^{*} increase after **T-VEC and combination treatment** Total CD8 Activated CD8^a Absolute count (cells/µL) Absolute count (cells/µL) P = 0.002 10[°] P = 0.0200 8 ୖୖୖୄ 8 8 ŏ 6 P = 0.004 F < 0.001 P < 0.001 P < 0.001 10 P = 0.04 P < 0.001 P < 0.001 P < 0.00117 n = 17 n = 16 n = 1 Scheduled visit [we Schouled visit [we

 Total and activated CD8 T cells in the peripheral blood increased from baseline after T-VEC administration at weeks 4 and 6 and further increased at weeks 9 and 15 after combination T-VEC and ipilimumab

Data points are overlaid on the box plots. Each box plot shows the range between 25th percentile (q1) and 75th percentile (q3) as a yellow box, with a pink line showing the 50th percentile. The whiskers on each box are $q3 \pm 1.5^*$ (q3 – q1). A red plus sign indicates outlier data within a subset. P-values below each post week 1 subset indicate significant changes from baseline level on week 1, and those above week 9 subset indicate significant changes from week 6 to week 9.

*Activated CD8 T cells are defined as HLA-DR+CD3+CD4- cells.

Puzanov I, et al J Clin Oncol. 2016 Aug 1;34(22):2619-26

Safety and activity of pembrolizumab and multi-site stereotactic body radiotherapy

Luke et al. J Clin Oncol 2018

Where Are We Going?

- Tumor biology vs tumor type
- Overcoming resistance
- A glimpse into the future

Future Directions

- Better application of biomarkers
- Making "cold" tumors "hot"
- Gut microbiome
- New targets

Most Immune Targets Show Strong Correlation With PD-L1

A4GALT	CD70	HLA-DQA2	IL17A	KIR3DS1	STAT6
ADAM8	CD72	HLA-DQB1	IL17F	KLRK1	TBX21
ADORA2A	CD79A	HLA-DQB2	IL18	KRT20	TGFB1
ARG1	CD79B	HLA-DRA	IL1A	LAG3	TGFB2
ARG2	CD80	HLA-DRB1	IL1B	LAMP3	TGFB3
BATF3	CD86	HLA-DRB3	IL22	LAYN	TIGIT
BCL6	CD8A	HLA-DRB4	IL23A	LTA	TLR7
BTLA	CD93	HLA-DRB5	IL3RA	LY75	TLR9
CCL20	CEACAM8	HMGB1	IL4	MAGEH1	TMEM173
CCL5	CLEC4C	ICAM1	IL5	MB21D1	TNF
CCR1	CSF1R	ICOS	IL6	MICA	TNFRSF14
CCR6	CSF2RA	ICOSLG	IRF4	MICB	TNFRSF18
CCR8	CTLA4	IDO1	IRF9	MME	TNFRSF4
CD14	CX3CL1	IFNA1	ISG20	MST1R	TNFRSF9
CD160	CXCL10	IFNA10	ITGAL	NCAM1	TNFSF4
CD163	CXCL9	IFNA13	ITGAM	NCR1	TNFSF9
CD19	CXCR3	IFNA14	ITGAX	NDUFA2	TYK2
CD22	EDNRB	IFNA16	ITGB2	NT5E	VEGFA
CD24	ENTPD1	IFNA17	JAK1	PDCD1	VSIR
CD244	FCER2	IFNA2	JAK2	PDCD1LG2	VTCN1
CD247	FCGR3B	IFNA21	KIR2DL1	PRDM1	XBP1
CD27	FOXP3	IFNA4	KIR2DL2	PTGDR2	
CD274	GATA3	IFNA5	KIR2DL3	RORA	
CD276	HAVCR2	IFNA6	KIR2DL4	RORC	
CD28	HLA-A	IFNA7	KIR2DL5A	RSAD2	
CD33	HLA-B	IFNA8	KIR2DL5B	SIGLEC1	
CD3D	HLA-C	IFNB1	KIR2DS1	SIRPG	
CD3E	HLA-DMA	IFNG	KIR2DS2	SMAD3	
CD3G	HLA-DMB	IFNK	KIR2DS3	ST6GAL1	
CD4	HLA-DOA	IFNW1	KIR2DS4	STAT1	
CD40	HLA-DOB	IL10	KIR2DS5	STAT2	
CD40LG	HLA-DPA1	IL12A	KIR3DL1	STAT3	
CD68	HLA-DPB1	IL12B	KIR3DL2	STAT4	
CD69	HLA-DQA1	IL13	KIR3DL3	STAT5B	

All samples (cold + hot + med)

Genes Separate Into Those Strongly Correlated and Less Strongly Correlated to PDL1

Strongly correlated

CD163, CCR8, PRDM1, SIGLEC1, CD28, FOXP3, CSF1R, CD33, CD4, TLR7, IL10, HLA-DRA, HLA-DPA1, HLA-DQA1, HLA-DOA, CD69, RSAD2, HLA-DMB, CD3E, CD3D, CCL5, CD247, PDCD1, CD8A, SIRPG, CTLA4, IFNG, TBX21, LAG3, KLRK1, LTA, ICOS, TIGIT, CD3G, ITGAL, CXCL10, CXCL9, CD80, CD86, HAVCR2, ITGB2, CCR1, TNFRSF9, IDO1, STAT1, JAK2, PDCD1LG2, HLA-DPB1, HLA-DRB1, HLA-DMA, HLA-DRB5, HLA-DQB1, KIR2DL4, HLA-DQA2, HLA-DOB, HLA-DQB2, BTLA, LAMP3, CD244, CSF2RA, CD14, IL1B, CD40LG, ITGAX, ITGAM, CD68, ICAM1, MICB, IRF4, STAT4, TNF, CD27, CD72, STAT2, CD40, HLA-B, HLA-C, HLA-A, CXCR3, JAK1, CCR6, LY75, CD79A

IL12B, IRF9, ADAM8, NCR1, TNFSF4, KIR2DL3, KIR2DS4, KIR2DL1, KIR3DL2, KIR3DL1, ISG20, TNFRSF18, IL18, CD93, TMEM173, IL1A, STAT3, FCGR3B, IL6, BATF3, CD70, ENTPD1, TGFB1, CD79B, IL3RA, TNFRSF4, ADORA2A, LAYN, A4GALT, CX3CL1, TNFSF9, IL23A, IL13, CD19, FCER2, TLR9, CLEC4C, CD22, CD160, RORA, BCL6, GATA3, NT5E, IL12A, MME, CCL20, ICOSLG, XBP1, STAT5B, MST1R, TGFB3, TGFB2, IL17A, CD276, STAT6, EDNRB, SMAD3, VEGFA, IFNB1, MICA, KIR3DL3, TYK2, TNFRSF14, ST6GAL1, RORC, CEACAM8, ARG2, KRT20, VTCN1, CD24, IFNK, NCAM1, MAGEH1, IL17F, IL5, HMGB1, IFNA1, IFNA13, IFNW1, IFNA21, ARG1, IL4, NDUFA2

Immune target genes PD-L1 Pearson's cor.r 1.00.5 0.0 -0.5 -1.0 SKCM SK

All samples (cold + hot + med)

Less correlated

Combination of Tumor Mutational Load and PD-L1 expression

Making Tumors "Hot"

T-Cell Immune Checkpoints

The Future

