IMMUNOTHERAPY IN HEAD AND NECK CANCER

SIMON ABI AAD, MD

SIMON ABI AAD, MD IMMUNOTHERAPY IN HEAD AND NECK CANCER

NO RELEVANT FINANCIAL RELATIONSHIPS IN THE PAST TWELVE MONTHS BY PRESENTER OR SPOUSE/PARTNER.

THE SPEAKER WILL DIRECTLY DISCLOSE THE USE OF PRODUCTS FOR WHICH ARE NOT LABELED (E.G., OFF LABEL USE) OR IF THE PRODUCT IS STILL INVESTIGATIONAL.

13th Annual New Orleans Summer Cancer Meeting July 20-22, 2018

SEER 2018

Factors Associated With Poor Outcome

Patient Related

Poor performance status

Comorbidities

Poor cognitive status

Persistent use of carcinogens (smoking, alcohol)

Disease Related

Tumor sites (primary and recurrences)

Advanced state

Great volume disease

History of aggressive disease

Paraneoplastic hypercalcemia

Treatment Related

Previous treatments Time to tumor progression

Poor or null response to previous treatment

SCCHN R/M Not Suitable for Rescue Surgery or Re-Irradiation

• Platinum-sensitive patients:

- Recurrence after a combined treatment that included platinum with a PFS of more than 6 months
- Platinum-naïve patients with R/M disease
- Platinum-refractory patients:
 - Recurrence after a combined treatment that included platinum with a PFS of less than 6 months
 - Patients with progressive disease during a platinumcontaining treatment for R/M disease

PFS, progression-free survival

EXTREME Trial: Overall Survival 5-Year Follow-Up

Vermorken JB, et al. N Engl J Med. 2008;359(11):1116–1127. Vermorken JB, et al. J Clin Oncol. 2014;32(Suppl): Abstract 6021.

Cisplatin-Refractory R/M SCCHN

- Survival is very poor (≤6 months)
- Conventional anticancer treatments have not been effective in increasing survival
- Immunotherapy arises as a new treatment option in this setting

SCCHN May Benefit From Immune System–Targeted Treatments

- High mutational burden due to tobacco usage, and expression of HPV-associated oncogenes, may contribute to immunogenicity in SCCHN tumors
- In HNSCC, tumors create a highly immunosuppressive microenvironment and can evade immune detection by exploiting inhibitory immune checkpoints such as PD-1/PD-L1

Keck MK, et al. Clin Cancer Res. 2015;21(4):870-881. Ferris RL. J Clin Oncol. 2015;33(29):3293-3304.

What Is Unique About Immunotherapy?

Atypical patterns of response

Immune-related toxicity

Autoimmune/inflammatory AEs may affect any organ

Champiat S, et al. Annals of Oncol. 2016;27(4):559-574.

Wolchok JD, et al. Clin Cancer Res. 2009;15(23):7412-7420.

Immune-Mediated Side Effects

- Can arise every time
- Even after end of therapy!
- ALL organ systems might be involved

Severe IO irAEs

	CTLA-4 Inhibitor	PD-1 Inhibitor		PD-L1 Inhibitor	
Severe irAE, %	Ipilimumab	Nivolumab	Pembrolizumab	Atezolizumab	Durvalumab
Dermatologic					
Pruritis	25-30	17	11-21	12-14	<1
Rash	33-34	15	10-21	15	<1
Vitiligo	3-4	10-11	9	NR	NR
Gastrointestinal					
Diarrhea	36-38	8-16	8-20	18-20	1-2
Colitis	8-10	1-3	1-2	<1	<1
Hepatic					
Increased ALT	<1	1-2	2-8	2-3	0
Increased AST	1-2	1-2	3-10	2-3	0
Hepatitis	<1	1-2	1-2	1-2	1
Endocrine					
Hypothyroidism	1-2	4-5	8-10	2-4	<1
Hyperthyroidism	0-2	0-3	3-4	1	<1
Hypophysitis	2-3	<1	<1	<1	<1
Renal failure	1	1-3	<1	0	NR
Pneumonitis	<1	1-5	4-6	2.6	<1
Neurologic	<1	<1	<1	0	NR

IO, immuno-oncology; irAE, immune-related adverse event; NR, not reported Kumar V, et al. *Front Pharmacol.* 2017;8:49.

Guidelines For Specific Organ System–Based Toxicity Diagnosis and Management

Annals of Oncology 28 (Supplement 4): iv119-iv142, 2017 doi:10.1093/annonc/mdx225

CLINICAL PRACTICE GUIDELINES

Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

J. B. A. G. Haanen¹, F. Carbonnel², C. Robert³, K. M. Kerr⁴, S. Peters⁵, J. Larkin⁶ & the ESMO Guidelines Committee^{*}

JOURNAL OF CLINICAL ONCOLOGY

ASCO SPECIAL ARTICLE

Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline

Julie R. Brahmer, Christina Lacchetti, Bryan J. Schneider, Michael B. Atkins, Kelly J. Brassil, Jeffrey M. Caterino, Ian Chau, Marc S. Ernstoff, Jennifer M. Gardner, Pamela Ginex, Sigrun Hallmeyer, Jennifer Holter Chakrabarty, Natasha B. Leighl, Jennifer S. Mammen, David F. McDermott, Aung Naing, Loretta J. Nastoupil, Tanyanika Phillips, Laura D. Porter, Igor Puzanov, Cristina A. Reichner, Bianca D. Santomasso, Carole Seigel, Alexander Spira, Maria E. Suarez-Almazor, Yinghong Wang, Jeffrey S. Weber, Jedd D. Wolchok, and John A. Thompson in collaboration with the National Comprehensive Cancer Network

Haanen JB, et al. Ann Oncol. 2017;28(Suppl_4):iv119-iv142. Brahmer JR, et al. J Clin Oncol. 2018 Feb 14. [Epub ahead of print].

Management of irAEs: General Principles

Severity-Ambulatory versus Immunotherapy Corticosteroids Other immunosuppressive drugs CTCAE grade inpatient care Ambulatory Not recommended Not recommended Continue Ambulatory Topical steroids Not recommended Suspend temporarily^a or Systemic steroids oral 0.5-1 mg/kg/day Hospitalization Systemic steroids To be considered for patients with Suspend and discuss resumption based unresolved symptoms after 3-5 days Oral or i.v. on risk/benefit ratio with patient 1-2 mg/kg/day for 3 days then of steroid course Organ Specialist referral advised reduce to 1 mg/kg/day Hospitalization Systemic steroids i.v. To be considered for patients with Discontinue permanently consider intensive methylprednisolone unresolved symptoms after 3-5 days 1-2 mg/kg/day for 3 days then of steroid course care unit reduce to 1 mg/kg/day Organ specialist referral advised

Early Recognition and Management is Essential

Some dysimmune toxicities may follow a specific management: this has to be discussed with the organ specialist. ^aOutside skin or endocrine disorders where immunotherapy can be maintained.

Champiat S, et al. Ann Oncol. 2016;27(4):559-574.

Targeting the PD1/PDL1 Pathway in HNSCC

	IO agent	Ν	Design	Population
	Nivolumab (Checkmate 141) ¹	240	Phase III	Unselected for PD-L1, platinum refractory based therapy)
	Pembrolizumab	192	Single arm	PD-L1 positive (initial cohort) ¹ and unselected for PD-L1
Anti-	(Keynote-012) ^{2,3}	-	(Phase Ib)	(expansion cohort) ³
PD-1 Pembrolizumab (Keynote-055) ⁴	171	Single arm	Unselected for PD-L1, after progression on platinum and	
	(Keynote-055) ⁴	171	(Phase II)	cetuximab therapy
	Pembrolizumab			Unselected for PD-L1, PD after platinum-containing
	(Keynote-040)⁵	247	Phase III	regimen for R/M HNSCC or progression within 3-6
	Durvalumab	60		Unselected for PD-L1 (received median 3 prior systemic
	(study 1108) ⁶	62	Single arm	Tx)
Anti- PD-L1	Durvalumab	44.0	Phase II	PD-L1 high (TC ≥25%), failure after 1 platinum-based
	(HAWK) ⁷	112	Single arm	chemotherapy in R/M setting
	Atezolizumab ⁸	32	Phase la	Unselected for PD-L1, 53% received ≥2L

1. Ferris RL, et al. *N Engl J Med.* 2016;375(19):1856-1867. 2. Seiwert TY, et al. *Lancet Oncol.* 2016;17(7):956-965. 3. Chow LQ, et al. *J Clin Oncol.* 2016;34(32):3838-3845. 4. Bauml J, et al. *J Clin Oncol.* 2017;35(14):1542-1549. 5. Cohen EE, et al. *Ann Oncol.* 2017;28(suppl_5): Abstract LBA45_PR. 6. Segal NH, et al. *Ann Oncol.* 2016;27(Suppl 6): Abstract 9490. 7. Zandberg D, *et al. Ann Oncol.* 2017;28(Suppl 5):Abstract 10420. 8. Bahleda R, et al. *Ann Oncol.* 2017;28(Suppl 5):10440.

NEVOLUMAB VS INVESTIGATOR'S CHOICE IN RECURRENT OR METASTATIC SQUAMOUS CELL CARCINOMA OF THE HEAD AND NECK: 2-YR OUTCOMES IN THE OVERALL POPULATION AND PD-L1 SUBGROUPS OF CHECKMATE 141

Robert L. Ferris,¹ George Blumenschein Jr,² Jerome Fayette,³ Joel Guigay,⁴ A. Dimitrios Colevas,⁵ Lisa Licitra,⁶ Kevin J. Harrington,⁷ Stefan Kasper,⁸ Everett E. Vokes,⁹ Caroline Even,¹⁰ Francis Worden,¹¹ Nabil F. Saba,¹² Lara Carmen Iglesias Docampo,¹³ Robert Haddad,¹⁴ Tamara Rordorf,¹⁵ Naomi Kiyota,¹⁶ Makoto Tahara,¹⁷ Mark Lynch,¹⁸ Vijayvel Jayaprakash,¹⁸ Li Li,¹⁸ Maura L. Gillison²

¹University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; ²MD Anderson Cancer Center, Houston, TX, USA; ³Centre Leon Berard, Lyon, France; ⁴Centre Antoine Lacassagne, FHU OncoAge, Université Côte d'Azur, Nice, France; ⁵Stanford University, Stanford, CA, USA; ⁶Fondazione IRCCS Istituto Nazionale dei Tumori and University of Milan, Milan, Italy; ⁷Royal Marsden NHS Foundation Trust/The Institute of Cancer Research, London, UK; ⁸West German Cancer Center, University Hospital, Essen, Germany; ⁹University of Chicago Medical Center, Chicago, IL, USA; ¹⁰Gustave Roussy, Villejuif Cedex, France; ¹¹University of Michigan, Ann Arbor, MI, USA; ¹²Winship Cancer Institute of Emory University, Atlanta, GA, USA; ¹³Hospital Universitario 12 de Octubre, Madrid, Spain; ¹⁴Dana-Farber/Harvard Cancer Center, Boston, MA, USA; ¹⁵Universitätsspital Zurich, Zurich, Switzerland; ¹⁶Kobe University Hospital, Kobe, Japan; ¹⁷National Cancer Center Hospital East, Kashiwa, Japan; ¹⁸Bristol-Myers Squibb, Princeton, NJ, USA

BACKGROUND

- Long-term prognosis for patients with recurrent or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN) post-platinum therapy has historically been poor, with a median overall survival (OS) of <6 months¹
- Nivolumab demonstrated significant OS benefit and better tolerability vs investigator's choice (IC) in CheckMate 141, a randomized phase 3 trial:
 - Trial stopped early at the interim (primary) analysis due to statistically significant OS benefit
 - Median OS: 7.5 vs 5.1 mo; HR = 0.70 (97.73% CI: 0.51, 0.96); P = 0.01²
 - At minimum follow-up of 1-year, prolonged OS benefit was noted
 - Median OS: 7.7 vs 5.1 mo; HR = 0.71 (95% CI: 0.55, 0.90)³
 - Nivolumab was better tolerated, with stabilized quality of life, compared with IC (methotrexate, docetaxel, cetuximab)²⁻⁴
- At AACR 2018 (2-year follow-up) data in patients with R/M SCCHN post-platinum therapy from CheckMate141

1. Saloura V, et al. *Cancer Chemother Pharmacol* 2014;73:1227–1239.2. Ferris RL, et al. *N Engl J Med* 2016;375:1856–1867.3. Gillison ML, et al. *The Oncologist* 2018; In Press. 4. Harrington KJ, et al. *Lancet Oncol* 2017;18:1104–1115.

CHECKMATE 141 STUDY DESIGN

Randomized, open-label, phase 3 trial (NCT02105636)

Data cutoff: September 2017 (minimum follow-up of 24.2 months)

DOR = duration of response; HPV = human papillomavirus; IV = intravenous; OPC = oropharyngeal cancer; ORR = objective respons e rate; OS = overall survival; PD-L1 = programmed death ligand 1; PFS = progression-free survival; QoL = quality of life

BASELINE CHARACTERISTICS

Baseline characteristics were generally balanced between treatment arms, as previously reported

	Nivolumab	IC
Patients, n (%)	(n = 240)	(n = 121)
Tumor PD-L1 expression ^a		
≥1% (PD-L1 expressors)	96 (40.0)	63 (52.1)
<1% (PD-L1 non-expressors)	76 (31.7)	40 (33.1)
Not quantifiable ^b	68 (28.3)	18 (14.9)
HPV status ^c		
Positive	64 (26.7)	29 (24.0)
Negative	56 (23.3)	37 (30.6)
Unknown/not reported	120 (50.0)	55 (45.5)

^aPD-L1 status w as determined using the Dako PD-L1 IHC 28-8 pharmDx test

^bTumor not present, sample not provided, or sample could not be processed

°HPV status was assessed using p16 immunohistochemical testing; required only for patients with OPC

SUSTAINED OS BENEFIT IN THE OVERALL (ITT) POPULATION

- Nivolumab reduced the risk of death by 32% vs IC
- The 24-month OS rate was nearly tripled with nivolumab compared with IC

Symbols represent censored observations. ITT = intent-to-treat; Nivo, nivolumab

OS BENEFIT ACROSS PD-L1 EXPRESSORS AND NON-EXPRESSORS

- OS rates at 18, 24, and 30 months were similar in both groups
 - PD-L1 expressors: nivolumab continued to provide OS benefit, with 45% reduction in risk of death vs IC
 - PD-L1 non-expressors: nivolumab resulted in 27% reduction in risk of death vs IC

Symbols represent censored observations

OS IN PD-L1 NON-EXPRESSORS

In PD-L1 non-expressors, the HR for risk of death with nivolumab vs IC consistently trended lower with longer follow-up

OS IN PD-L1 NON-EXPRESSORS (<1%)

• In PD-L1 non-expressors, the HR for risk of death with nivolumab vs IC consistently trended lower with longer follow-up

Primary Analysis^a (Dec 2015 data cutoff)

Symbols represent censored observations; a FromNEJM, Ferris RL et al., Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, 375, 1856-67, Copyright © 2016 Massachusetts Medical Society. Reprinted with permission fromMassachusetts Medical Society.

OS IN PD-L1 NON-EXPRESSORS (<1%)

1-Year Follow-up

• In PD-L1 non-expressors, the HR for risk of death with nivolumab vs IC consistently trended lower with longer follow-up

Primary Analysis^a

Symbols represent censored observations; a From NEJM, Ferris RL et al., Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, 375, 1856-67, Copyright © 2016 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

11

OS IN PD-L1 NON-EXPRESSORS (<1%)

• In PD-L1 non-expressors, the HR for risk of death with nivolumab vs IC consistently trended lower with longer follow-up

12

Symbols represent censored observations; a From NEJM, Ferris RL et al., Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, 375, 1856-67, Copyright © 2016 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

OS BY HPV STATUS

 Nivolumab demonstrated survival benefit in patients with HPV-positive and HPV-negative tumors, with comparable HRs for risk of death vs IC

HPV-Positive

HPV-Negative

^aHPV testing was required only for patients with OPC; symbols represent censored observations

OVERALL SURVIVAL BY AGE

Saba et al. ASCO 2018

SUBSEQUENT THERAPIES AMONG PATIENTS WHO DISCONTINUED TREATMENT

 Nivolumab continued to improve in OS vs IC in spite of subsequent immunotherapy in 10.1% of patients in the IC arm

	Nivolumab	IC
Patients, n (%)	(n = 228)	(n = 109)
Any therapy ^a	91 (39.9)	43 (39.4)
Radiotherapy	30 (13.2)	14 (12.8)
Surgery	2 (0.9)	3 (2.8)
Systemic therapy	82 (36.0)	36 (33.0)
Taxanes	35 (15.4)	11 (10.1)
Monoclonal antibodies (bevacizumab, cetuximab)	31 (13.6)	8 (7.3)
Other – approved agents	31 (13.6)	12 (11.0)
Folic acid analogue	22 (9.6)	7 (6.4)
Platinum-based chemotherapy	16 (7.0)	11 (10.1)
Other – experimental agents	15 (6.6)	3 (2.8)
Immunotherapy (nivolumab, pembrolizumab, durvalumab, urelumab)	12 (5.3)	11 (10.1)
PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, durvalumab)	9 (3.9)	10 (9.2)
Unassigned	1 (0.4)	0

aPatients may have received more than 1 type of subsequent therapy, which was defined as non-study anticancer therapy started on or after first dosing date (or randomization date, if patient w as not treated)

14

TUMOR RESPONSE

- In the nivolumab arm, complete responses were observed in both PD-L1 expressors and PD-L1 non-expressors
 - Seven complete responders (2 PD-L1 expressors, 2 PD-L1 non-expressors, and 3 with no data on tumor PD-L1 expression)
 - One patient had a partial response, which later converted to a complete response

	Nivolumab (n = 240)	IC (n = 121)
ORR, % (95% CI)	13.3 (9.3, 18.3)	5.8 (2.4, 11.6)
Time to response, median (range), months	2.1 (1.8 to 7.4)	2.0 (1.9 to 4.6)
Duration of response, median (range), months	9.7 (2.8 to 32.8+)	4.0 (1.5+ to 11.3)

15

TREATMENT-RELATED ADVERSE EVENTS

- The safety profile of nivolumab remained consistent with previous analyses,^{1,2} and manageable
 - Fewer grade 3–4 events in the nivolumab arm vs the IC arm
 - No new safety signals were reported
- The incidence of serious TRAEs was lower in the nivolumab arm (7.2%) vs the IC arm (15.3%)
- Rates of death due to drug toxicity remained unchanged from the primary analysis¹

	Nivolumab (n = 236)		IC (n	= 111)
	Any grade	Grade 3–4	Any grade	Grade 3–4
Any TRAE, n (%)	146 (61.9)	36 (15.3)	88 (79.3)	41 (36.9)
TRAEs in ≥15% of patients, n (%)				
Fatigue	37 (15.7)	5 (2.1)	20 (18.0)	3 (2.7)
Nausea	22 (9.3)	0	23 (20.7)	1 (0.9)
Anemia	12 (5.1)	3 (1.3)	19 (17.1)	6 (5.4)
Asthenia	10 (4.2)	1 (0.4)	17 (15.3)	2 (1.8)

1. Ferris RL, et al. *N Engl J Med* 2016;375:1856–1867. 2. Gillison ML, et al. *The Oncologist* 2018; In Press. TRAE = treatment-related adverse event

- Nivolumab is the only immunotherapy to significantly improve OS vs IC in patients with R/M SCCHN post–platinum therapy, in the primary analysis of a randomized, phase 3 study (CheckMate 141)
 - Primary analysis: HR = 0.70 (97.73% CI: 0.51, 0.96); P = 0.01
 - 2-year follow-up: HR = 0.68 (95% CI: 0.54, 0.86)
- With long-term (2-year) follow-up, nivolumab demonstrated prolonged OS benefit compared with IC in the overall population with
 - Efficacy across PD-L1 expressors and non-expressors
 - Efficacy regardless of tumor HPV status
 - A favorable safety profile compared with IC maintained; no new safety signals observed
 - No observed differences in baseline characteristics or safety profile among long-term survivors in the nivolumab arm compared with the overall nivolumab population
- Nivolumab is an established therapeutic option in R/M SCCHN post–platinum therapy, with demonstrated long-term benefits in OS and safety compared with monotherapy options

UPDATED SURVIVAL RESULTS OF THE KEYNOTE-040 STUDY OF PEMBROLIZUMAB VS SOC CHEMOTHERAPY FOR RECURRENT OR METASTATIC HNSCC

PEMBROLIZUMAB AND HNSCC

Study	Population	ORR	Median DOR	Median PFS
KEYNOTE-0121	PD-L1–positive R/M HNSCC (N = 61)	18%	12.2 months	2 months
KEYNOTE-012 expansion cohort ²	R/M HNSCC of any PD-L1 expression (N = 132)	Total: 18% PD-L1⁺: 22% PD-L1⁻: 4%	Not reached	2 months
KEYNOTE-055 ³	Platinum and cetuximab- refractory HNSCC of any PD-L1 expression (N = 171)	Total: 16% PD-L1⁺: 18% PD-L1⁻: 12%	8 months	2.1 months

1. Seiwert TY et al. Lancet Oncol 2016;17:956-965. 2. Chow LQM et al. J Clin Oncol 2016;34:3838-3845. 3. Bauml J et al. J Clin Oncol 2017;35:1542-1549.

Phase III KEYNOTE-040 Study

R 1:1

Key Eligibility Criteria

- SCC of the oral cavity, oropharynx, hypopharynx, or larynx
- PD after platinum-containing regimen for R/M HNSCC or recurrence or PD within 3-6 mo of multimodal therapy using platinum^a
- ECOG PS 0 or 1
- Known p16 status (oropharynx)^b
- Tissue sample^c for PD-L1 assessment^d

Stratification Factors

- ECOG PS (0 vs 1)
- p16 status^b (positive vs negative)
- PD-L1 TPS^d (≥50% vs <50%)

Pembrolizumab 200 mg IV q3w for 2 y

- Methotrexate 40 mg/m² q w^e OR Docetaxel 75 mg/m² q3w OR Cetuximab 250 mg/m² q w^f
- Clinically stable patients with radiologic PD could continue treatment until imaging performed ≥4 wk later confirmed PD
- Crossover not permitted

^aLimit of 2 prior therapies for R/M HNSCC. ^bAssessed using the CINtec p16 Histology assay (Ventana); cutpoint for positivity = 70%. ^cNewly collected preferred. ^dAssessed using the PD-L1 IHC 22C3 pharmDx assay. TPS, tumor proportion score = % of tumor cells with membranous PD-L1 expression. ^eCould be increased to 60 mg/m² qw in the absence of toxicity. ^fFollowing a loading dose of 400 mg/m².

Cohen E, et al. Ann Oncol. 2017;28(Suppl 5): Abstract LBA45_PR.

KEYNOTE – 040: PRIMARY AND UPDATED ANALYSES

Primary analysis presented at ESMO 2017

- Prespecified significance boundary: P = 0.0175
- Data cutoff date: May 15, 2017
- No. of Death: 377 (data outstanding for 11 patients)
- OS: HR 0.81 (95% CI 0.66-0.99), P= 0.02024
- Updated analysis
 - Same data cutoff date: May 15, 2017 (i.e., update is without extending f/u duration)
 - Full acquisition of survival status, including the 11 pts previously outstanding
 - No. of death after acquisition of survival status: 388

KEYNOTE – 040: BASELINE CHARACTERISTICS

Characteristic, n (%)	Pembro N = 247	SOC N = 248	Characteristic, n (%)	Pe N
Age, median (range)	60 (19-85)	60 (34-78)	p16 positive (oropharynx)	61 (24
Male	207 (83.8)	205 (82.7)	PD-L1 TPS ≥50%	64 (25.9
ECOG PS 1	176 (71.3)	180 (72.6)	PD-L1 CPS ≥1	196 (79.4)
Current/former smoker	179 (72.5)	182 (73.4)	Prior therapy	
Region of enrollment			(Neo)adjuvant or definitive	34 (13.8)
Europe	147 (59.5)	158 (63.7)	First line	141 (57.1)
North America	73 (29.6)	60 (24.2)	Second line	69 (27.9)
Rest of world	27 (10.9)	30 (12.1)	Third line	3 (1.2)

Cohen E, et al. Ann Oncol. 2017;28(Suppl 5): Abstract LBA45_PR.

Updated Overall Survival in ITT Population

^aCox proportional hazards model with treatment as a covariate stratified by the randomization stratification factors. ^bNominal one-sided *P* value based on the log-rank test stratified by the randomization stratification factors. Data cutoff date: May 15, 2017.

Updated Overall Survival by PD-L1 Expression

^aCox proportional hazards model with treatment as a covariate stratified by the randomization stratification factors. ^bNominal one-sided *P* value based on the log-rank test stratified by the randomization stratification factors. Data cutoff date: May 15, 2017.

Updated Overall Survival by Subgroups

Unstratified Cox proportional hazards model with treatment as a covariate. Data cutoff date: May 15, 2017.

UPDATED PROGRESSION-FREE SURVIVAL

^aCox proportional hazards model with treatment as a covariate stratified by the randomization stratification factors. ^bNominal one-sided *P* value based on the log-rank test stratified by the randomization stratification factors. Data cutoff date: May 15, 2017.

Updated Subsequent Therapy

Type, n (%)	Pembrolizumab N = 247	SOC N = 248
Any ^a	84 (34.0)	101 (40.7)
Chemotherapy	70 (28.3)	77 (31.0)
EGFR inhibitor	20 (8.1)	19 (7.7)
Kinase inhibitor	3 (1.2)	8 (3.2)
Immune checkpoint inhibitor	11 (4.5)	31 (12.5)
Other immunotherapy	5 (2.0)	1 (0.4)
Other	2 (0.8)	2 (0.8)

^aPatients may have received ≥1 subsequent therapy. Data cutoff date: May 15, 2017.

Updated OS: Effect of Subsequent Immune Checkpoint Inhibitors in the SOC Arm

Data cutoff date: May 15, 2017.

Treatment-Related Aes with Incidence of > 10%

	Pembrolizumab (N = 246)		SOC (N = 234)	
Event, n (%)	Any Grade	Grade 3-5	Any Grade	Grade 3-5
Hypothyroidism	33 (13.4)	1 (0.4)	2 (0.9)	0
Fatigue	31 (12.6)	4 (1.6)	43 (18.4)	2 (0.9)
Diarrhea	20 (8.1)	4 (1.6)	24 (10.3)	1 (0.4)
Rash	19 (7.7)	1 (0.4)	34 (14.5)	1 (0.4)
Asthenia	18 (7.3)	1 (0.4)	28 (12.0)	4 (1.7)
Anemia	17 (6.9)	1 (0.4)	33 (14.1)	9 (3.8)
Nausea	12 (4.9)	0	29 (12.4)	1 (0.4)
Mucosal inflammation	9 (3.7)	1 (0.4)	30 (12.8)	5 (2.1)
Stomatitis	6 (2.4)	1 (0.4)	28 (12.0)	11 (4.7)
Neutrophil count decreased	3 (1.2)	1 ().4)	25 (10.7)	20 (8.5)
Alopecia	1 (0.4)	0	25 (10.7)	0

AEs did not change in updated analysis. Relationship to treatment was determined by the investigator. Data cutoff date: May 15, 2017.

SUMMARY

- After all survival data analyzed using the same data cutoff date and comparing with the primary analysis:
 - HR for OS decreased from 0.81 to 0.80
 - P-value for OS decreased from 0.02024 to 0.0161
 - Better treatment effect in patients with PDL1 expressing tumors
 - Apparent effect of immune checkpoint inhibitors in SOC arm after failure of SOC

MADRID ESVO

TREATMENT BEYOND PROGRESSION WITH NIVOLUMAB IN PATIENTS WITH RECURRENT OR METASTATIC SQUAMOUS CELL CARCINOMA OF THE HEAD AND NECK IN THE PHASE 3 CHECKMATE 141 STUDY: A BIOMARKER ANALYSIS AND UPDATED CLINICAL OUTCOMES

Robert Haddad,¹ George Blumenschein, Jr.,² Jerome Fayette,³ Joel Guigay,⁴ A. Dimitrios Colevas,⁵ Lisa Licitra,⁶ Stefan Kasper,⁷ Everett E. Vokes,⁸ Francis Worden,⁹ Nabil F. Saba,¹⁰ Makoto Tahara,¹¹ Fernando Concha-Benavente,¹² Manish Monga,¹³ Mark Lynch,¹³ Li Li,¹³ James W. Shaw,¹³ Maura L. Gillison,² Kevin J. Harrington,¹⁴ Robert L. Ferris¹²

¹Dana-Farber/Harvard Cancer Center, Boston, MA, USA; ²MD Anderson Cancer Center, Houston, TX, USA; ³Centre Leon Berard, Lyon, France; ⁴Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France; ⁵Stanford University, Stanford, CA, USA; ⁶Fondazione IRCCS Istituto Nazionale dei Tumori and University of Milan, Milan, Italy; ⁷West German Cancer Center, University Hospital, Essen, Germany; ⁸University of Chicago Medical Center, Chicago, IL, USA; ⁹University of Michigan, Ann Arbor, MI, USA; ¹⁰Winship Cancer Institute of Emory University, Atlanta, GA, USA; ¹¹National Cancer Center Hospital East, Kashiwa, Japan; ¹²University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; ¹³Bristol-Myers Squibb, Princeton, NJ, USA; ¹⁴Royal Marsden NHS Foundation Trust/The Institute of Cancer Research, London, UK

- RECIST 1.1 criteria assumed that early tumor growth indicated progressive disease and failure of cytotoxic agents
 - Novel response patterns observed with immunotherapeutic agents have indicated that clinical activity may not be properly interpreted using RECIST 1.1 criteria
 - Tumor lesions may appear to increase in size due to immune and inflammatory cell infiltration, with a delayed clinical response
 - Benefits with continued nivolumab treatment beyond RECIST-defined progression have been reported in some patients with melanoma, non-small cell lung cancer, and renal cell carcinoma
- This is an updated analysis of nivolumab treatment beyond first disease progression as well as correlative biomarkers in CheckMate 141

PD-1 = programmed death-1; RECIST = Response Evaluation Criteria in Solid Tumors Wolchok JD, et al. *Clin Cancer Res* 2009;15:7412–7420. Ribas A, et al. *Clin Cancer Res* 2009;15:7116–7118. Oxnard GR, et al. *J Natl Cancer Inst* 2012;104:1534–1541. Chiou VL, et al. *J Clin Oncol* 2015;33:3541–3543. Robert C, et al. *N Engl J Med* 2015;372:320–330. 9. Topalian SL, et al. *N Engl J Med* 2012;366:2443–2454. Brahmer J, et al. *N Engl J Med* 2015;373:123–135. Escudier BJ, et al. *J Clin Oncol* 2016;34(suppl): abstract 4509. George S, et al. *JAMA Oncol*2016;2:1179–1186.

OVERALL SURVIVAL, MINIMUM FOLLOW-UP: 11.4 MONTHS

IC = investigator's choice

Gillison ML, et al. *J Clin Oncol* 2017;35(suppl): abstract 6019.

TREATMENT BEYOND PROGRESSION SUBGROUPS

- Treatment beyond first RECIST 1.1-defined progression was permitted in the nivolumab arm based on the following <u>predefined</u>, <u>protocol-specified</u> criteria:
 - Investigator-assessed clinical benefit
 - No rapid disease progression
 - Tolerance of nivolumab
 - Stable performance status
 - No delay of an imminent intervention to prevent serious complications of disease progression
 - Provided informed consent prior to receiving any additional nivolumab treatment

^aIncludes patients who were not treated, those without progression, and those who died or discontinued without a tumor assessment to determine progression

CHARACTERISTICS OF PATIENTS AT FIRST PROGRESSION

	Treated beyond progression (n = 62)	Not treated beyond progression (n = 84)
ECOG PS, n (%)		
0	22 (35.5)	11 (13.1)
1	40 (64.5)	32 (38.1)
2	0	7 (8.3)
Not recorded	0	34 (40.5)
Type of RECIST progression, n (%)		
Target lesion	38 (61.3)	47 (55.9)
New lesion	3 (4.8)	4 (4.8)
Both	21 (33.9)	33 (39.3)

OVERALL SURVIVAL, PATIENTS TREATED BEYOND PROGRESSION

11

TUMOR REDUCTION IN PATIENTS TREATED BEYOND PROGRESSION

SAFETY

	Treated beyond progression (n = 62)		Not treated beyond progression (n = 84)	
	Any grade	Grade 3–4	Any grade	Grade 3–4
Any TRAE, n (%) ^a	48 (77.4)	9 (14.5)	51 (60.7)	12 (14.3)
TRAEs in >10% of patients, n (%)				
Fatigue	10 (16.1)	1 (1.6)	17 (20.2)	2 (2.4)
Rash	10 (16.1)	0	6 (7.1)	0
Pruritus	9 (14.5)	0	3 (3.6)	0
Anemia	3 (4.8)	1 (1.6)	9 (10.7)	2 (2.4)
Decreased appetite	3 (4.8)	0	10 (11.9)	0
Select TRAEs, n (%)				
Skin	19 (30.6)	0	10 (11.9)	0
Endocrine	8 (12.9)	0	8 (9.5)	0
Gastrointestinal	6 (9.7)	0	8 (9.5)	1 (1.2)
Hepatic	3 (4.8)	0	2 (2.4)	1 (1.2)
Pulmonary	2 (3.2)	0	3 (3.6)	1 (1.2)
Hypersensitivity/infusion reaction	1 (1.6)	0	1 (1.2)	0
Renal	1 (1.6)	0	0	0

• Frequencies of grade 3–4 TRAEs were similar in both subgroups

^aEvents reported between first dose and 30 days after last dose of study therapy TRAEs = treatment-related adverse events

17

CONCLUSIONS

- Nivolumab treatment beyond progression in patients with R/M SCCHN showed:
 - Evidence of subsequent tumor reduction in 24% of patients (15/62)
 - Median OS of 12.7 months
 - No increase in safety signals
- Treatment beyond progression with nivolumab can be considered in select patients with R/M SCCHN

Summary of IO Efficacy Data in R/M HNSCC

	CheckMate 141 ¹ all comers		KEYNOTE 040 ² all comers		Study 1108 ³ all comers	HAWK ⁴ PD-L1 + only	NCT01375842 ⁵ all comers
Treatment	Nivo N = 240	SOC N = 121	Pembro N = 247	SOC N = 248	Durva N = 62	Durva N = 111	Atezo N = 32
ORR, %	13.3	5.8	14.6	10.1	11	16.2	22
mPFS, mo	1.0	2.3	2.1	2.3		2.1	2.6
mOS, mo	7.7	5.1	8.4	7.1	8.9	7.1	6.0
12-mo OS rate, %	34%	19.7	37.3	27.2	42%	33.6	36

Nivo, nivolumab; pembro, pembrolizumab; durva, durvalumab; atezo, atezolizumab; SOC, standard of care

1. Ferris RL, et al. N Engl J Med. 2016;375(19):1856-1867. 2. Cohen EE, et al. Ann Oncol. 2017;28(Suppl 5): Abstract LBA45_PR. 3. Segal NH, et al. Ann Oncol. 2016;27(Suppl 6): Abstract 949O. 4. Zandberg D, et al. Ann Oncol. 2017;28(Suppl 5): Abstract 1042O. 5. Bahleda R, et al. Ann Oncol. 2017;28(Suppl 5): Abstract 1044O.

Resistance to Immunotherapy

Resistance	Description
Primary	 Lack of response to initial immunotherapy
	 Tumor not recognized by immune system
	 May include adaptive immune resistance
Adaptive	 Tumor recognized by the immune system but protects itself by adaptation
	• Due to evolving nature of the immune system/cancer cell interaction, this can manifest as primary resistance, mixed response, or acquired resistance
Acquired	 Tumor initially responds to immunotherapy, but loss of response occurs after a period of time, and tumor relapses/progresses

Sharma P, et al. Cell. 2017;168(4):707-723.

Oncolytic Viruses As Immunomodulators

Immunogenic tumor microenvironment – a 'hot' tumor^{1,2}

Nonimmunogenic tumor microenvironment – a 'cold' tumor^{1,2}

Agent(s) that create an immunogenic tumor microenvironment (eg T-VEC)¹

T-VEC released from lysing cell

 Potential to combine T-VEC with immune-checkpoint inhibitors^{1,3}

1. Sharma P, et al. Science. 2015;348(6230):56-61. 2. Wargo JA, et al. Curr Opin Immunol. 2016;41:23-31. 3. Lichty BD, et al. Nat Rev Cancer. 2014;14(8):559-567.

SCCHN: PD-L1/PD-1 Plus CRT

** Expression of P16 is highly correlated with HPV in oropharyngeal cancer. Tumors outside the oropharynx are considered HPV- regardless of results of p16 staining.

+ Chemotherapy: cisplatin 100 mg/m² x 3; RT: accelerated fractionation 200 cGY/6 per week, standard fractionation 200 cGy/5 per week

SCCHN: PD-L1/PD-1 Plus Cetuximab + RT

REACH (NCT02999087) NCT03349710 Arm A Nivolumab 240mg IV x1 (w1d1) then 360mg IV Arm A: Q3W x 3 doses from w3d1 Nivolumab 480mg Cisplatin g3w + Fit for Cetuximab placebo 400mg x1 (w2d1), then IV Q4W x 6 doses IMRT Cohort 1 (Cis ineligible) 250mg IV Q1W x 7 doses from w3d1 HD CRT Age > 70 years and/or IMRT 70Gv. 35 fractions over 7 weeks from w3d1 Creatinine < 60 mL/min R Patients with Arm B: Avelumab* 1:1 Stratification: MRT + cetuximab (maintenance up non-operated. PD-L1, ECOG PS (0 vs 1), n=420 Arm B + avelumab* to 12 months) previously Risk Group (Int. vs High) Cetuximab 400mg IV x1 (w2d1) then 250mg IV Nivolumab placebo untreated Q1W x 7 doses from w3d1 480mg IV Q4W x 6 Endpoints Nivolumab placebo 240mg IV x1 (w1d1) then n=268 Stage III-IV Arm B: Avelumab* doses 360mg IV Q3W x 3 doses from w3d1 Primary: EFS SCCHN of the oral LA SCCHN R IMRT + cetuximab (maintenance up IMRT 70Gy, 35 fractions over 7 weeks from w3d1 Secondary: cavity, pharynx, larynx, + avelumab* to 12 months) Duration of loco-Unfit for Stage III-IVb locally 688 pts regional control, HD CRT advanced with no prior OS, PRO Arm C treatment Arm C: Exploratory: Nivolumab 240mg IV x1 (w1d1) then 360mg IV IMRT + cetuximab Safety, QoL, PD-L1 Q3W x 3 doses from w3d1 Nivolumab 480mg Cisplatin 100 mg/m² IV a21 days x 3 doses from IV Q4W x 6 doses Cohort 2 (Cis eligible) Primary endpoint: PFS w3d1 Creatinine ≥ 60 mL/min IMRT: 70Gy, 35 fractions over 7 weeks from w3d1 Stratification: 1:1PD-L1, ECOG PS (0 vs 1), Arm D Risk Group (Int. vs High) Nivolumab placebo 240mg IV x1 (w1d1) then Nivolumab 360mg IV Q3W x 3 doses from w3d1 placebo 480mg IV Cisplatin 100 mg/m² IV q21 days x 3 doses from Q4W x 6 doses w3d1 IMRT: 70Gy, 35 fractions over 7 weeks from w3d1

Role of neoadjuvant/adjuvant immunotherapy remains to be seen

Ongoing Phase III Studies With Immune Checkpoint Inhibitors in First-Line R/M HNSCC vs Standard of Care

Trial Name (NCT #)	Immunotherapy Agent(s) in Study	Phase	Population	Treatment Arms
CheckMate 651 (NCT02741570)	Nivolumab, Ipilimumab	ш		Nivolumab + Ipilimumab vs EXTREME
KEYNOTE-048 (NCT02358031) completed accrual	Pembrolizumab	ш	Previously untreated R/M HNSCC, ≥6 months since	Pembrolizumab vs Pembrolizumab + Platinum/5FU vs EXTREME
KESTREL (NCT02551159) completed accrual	Durvalumab Tremelimumab	III	platinum	Durvalumab vs Durvalumab + tremelimumab vs EXTREME

Key Take-Home Messages

- EXTREME regimen (platinum/5FU/cetuximab → cetuximab) is standard firstline treatment for R/M HNSCC, recommended by international guidelines
- Nivolumab and pembrolizumab are new standard-of-care options for patients
 with R/M HNSCC after platinum-based therapy

In asymptomatic patients with no rapid progression, immune checkpoint can be continued until further radiographic assessment in 8 weeks

- PD-L1 can not be used as a biomarker in SCCHN
- PD-1/PD-L1 inhibitors are in general well tolerated, but irAEs can develop; early recognition and management are important
- Several trials are ongoing investigating immunotherapy alone and in combinations in first-line therapy of R/M HNSCC

