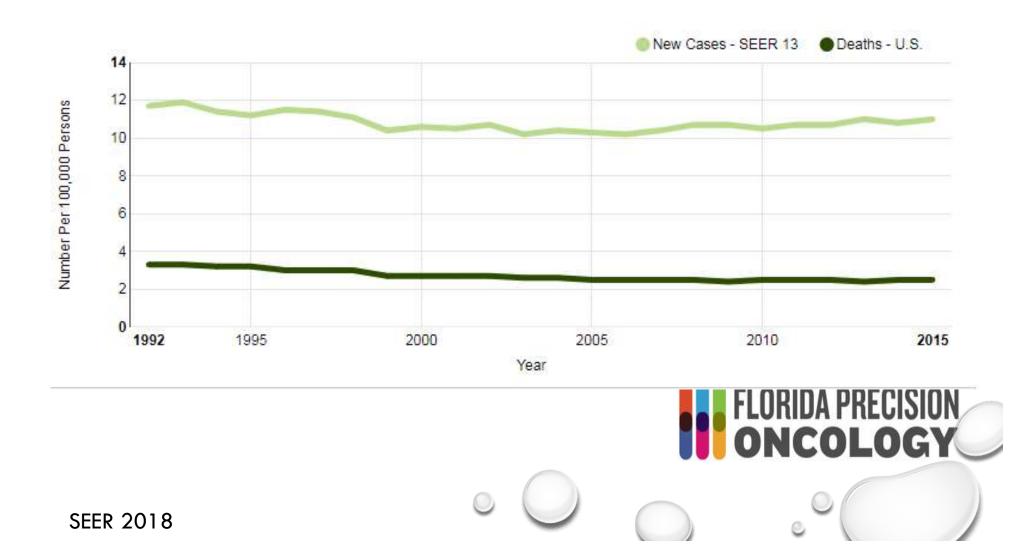
IMMUNOTHERAPY IN HEAD AND NECK CANCER

SIMON ABI AAD, MD

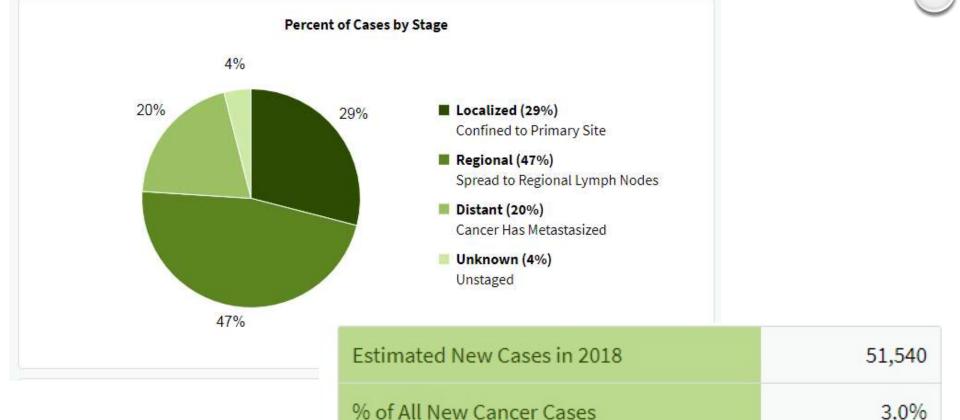
SIMON ABI AAD, MD IMMUNOTHERAPY IN HEAD AND NECK CANCER

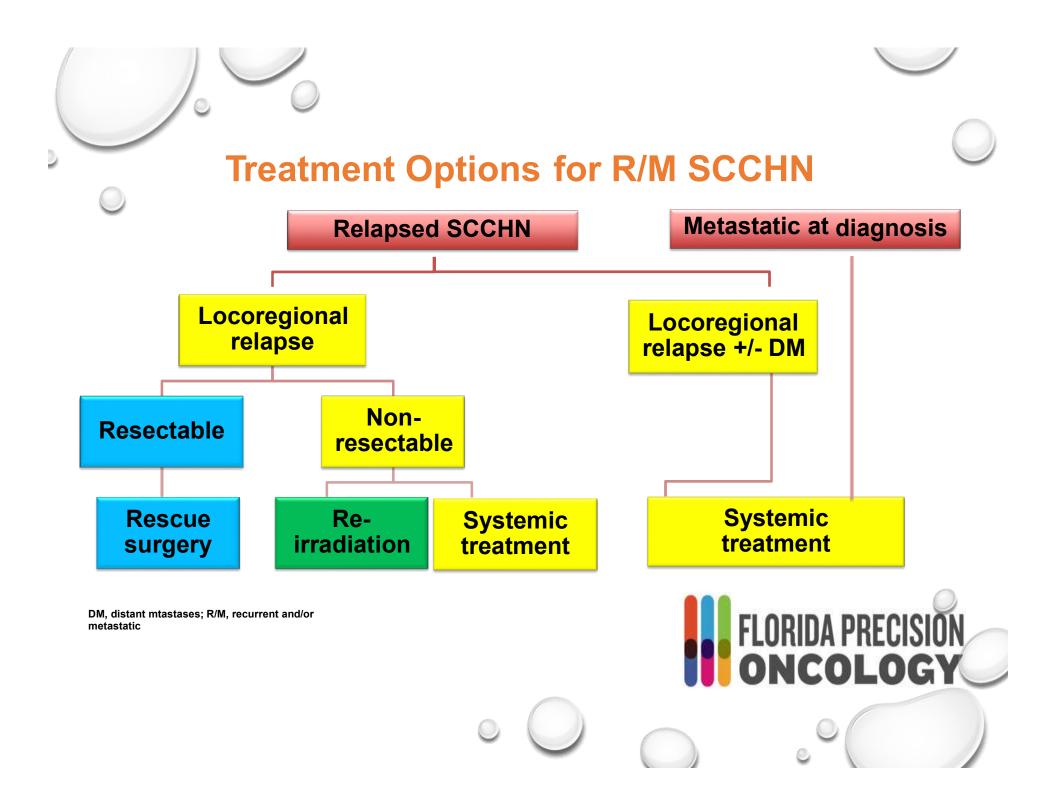
DISCLOSURES: SPEAKER FOR CARIS

THE SPEAKER WILL DIRECTLY DISCLOSE THE USE OF PRODUCTS FOR WHICH ARE NOT LABELED (E.G., OFF LABEL USE) OR IF THE PRODUCT IS STILL INVESTIGATIONAL.



Miami Cancer Meeting 2019


Some Statistics


Some Statistics

% of All Cancer Deaths	1.6%
Estimated Deaths in 2018	10,030

SEER 2018

Factors Associated With Poor Outcome

Patient Related

Poor performance status

Comorbidities

Poor cognitive status

Persistent use of carcinogens (smoking, alcohol)

Disease Related

Tumor sites (primary and recurrences)

Advanced state

Great volume disease

History of aggressive disease

Paraneoplastic hypercalcemia

Treatment Related

Previous treatments

Time to tumor progression

Poor or null response to previous treatment

FLORIDA PRECISION

SCCHN R/M Not Suitable for Rescue Surgery or Re-Irradiation

Platinum-sensitive patients:

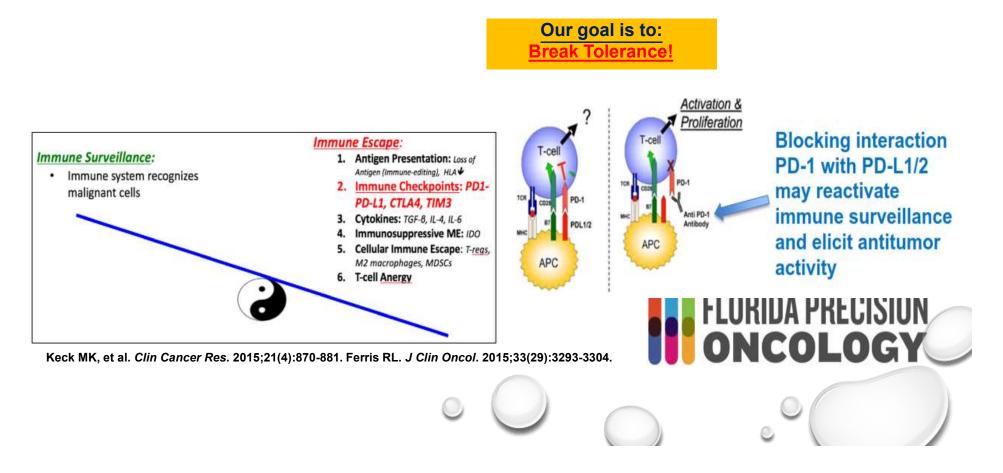
- Recurrence after a combined treatment that included platinum with a PFS of more than 6 months
- Platinum-naïve patients with R/M disease
- Platinum-refractory patients:
 - Recurrence after a combined treatment that included platinum with a PFS of less than 6 months
 - Patients with progressive disease during a platinumcontaining treatment for R/M disease

PFS, progression-free survival

D

Cisplatin-Refractory R/M SCCHN

- Survival is very poor (≤6 months)
- Conventional anticancer treatments have not been effective in increasing survival
- Immunotherapy arises as a new treatment option in this setting



SCCHN May Benefit From Immune System–Targeted Treatments

High mutational burden due to tobacco usage, and expression of HPV-associated oncogenes, may contribute to immunogenicity in SCCHN tumors

2

• In HNSCC, tumors create a highly immunosuppressive microenvironment and can evade immune detection by exploiting inhibitory immune checkpoints such as PD-1/PD-L1

Targeting the PD1/PDL1 Pathway in HNSCC

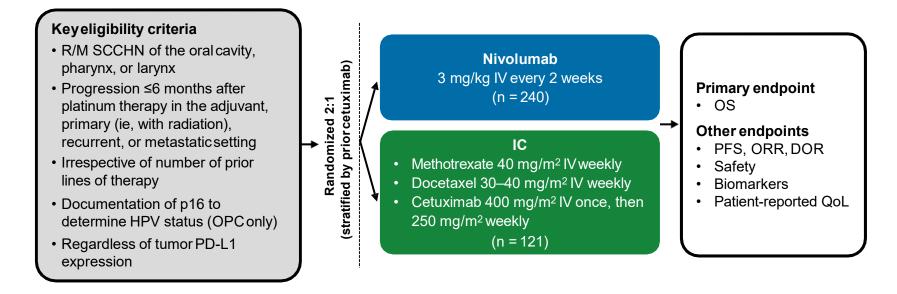
	IO agent	Ν	Design	Population
	Nivolumab (Checkmate 141) ¹	240	Phase III	Unselected for PD-L1, platinum refractory based therapy)
	Pembrolizumab	192	Single arm	PD-L1 positive (initial cohort) ¹ and unselected for PD-L1
Anti-	(Keynote-012) ^{2,3}	102	(Phase lb)	(expansion cohort) ³
PD-1	Pembrolizumab	474	Single arm	Unselected for PD-L1, after progression on platinum and
	(Keynote-055) ⁴	171	(Phase II)	cetuximab therapy
	Pembrolizumab			Unselected for PD-L1, PD after platinum-containing
	(Keynote-040)⁵	247	Phase III	months of multimodal therapy using platinum regimen for R/M HNSCC or progression within 3-6
	Durvalumab	60		Unselected for PD-L1 (received median 3 prior systemic
	(study 1108) ⁶	62	Single arm	Tx)
Anti-	Durvalumab	44.0	Phase II	PD-L1 high (TC ≥25%), failure after 1 platinum-based
PD-L1	(HAWK) ⁷	112	Single arm	chemotherapy in R/M setting
	Atezolizumab ⁸	32	Phase la	Unselected for PD-L1, 53% received ≥2L

1. Ferris RL, et al. N Engl J Med. 2016;375(19):1856-1867. 2. Seiwert TY, et al. Lancet Oncol. 2016;17(7):956-965. 3. Chow LQ, et al. J Clin Oncol. 2016;34(32):3838-3845. 4. Bauml J, et al. J Clin Oncol. 2017;35(14):1542-1549. 5. Cohen EE, et al. Ann Oncol. 2017 28(suppl_5): Abstract LBA45_PR. 6. Segal NH, et al. Ann Oncol. 2016;27(Suppl 6): Abstract 9490. 7. Zandberg D, et al. Ann Oncol. 2017;28(Suppl 5): Abstract 10420. 8. Bahleda R, et al. Ann Oncol. 2017;28(Suppl 5): Abstract 10420. 8. Bahleda R, et al. Ann Oncol. 2017;28(Suppl 5): 10440.

NIVOLUMAB VS INVESTIGATOR'S CHOICE IN RECURRENT OR METASTATIC SQUAMOUS CELL CARCINOMA OF THE HEAD AND NECK: 2-YR OUTCOMES IN THE OVERALL POPULATION AND PD-L1 SUBGROUPS OF CHECKMATE 141

Robert L. Ferris,¹ George Blumenschein Jr,² Jerome Fayette,³ Joel Guigay,⁴ A. Dimitrios Colevas,⁵ Lisa Licitra,⁶ Kevin J. Harrington,⁷ Stefan Kasper,⁸ Everett E. Vokes,⁹ Caroline Even,¹⁰ Francis Worden,¹¹ Nabil F. Saba,¹² Lara Carmen Iglesias Docampo,¹³ Robert Haddad,¹⁴ Tamara Rordorf,¹⁵ Naomi Kiyota,¹⁶ Makoto Tahara,¹⁷ Mark Lynch,¹⁸ Vijayvel Jayaprakash,¹⁸ Li Li,¹⁸ Maura L. Gillison²

¹University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; ²MD Anderson Cancer Center, Houston, TX, USA; ³Centre Leon Berard, Lyon, France; ⁴Centre Antoine Lacassagne, FHU OncoAge, Université Côte d'Azur, Nice, France; ⁵Stanford University, Stanford, CA, USA; ⁶Fondazione IRCCS Istituto Nazionale dei Tumori and University of Milan, Milan, Italy; ⁷Royal Marsden NHS Foundation Trust/The Institute of Cancer Research, London, UK; ⁸West German Cancer Center, University Hospital, Essen, Germany; ⁹University of Chicago Medical Center, Chicago, IL, USA; ¹⁰Gustave Roussy, Villejuif Cedex, France; ¹¹University of Michigan, Ann Arbor, MI, USA; ¹²Winship Cancer Institute of Emory University, Atlanta, GA, USA; ¹³Hospital Universitario 12 de Octubre, Madrid, Spain; ¹⁴Dana-Farber/Harvard Cancer Center, Boston, MA, USA; ¹⁵Universitätsspital Zurich, Zurich, Switzerland; ¹⁶Kobe University Hospital, Kobe, Japan; ¹⁷National Cancer Center Hospital East, Kashiwa, Japan; ¹⁸Bristol-Myers Squbb, Princeton, NJ, USA


BACKGROUND

- Long-term prognosis for patients with recurrent or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN) post–platinum therapy has historically been poor, with a median overall survival (OS) of <6 months¹
- Nivolumab demonstrated significant OS benefit and better tolerability vs investigator's choice (IC) in CheckMate 141, a randomized phase 3 trial:
 - Trial stopped early at the interim (primary) analysis due to statistically significant OS benefit
 - Median OS: 7.5 vs 5.1 mo; HR = 0.70 (97.73% CI: 0.51, 0.96); P = 0.01²
 - At minimum follow-up of 1-year, prolonged OS benefit was noted
 - Median OS: 7.7 vs 5.1 mo; HR = 0.71 (95% CI: 0.55, 0.90)³
 - Nivolumab was better tolerated, with stabilized quality of life, compared with IC (methotrexate, docetaxel, cetuximab)²⁻⁴
- At AACR 2018 (2-year follow-up) data in patients with R/M SCCHN post-platinum therapy from CheckMate 141

CHECKMATE 141 STUDY DESIGN

Randomized, open-label, phase 3 trial (NCT02105636)

• Data cutoff: September 2017 (minimum follow-up of 24.2 months)

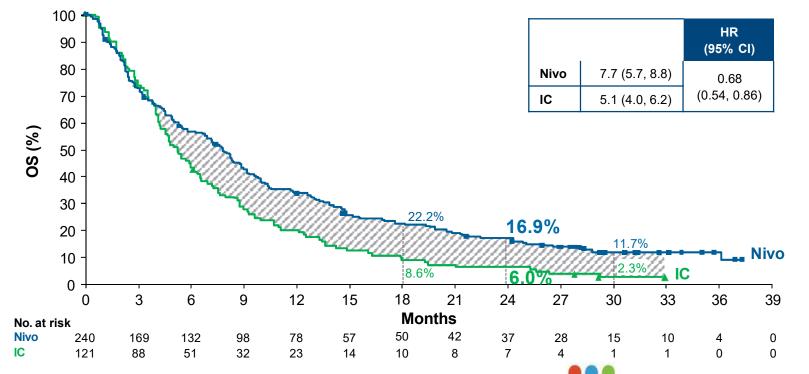
DOR = duration of response; HPV = human papillomavirus; IV = intravenous; OPC = oropharyngeal cancer; ORR = objective respons e rate; OS = overall survival; PD-L1 = programmed death ligand 1; PFS = progression-free survival; QoL = quality of life

BASELINE CHARACTERISTICS

• Baseline characteristics were generally balanced between treatment arms, as previously reported

Patients, n (%)	Nivolumab (n = 240)	IC (n = 121)
Tumor PD-L1 expression ^a		
≥1% (PD-L1 expressors)	96 (40.0)	63 (52.1)
<1% (PD-L1 non-expressors)	76 (31.7)	40 (33.1)
Not quantifiable ^b	68 (28.3)	18 (14.9)
HPV status ^c		
Positive	64 (26.7)	29 (24.0)
Negative	56 (23.3)	37 (30.6)
Unknown/not reported	120 (50.0)	55 (45.5)

^aPD-L1 status w as determined using the Dako PD-L1 IHC 28-8 pharmDx test

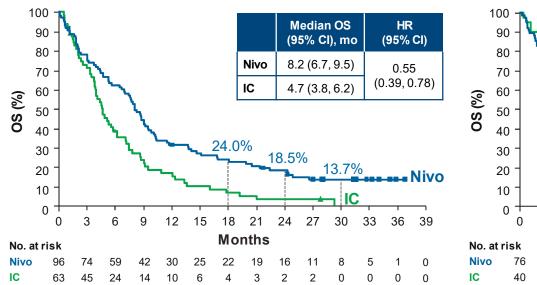

^bTumor not present, sample not provided, or sample could not be processed

°HPV status w as assessed using p16 immunohistochemical testing; required only for patients w ith OPC

SUSTAINED OS BENEFIT IN THE OVERALL (ITT) POPULATION

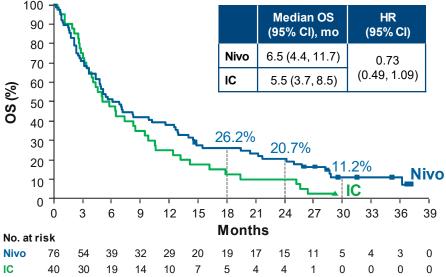
- Nivolumab reduced the risk of death by 32% vs IC
- The 24-month OS rate was nearly tripled with nivolumab compared with IC

Symbols represent censored observations. ITT = intent-to-treat; Nivo, nivolumab


7

FLORIDA PRECISION

ONCOLOGY

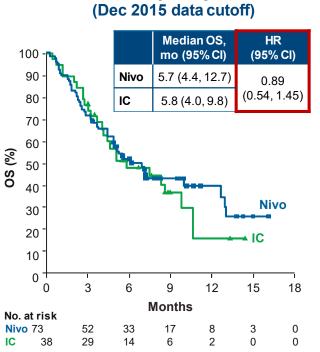

OS BENEFIT ACROSS PD-L1 EXPRESSORS AND NON-EXPRESSORS

- OS rates at 18, 24, and 30 months were similar in both groups
 - PD-L1 expressors: nivolumab continued to provide OS benefit, with 45% reduction in risk of death vs IC
 - PD-L1 non-expressors: nivolumab resulted in 27% reduction in risk of death vs IC

PD-L1 Expressors (≥1%)

PD-L1 Non-Expressors (<1%)

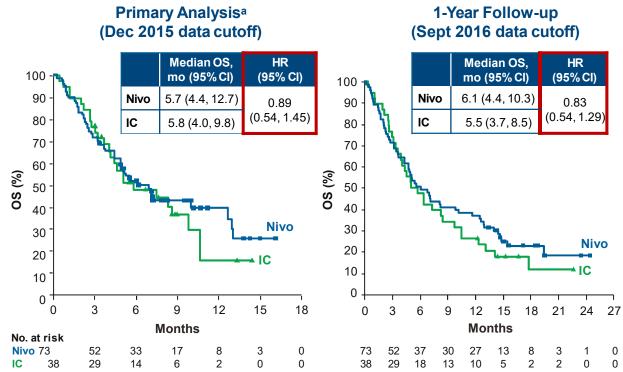
Symbols represent censored observations



OS IN PD-L1 NON-EXPRESSORS In PD-L1 non-expressors, the HR for risk of death with nivolumab vs IC consistently trended lower with longer follow-up

OS IN PD-L1 NON-EXPRESSORS (<1%)

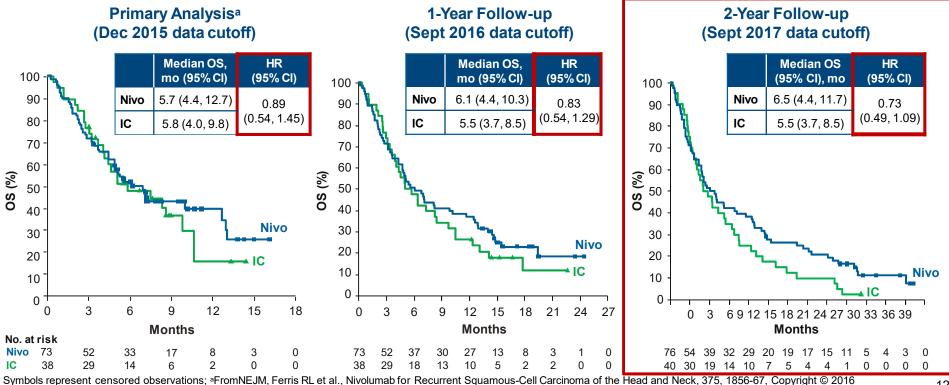
• In PD-L1 non-expressors, the HR for risk of death with nivolumab vs IC consistently trended lower with longer follow-up


Primary Analysis^a

Symbols represent censored observations; ^aFromNEJM, Ferris RL et al., Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, 375, 1856-67, Copyright © 2016 Massachusetts Medical Society. Reprinted with permission fromMassachusetts Medical Society.

OS IN PD-L1 NON-EXPRESSORS (<1%)

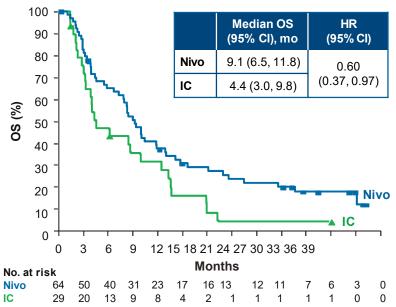
• In PD-L1 non-expressors, the HR for risk of death with nivolumab vs IC consistently trended lower with longer follow-up



Symbols represent censored observations; ^aFromNEJM, Ferris RL et al., Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, 375, 1856-67, Copyright © 2016 Massachusetts Medical Society. Reprinted with permission fromMassachusetts Medical Society.

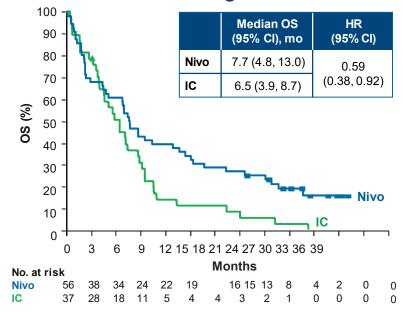
OS IN PD-L1 NON-EXPRESSORS (<1%)

• In PD-L1 non-expressors, the HR for risk of death with nivolumab vs IC consistently trended lower with longer follow-up



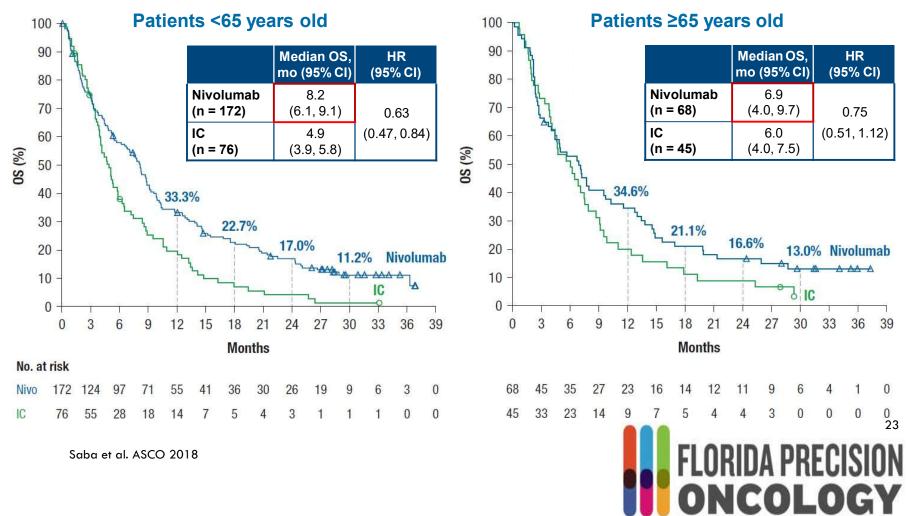
Massachusetts Medical Society, Reprinted with permission from Massachusetts Medical Society,

FLORIDA PRECISION ONCOLOGY


OS BY HPV STATUS

 Nivolumab demonstrated survival benefit in patients with HPV-positive and HPV-negative tumors, with comparable HRs for risk of death vs IC

HPV-Positive


HPV-Negative

aHPV testing was required only for patients with OPC; symbols represent censored observations

FLORIDA PRECISION ONCOLOGY

OVERALL SURVIVAL BY AGE

SUBSEQUENT THERAPIES AMONG PATIENTS WHO DISCONTINUED TREATMENT

 Nivolumab continued to improve in OS vs IC in spite of subsequent immunotherapy in 10.1% of patients in the IC arm

	Nivolumab	IC
Patients, n (%)	(n = 228)	(n = 109)
Any therapy ^a	91 (39.9)	43 (39.4)
Radiotherapy	30 (13.2)	14 (12.8)
Surgery	2 (0.9)	3 (2.8)
Systemic therapy	82 (36.0)	36 (33.0)
Taxanes	35(15.4)	11 (10.1)
Monoclonal antibodies (bevacizumab, cetuximab)	31 (13.6)	8 (7.3)
Other – approved agents	31 (13.6)	12 (11.0)
Folic acid analogue	22 (9.6)	7 (6.4)
Platinum-based chemotherapy	16 (7.0)	11 (10.1)
Other – experimental agents	15 (6.6)	3 (2.8)
Immunotherapy (nivolumab, pembrolizumab, durvalumab, urelumab)	12 (5.3)	11 (10.1)
PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, durvalumab)	9 (3.9)	10 (9.2)
Unassigned	1 (0.4)	0

Patients may have received more than 1 type of subsequent therapy, which was defined as non-study anticancer therapy started on or after first dosing date (or randomization date, if patient w as not treated)

TREATMENT-RELATED ADVERSE EVENTS

- The safety profile of nivolumab remained consistent with previous analyses,^{1,2} and manageable
 - Fewer grade 3–4 events in the nivolumab arm vs the IC arm
 - No new safety signals were reported
- The incidence of serious TRAEs was lower in the nivolumab arm (7.2%) vs the IC arm (15.3%)
- Rates of death due to drug toxicity remained unchanged from the primary analysis¹

	Nivoluma	b (n = 236)	IC (n = 111)		
	Any grade	Grade 3–4	Any grade	Grade 3–4	
Any TRAE, n (%)	146 (61.9)	36 (15.3)	88 (79.3)	41 (36.9)	
TRAEs in ≥15% of patients, n (%)					
Fatigue	37 (15.7)	5 (2.1)	20 (18.0)	3 (2.7)	
Nausea	22 (9.3)	0	23 (20.7)	1 (0.9)	
Anemia	12 (5.1)	3 (1.3)	19 (17.1)	6 (5.4)	
Asthenia	10 (4.2)	1 (0.4)	17 (15.3)	2 (1.8)	

1. Ferris RL, et al. *N Engl J Med* 2016;375:1856–1867. 2. Gillison ML, et al. *The Oncologist* 2018; In Press. TRAE = treatment-related adverse event

CONCLUSIONS

- Nivolumab improves OS vs IC in patients with R/M SCCHN post–platinum therapy, in the primary analysis of a randomized, phase 3 study (CheckMate 141)
 - Primary analysis: HR = 0.70 (97.73% CI: 0.51, 0.96); P = 0.01
 - 2-year follow-up: HR = 0.68 (95% CI: 0.54, 0.86)
- With long-term (2-year) follow-up, nivolumab demonstrated prolonged OS benefit compared with IC in the overall population with
 - Efficacy across PD-L1 expressors and non-expressors
 - Efficacy regardless of tumor HPV status
 - A favorable safety profile compared with IC maintained; no new safety signals observed
 - No observed differences in baseline characteristics or safety profile among longterm survivors in the nivolumab arm compared with the overall nivolumab population
- Nivolumab is an established therapeutic option in R/M SCCHN post-platinum therapy, with demonstrated long-term benefits in OS and safety compared with monotherapy options

UPDATED SURVIVAL RESULTS OF THE KEYNOTE-040 STUDY OF PEMBROLIZUMAB VS SOC CHEMOTHERAPY FOR RECURRENT OR METASTATIC HNSCC

FLORIDA PRECISION

DNCOLOG

Denis Soulières et al. AACR 2018

PEMBROLIZUMAB AND HNSCC

Study	Population	ORR	Median DOR	Median PFS
KEYNOTE-0121	PD-L1–positive R/M HNSCC (N = 61)	<mark>1</mark> 8%	12.2 months	2 months
KEYNOTE-012 expansion cohort ²	R/M HNSCC of any PD-L1 expression (N = 132)	Total: 18% PD-L1⁺: 22% PD-L1⁻: 4%	Not reached	2 months
KEYNOTE-055 ³	Platinum and cetuximab- refractory HNSCC of any PD-L1 expression (N = 171)	Total: 16% PD-L1⁺: 18% PD-L1⁻: 12%	8 months	2.1 months

1. Seiwert TY et al. Lancet Oncol 2016;17:956-965. 2. Chow LQM et al. J Clin Oncol 2016;34:3838-3845. 3. Bauml J et al. J Clin Oncol 2017;35:1542-1549.

R 1:1

Key Eligibility Criteria

- SCC of the oral cavity, oropharynx, hypopharynx, or larynx
- PD after platinum-containing regimen for R/M HNSCC or recurrence or PD within 3-6 mo of multimodal therapy using platinum^a
- ECOG PS 0 or 1
- Known p16 status (oropharynx)^b
- Tissue sample^c for PD-L1 assessment^d

Stratification Factors

- ECOG PS (0 vs 1)
- p16 status^b (positive vs negative)
- PD-L1 TPS^d (≥50% vs <50%)

Pembrolizumab 200 mg IV q3w for 2 y

Methotrexate 40 mg/m² qw^e OR Docetaxel 75 mg/m² q3w OR Cetuximab 250 mg/m² qw^f

 Clinically stable patients with radiologic PD could continue treatment until imaging performed ≥4 wk later confirmed PD

ARIDA PRECIS

Crossover not permitted

^aLimit of 2 prior therapies for R/M HNSCC. ^bAssessed using the CINtec p16 Histology assay (Ventana); cutpoint for positivity = 70%. ^cNewly collected preferred. ^dAssessed using the PD-L1 IHC 22C3 pharmDx assay. TPS, tumor proportion score = % of tumor cells with membranous PD-L1 expression. ^eCould be increased to 60 mg/m² qw in the absence of toxicity. ^fFollowing a loading dose of 400 mg/m².

Cohen E, et al. Ann Oncol. 2017;28(Suppl 5): Abstract LBA45_PR.

KEYNOTE – 040: PRIMARY AND UPDATED ANALYSES

- Primary analysis presented at ESMO 2017
 - Prespecified significance boundary: P = 0.0175
 - Data cutoff date: May 15, 2017
 - No. of Death: 377 (data outstanding for 11 patients)
 - OS: HR 0.81 (95% CI 0.66-0.99), P= 0.02024
- Updated analysis
 - Same data cutoff date: May 15, 2017 (i.e., update is without extending f/u duration)
 - Full acquisition of survival status, including the 11 pts previously outstanding
 - No. of death after acquisition of survival status: 388 RIDA PRECISION

Cohen E, et al. Ann Oncol. 2017;28(Suppl 5): Abstract LBA45_PR.

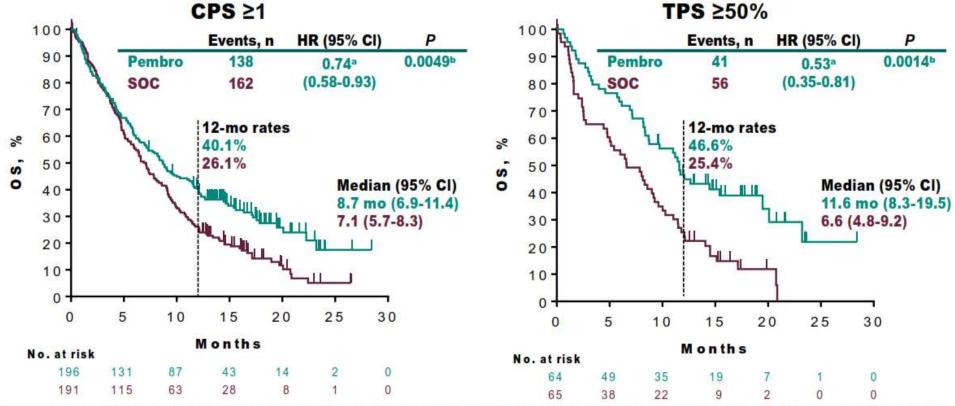
KEYNOTE – 040: BASELINE CHARACTERISTICS

Characteristic, n (%)	Pembro N = 247	SOC N = 248
Age, median (range)	60 (<mark>1</mark> 9-85)	60 (34-78)
Male	207 (83.8)	205 (82.7)
ECOG PS 1	176 (71.3)	180 (72.6)
Current/former smoker	179 (72.5)	182 (73.4)
Region of enrollment		
Europe	147 (59.5)	158 (63.7)
North America	73 (29.6)	60 (24.2)
Rest of world	27 (10.9)	30 (12.1)

Characteristic, n (%)	Pembro N = 247	SOC N = 248
p16 positive (oropharynx)	61 (24.7)	58 (23.4)
PD-L1 TPS ≥50%	64 (25.9)	65 (26.2)
PD-L1 CPS ≥1	196 (79.4)	191 (77.0)
Prior therapy		
(Neo)adjuvant or definitive	34 (13.8)	40 (16.1)
First line	141 (57.1)	141 (56.9)
Second line	69 (27.9)	64 (25.8)
Third line	3 (1.2)	3 (1.2)

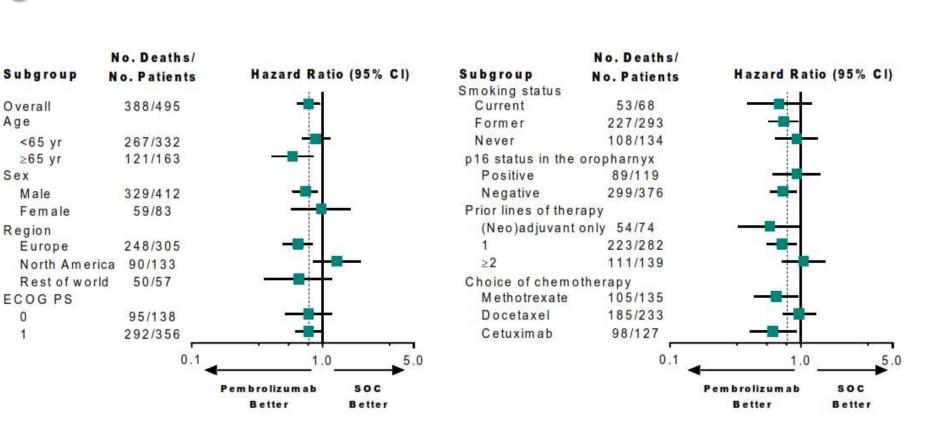
Cohen E, et al. Ann Oncol. 2017;28(Suppl 5): Abstract LBA45_PR.

Updated Overall Survival in ITT Population



^aCox proportional hazards model with treatment as a covariate stratified by the randomization stratification factors. ^bNominal one-sided *P* value based on the log-rank test stratified by the randomization stratification factors. Data cutoff date: May 15, 2017.

Denis Soulières et al. AACR 2018

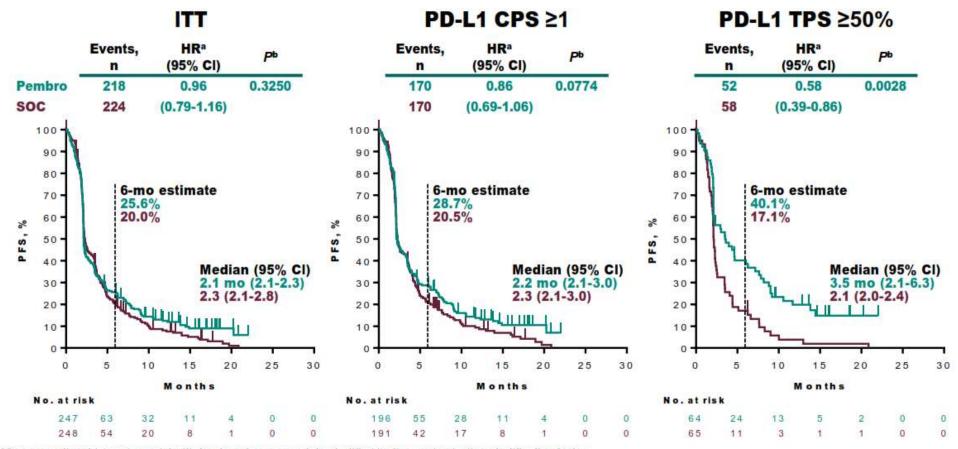

D

Updated Overall Survival by PD-L1 Expression

^aCox proportional hazards model with treatment as a covariate stratified by the randomization stratification factors. ^bNominal one-sided *P* value based on the log-rank test stratified by the randomization stratification factors. Data cutoff date: May 15, 2017.

Denis Soulières et al. AACR 2018

Updated Overall Survival by Subgroups


Unstratified Cox proportional hazards model with treatment as a covariate. Data cutoff date: May 15, 2017.

Denis Soulières et al. AACR 2018

D

UPDATED PROGRESSION-FREE SURVIVAL

^aCox proportional hazards model with treatment as a covariate stratified by the randomization stratification factors.

^bNominal one-sided P value based on the log-rank test stratified by the randomization stratification factors. Data cutoff date: May 15, 2017.

Treatment-Related Aes with Incidence of > 10%

Pembrolizumab (N = 246)		SOC (N	= 234)	
Event, n (%)	Any Grade	Grade 3-5	Any Grade	Grade 3-5
Hypothyroidism	33 (13.4)	1 (0.4)	2 (0.9)	0
Fatigue	31 (12.6)	4 (1.6)	43 (18.4)	2 (0.9)
Diarrhea	20 (8.1)	4 (1.6)	24 (10.3)	1 (0. <mark>4</mark>)
Rash	19 (7.7)	1 (0.4)	34 (14.5)	1 (0.4)
Asthenia	18 (7.3)	1 (0.4)	28 (12.0)	4 (1.7)
Anemia	17 (6.9)	1 (0.4)	33 (14.1)	9 (3.8)
Nausea	12 (4.9)	0	29 (12.4)	1 (0. <mark>4</mark>)
Mucosal inflammation	9 (3.7)	1 (0.4)	30 (12.8)	5 (2.1)
Stomatitis	6 (2.4)	1 (0.4)	28 (12.0)	11 (4.7)
Neutrophil count decreased	3 (1.2)	1 ().4)	25 (10.7)	20 (8.5)
Alopecia	1 (0.4)	0	25 (10.7)	0

AEs did not change in updated analysis. Relationship to treatment was determined by the investigator. Data cutoff date: May 15, 2017.

Denis Soulières et al. AACR 2018

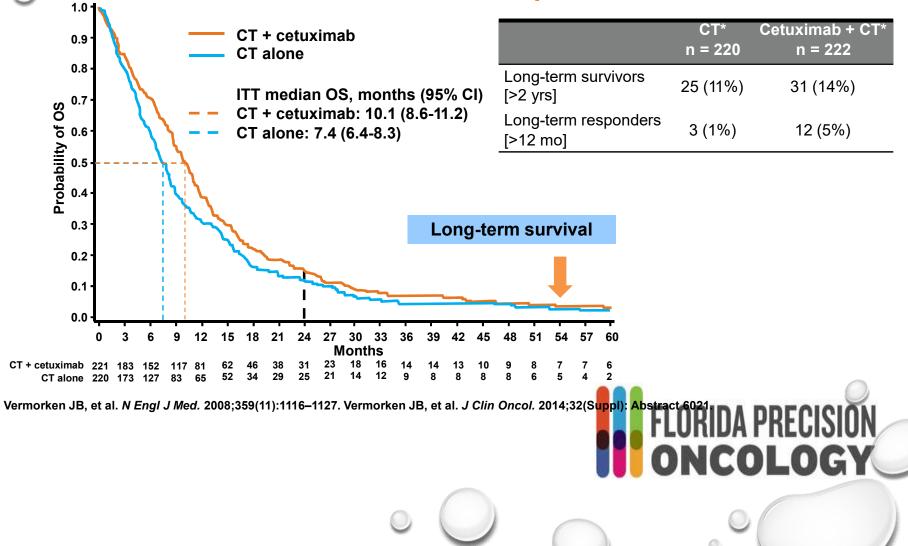
D

SUMMARY

- After all survival data analyzed using the same data cutoff date and comparing with the primary analysis:
 - HR for OS decreased from 0.81 to 0.80
 - P-value for OS decreased from 0.02024 to 0.0161
 - Better treatment effect in patients with PDL1 expressing tumors
 - Apparent effect of immune checkpoint inhibitors in SOC arm after failure of SOC

Summary of IO Efficacy Data in R/M HNSCC

	CheckMa all con		KEYNO [°] all coi		Study 1108 ³ all comers	HAWK ⁴ PD-L1 + only	NCT01375842 ⁵ all comers
Treatment	Nivo N = 240	SOC N = 121	Pembro N = 247	SOC N = 248	Durva N = 62	Durva N = 111	Atezo N = 32
ORR, %	13.3	5.8	14.6	10.1	11	16.2	22
mPFS, mo	1.0	2.3	2.1	2.3		2.1	2.6
mOS, mo	7.7	5.1	8.4	7.1	8.9	7.1	6.0
12-mo OS rate, %	34%	19.7	37.3	27.2	42%	33.6	36


Nivo, nivolumab; pembro, pembrolizumab; durva, durvalumab; atezo, atezolizumab; SOC, standard of care

1. Ferris RL, et al. *N Engl J Med.* 2016;375(19):1856-1867. 2. Cohen EE, et al. *Ann Oncol.* 2017;28(Suppl 5): Abstract LBA45_PR. 3. Segal NH, et al. *Ann Oncol.* 2016;27(Suppl 6): Abstract 949O. 4. Zandberg D, *et al. Ann Oncol.* 2017;28(Suppl 5): Abstract 1042O. 5. Bahleda R, et al. *Ann Oncol.* 2017;28(Suppl 5): Abstract 1044O.

D

EXTREME: Grade 3/4 Adverse Events

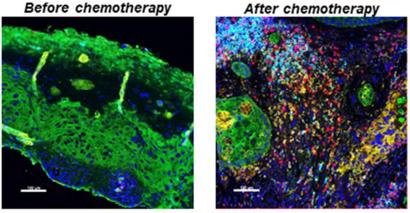
D

	Platinum/5FU	Platinum/	Р
value n (%)	+ Cetuximab [n = 219]	5FU [n = 215]	
Any event	179 (82)	164 (76)	.19
Neutropenia	49 (22)	50 (23)	.91
Anemia	29 (13)	41 (19)	.12
Thrombocytopenia	24 (11)	24 (11)	1.00
Skin reactions	20 (9)	1 (<1)	<.001
Hypokalemia	16 (7)	10 (5)	.31
Cardiac events	16 (7)	9 (4)	.22
Vomiting	12 (5)	6 (3)	.23
Asthenia Anorexia	11 (5)	12 (6)	.83
Hypomagnesemia	11 (5)	3 (1)	.05
Febrile neutropenia	11 (5)	3 (1)	.05
Dyspnea	10 (5)	10 (5)	1.00
	9 (4)	17 (8)	.11
	N	Vermorken JB, et al. New Engl Med 20	DAPRECISION COLOGY
			0

KEYNOTE-048: Phase 3 Study of First-Line Pembrolizumab for Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma (R/M HNSCC)

Barbara Burtness,¹ Kevin Harrington,² Richard Greil,³ Denis Soulières,⁴ Makoto Tahara,⁵ Gilberto de Castro,⁶ Amanda Psyrri,⁷ Neus Basté Rotllan,⁸ Prakash Neupane,⁹ Åse Bratland,¹⁰ Thorsten Fuereder,¹¹ Brett GM Hughes,¹² Ricard Mesia,¹³ Nuttapong Ngamphaiboon,¹⁴ Tamara Rordorf,¹⁵ Wan Zamaniah Wan Ishak,¹⁶ Ananya Roy,¹⁷ Jonathan Cheng,¹⁷ Fan Jin,¹⁷ Danny Rischin¹⁸

¹Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA; ²The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust National Institute of Health Research Biomedical Research Centre, London, UK; ³Paracelsus Medical University, Salzburg Cancer Research Institute, and Cancer Cluster Salzburg, Salzburg, Austria; ⁴Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada; ⁶National Cancer Center Hospital East, Kashiwa, Japan; ⁶Instituto do Cancer do Estado de Sao Paulo, Sao Paulo, Brazil; ⁷National Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece; ⁸Vall d'Hebron University Hospital, Barcelona, Spain (currently at Institut Gustave Roussy, Paris, France); ⁹University of Kansas Medical Center, Kansas City, KS, USA; ¹⁰Oslo University Hospital, Oslo, Norway; ¹¹Medical University of Vienna, Vienna, Austria; ¹²Royal Brisbane and Women's Hospital and University of Queensland, Brisbane, QLD, Australia; ¹³Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; ¹⁴Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; ¹⁵University Hospital, Zurich, Switzerland; ¹⁶University Malaya, Kuala Lumpur, Malaysia; ¹⁷Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁸Peter MacCallum Cancer Centre, Melbourne, VIC, Australia

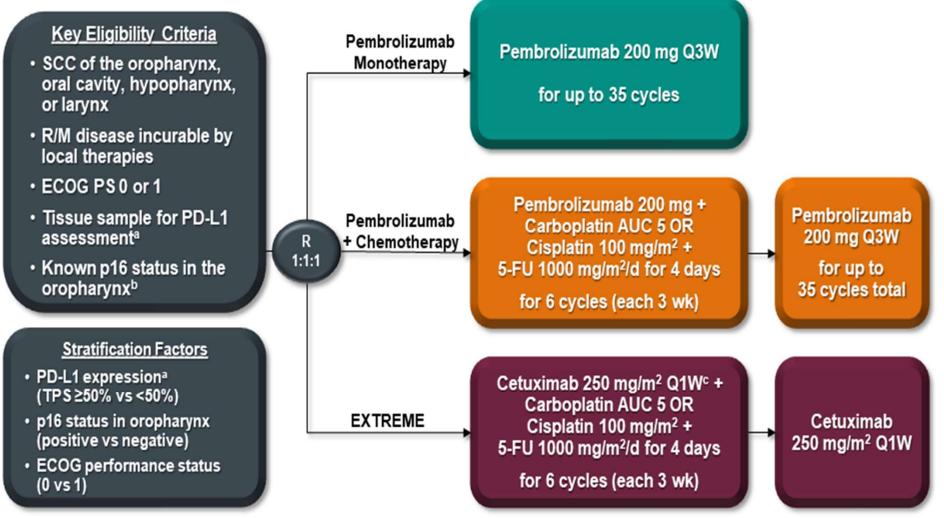

Immunotherapy and HNSCC

- PD-1 inhibitors pembrolizumab and nivolumab are approved for second-line R/M HNSCC treatment^{1,2}
- Higher PD-L1 expression is associated with improved response to pembrolizumab¹
- Chemotherapy is a rational combination partner for anti-PD-1 therapy³
 - Disrupts tumor architecture and may overcome immune exclusion
 - Results in antigen shedding
 - Induces rapid disease control

1. Cohen EA et al. Ann Oncol 2017;28(suppl 5): abstr LBA45_PR.

- 2. Ferris RL et al. N Engl J Med 2016;375:1856-67.
- 3. Economopoulou P et al. Ann Oncol 2016;27:1675-85.

Chemotherapy induces tumor infiltration by lymphocytes

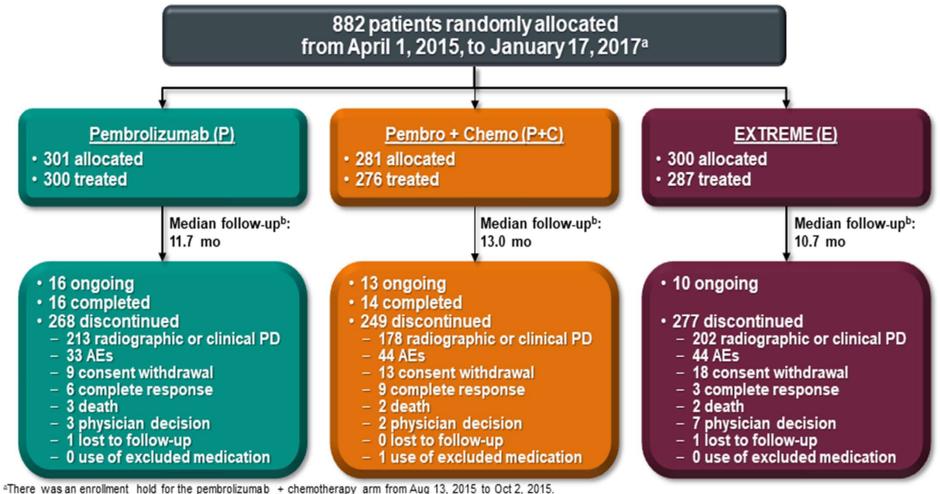


DAPI / CK / CD4 / CD8 / CD20

Images courtesy of D Rimm and WG Yarbrough, Yale School of Medicine and Yale Cancer Center.

KEYNOTE-048 Study Design (NCT02358031)

Assessed using the PD-L1 IHC 22C3 pharmDx assay (Agilent). TPS = tumor proportion score = % of tumor cells with membranous PD-L1 expression. Assessed using the CINtec p16 Histology assay (Ventana); cutpoint for positivity = 70%. Following a loading dose of 400 mg/m².


Study End Points: Pembrolizumab vs EXTREME and Pembrolizumab + Chemotherapy vs EXTREME

Assessed at a central laboratory using the PD-L1 IHC 22C3 pharmDx assay. CPS = combined positive score = number of PD-L1-positive cells (tumor cells, lymphocytes, macrophages) divided by total number of tumor cells × 100.
Assessed per RECIST v1.1 by blinded, independent central review.

°To be presented at a later date.

Disposition of All Randomized Patients

I ONCOLOGY

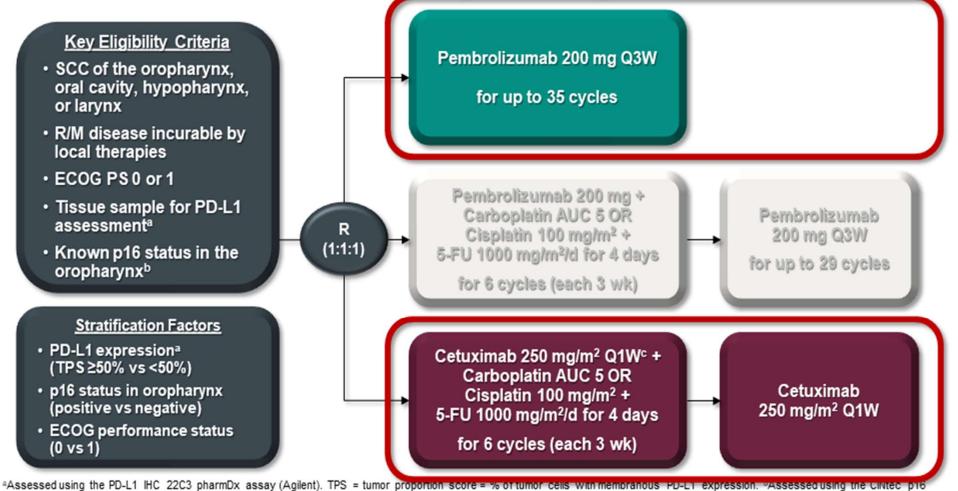
There was an enrollment hold for the pembrolizumab + chemotherapy arm from Aug 13, 2015 to Oct 2, 2015.
Defined as the time from randomization to the date of death or database cutoff date of Jun 13, 2018, if the patient was alive.

FLORIDA PRECISION ONCOLOGY

Baseline Characteristics, ITT Population

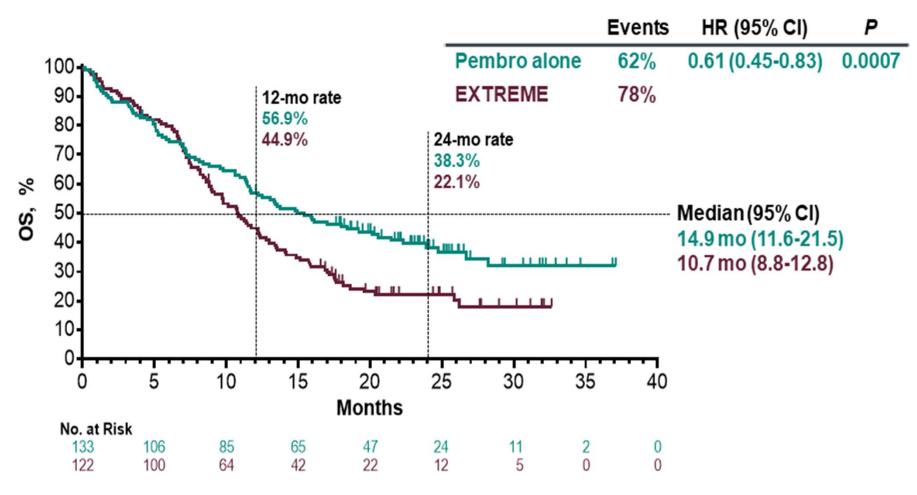
	Pembro Alone	vs EXTREME	Pembro + Chemo vs EXTREME		
Characteristic, n (%)	Pembro N = 301	EXTREME N = 300	Pembro + Chemo N = 281	EXTREME N = 278 ^a	
Age, median (range), yrs	62 (22-94)	61 (24-84)	61 (20-85)	61 (24-84)	
Male	250 (83.1)	261 (87.0)	224 (79.7)	242 (87.1)	
ECOG PS 1	183 (60.8)	183 (61.0)	171 (60.9)	170 (61.2)	
Current/former smoker	239 (79.4)	234 (78.0)	224 (79.7)	215 (77.3)	
p16 positive (oropharynx)	63 (20.9)	67 (22.3)	60 (21.4)	61 (21.9)	
PD-L1 status					
TPS ≥50%	67 (22.3)	66 (22.0)	66 (23.5)	62 (22.3)	
CPS ≥20	133 (44.2)	122 (40.7)	126 (44.8)	110 (39.6)	
CPS≥1	257 (85.4)	255 (85.0)	242 (86.1)	235 (84.5)	
Disease status ^b					
Metastatic	216 (71.8)	203 (67.7)	201 (71.5)	187 (67.3)	
Recurrent only ^c	82 (27.2)	94 (31.3)	76 (27.0)	88 (31.7)	

Patients randomized to EXTREME during the pembro + chemo enrollment hold were excluded from all pembro + chemo vs EXTREME efficacy comparisons.


b3 patients in the pembro arm, 3 patients in the EXTREME arm, and 4 patients in the pembro + chemo arm had neither metastatic nor recurrent disease.

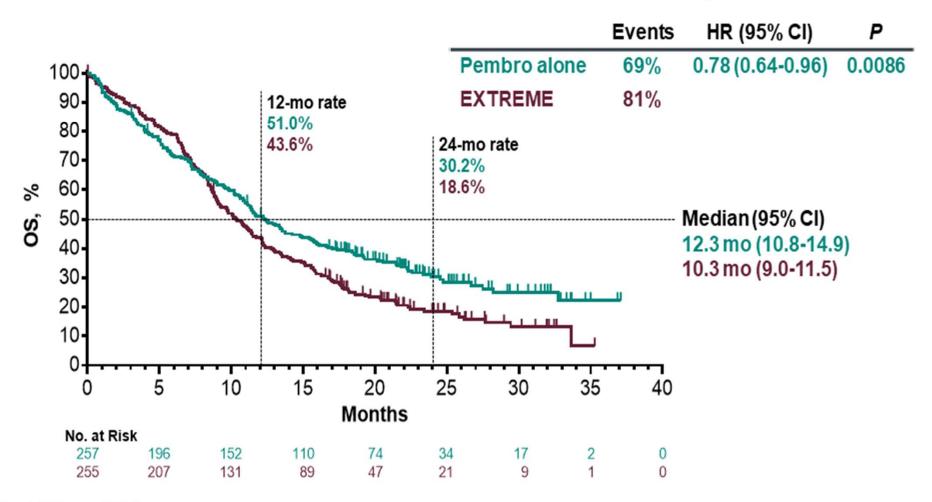
Includes locally recurrent disease and disease that spread to cervical lymph nodes. Data cutoff date: Jun 13, 2018.

FLUKIDA PKECISIUN


DNCOLOGY

KEYNOTE-048 Study Design (NCT02358031)

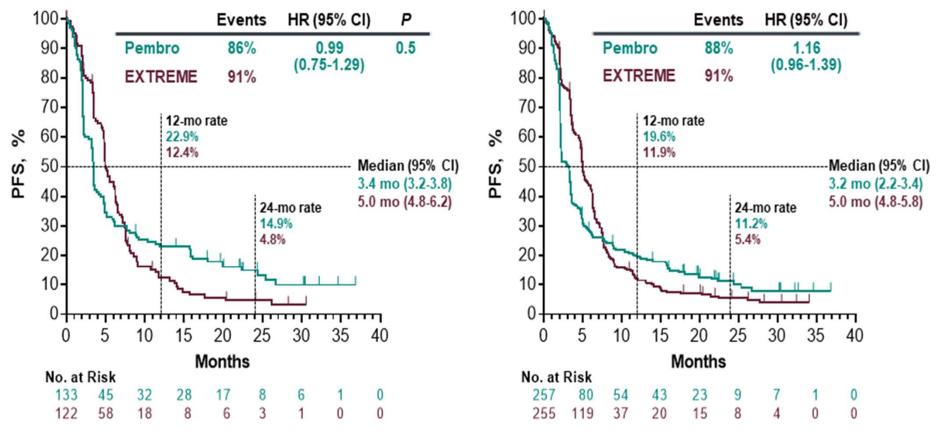
Histology assay (Ventana); cutpoint for positivity = 70%. Following a loading dose of 400 mg/m².


Overall Survival: P vs E, CPS ≥20 Population

Data cutoffdate: Jun 13, 2018.

Overall Survival: P vs E, CPS ≥1 Population

Data cutoffdate: Jun 13, 2018.

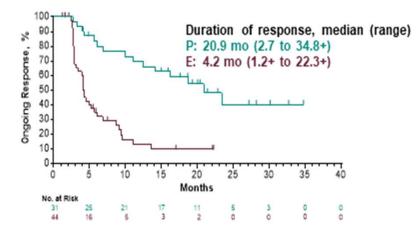


Progression-Free Survival: P vs E

CPS ≥20

CPS ≥1

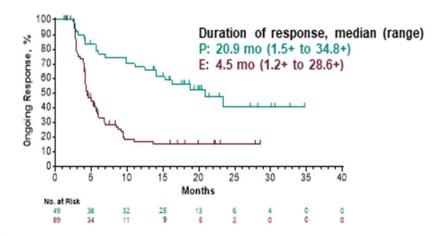
I ONCOLOGY



Progression-free survival assessed per RECIST v1.1 by blinded, independent central radiologic review. Data cutoff date: Jun 13, 2018.

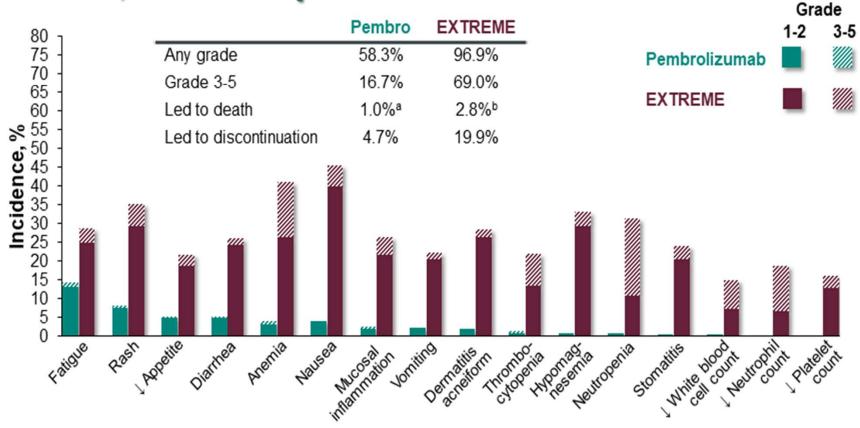
Response Summary, P vs E

CPS ≥20

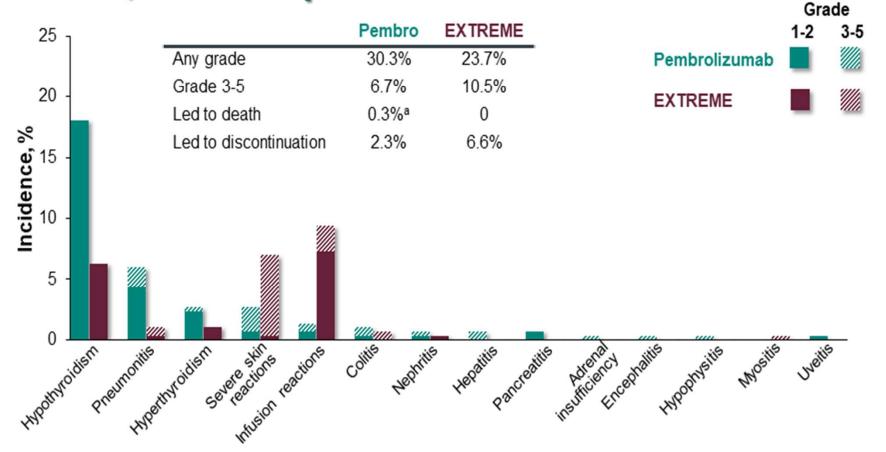

Confirmed Response, n (%)	Pembro N = 133	EXTREME N = 122	
ORR	31 (23.3)	44 (36.1)	
CR	10 (7.5)	4 (3.3)	
PR	21 (15.8)	40 (32.8)	
SD	40 (30.1)	42 (34.4)	
PD	42 (31.6)	13 (10.7)	
Non-CR/non-PD ^a	8 (6.0)	6 (4.9)	
Not evaluable or assessed ^b	12 (9.0)	17 (13.9)	

"Patients without measurable disease per central review at baseline who did not have CR or PD. "Patients who did not have a post-baseline imaging assessment evaluable for response or who did not have post-baseline imaging. Response assessed per RECIST v1.1 by blinded, independent central radiologic review. Data cutoff date: Jun 13, 2018.

Confirmed Response, n (%)	Pembro N = 257	EXTREME N = 255	
ORR	49 (19.1)	89 (34.9)	
CR	14 (5.4)	7 (2.7)	
PR	35 (13.6)	82 (32.2)	
SD	72 (28.0)	83 (32.5)	
PD	100 (38.9)	34 (13.3)	
Non-CR/non-PD ^a	11 (4.3)	11 (4.3)	
Not evaluable or assessed ^b	25 (9.7)	38 (14.9)	


CPS ≥1

ONCOLOGY

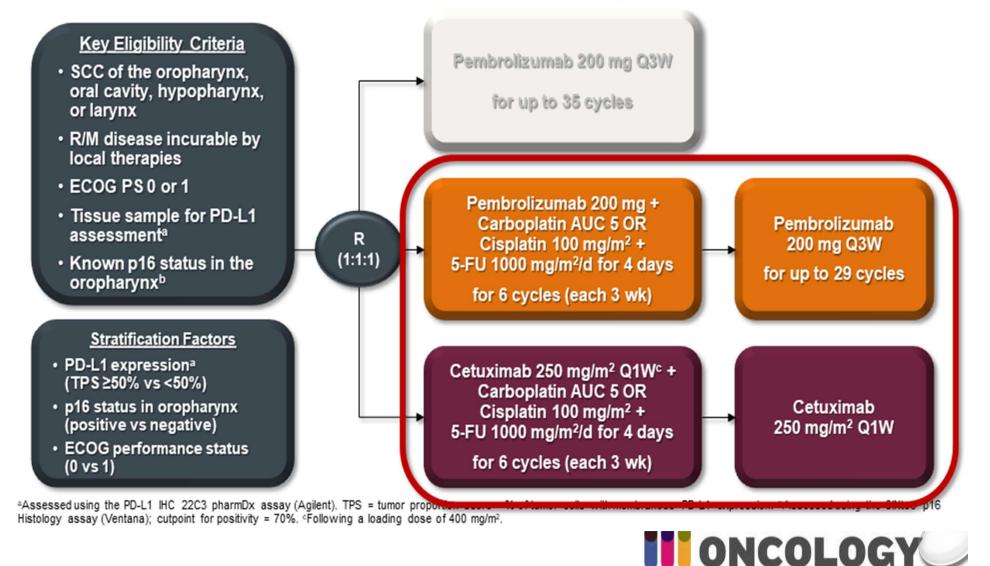

ONCOLOGY

Treatment-Related AEs With Incidence ≥15%, P vs E, Total Population

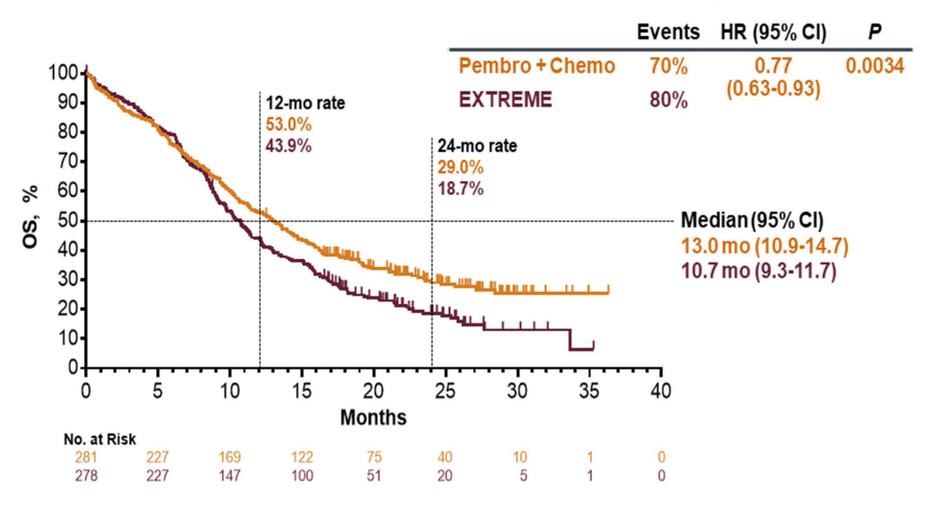
Median (range) treatment duration was 3.5 mo (0.03-24.2) for pembrolizumab and 4.9 mo (0.03-35.3) for EXTREME. Autoinflammatory disease, disseminated intravascular coagulation, and pneumonitis (n=1 each). Pneumonia (n=3), sepsis (n=2), and hypoxia, osteomyelitis, and pulmonary artery thrombosis (n=1 each). Data cutoff date: Jun 13, 2018.

Immune-Mediated AEs and Infusion Reactions, P vs E, Total Population

Pneumonitis (n=1).

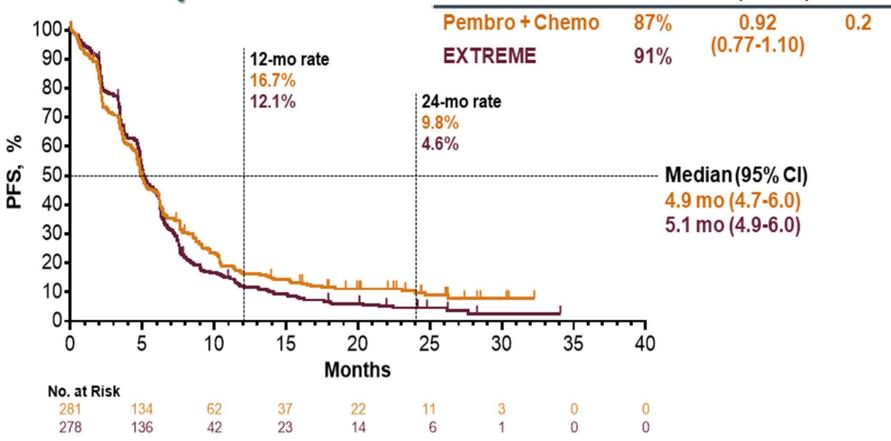

Considered regardless of attribution to treatment or immune relatedness by the investigator. Related terms included in addition to preferred terms listed. Data cutoff date: Jun 13, 2018.

Summary and Conclusions: Pembrolizumab Monotherapy vs EXTREME


- Pembrolizumab significantly improved OS vs EXTREME in the PD-L1 CPS ≥20 (HR 0.61, P = 0.0007) and CPS ≥1 (HR 0.78, P = 0.0086) populations
 - No PFS benefit for pembrolizumab
 - Although pembrolizumab had a lower ORR, responses were substantially more durable
- Pembrolizumab had a favorable safety profile vs EXTREME
 - Lower incidence of any-grade, grade 3-4, and grade 5 treatment-related AEs
 - Lower incidence of treatment-related AEs leading to discontinuation
 - Safety profiles as expected for pembrolizumab and EXTREME
- Data support pembrolizumab monotherapy as a new first-line standard-of-care for R/M HNSCC that expresses PD-L1

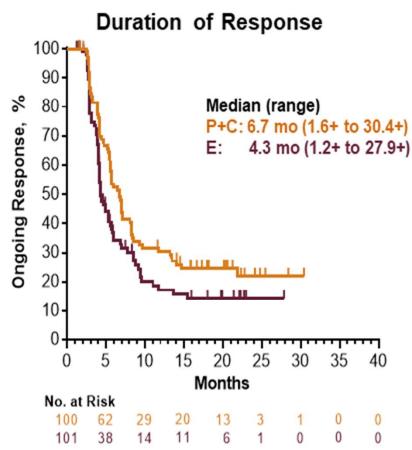
KEYNOTE-048 Study Design (NCT02358031)

Overall Survival: P+C vs E, Total Population


Data cutoffdate: Jun 13, 2018.

IONCOLOGY

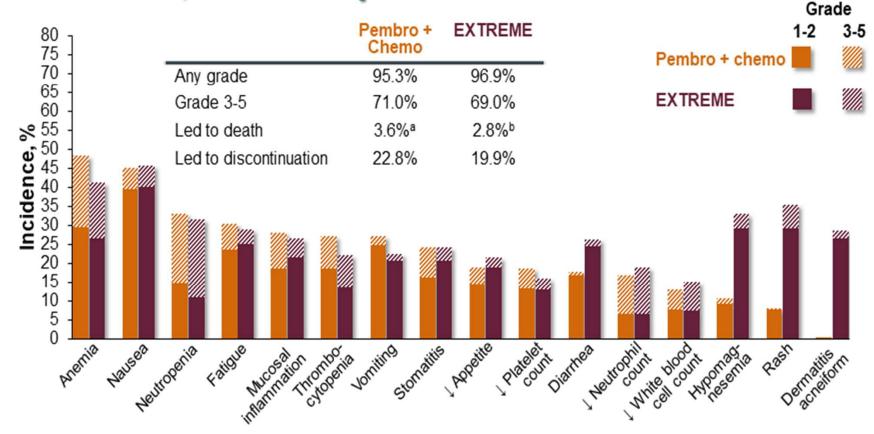
Р


Progression-Free Survival: P+C vs E, Total Population Events HR (95% CI)

Progression-free survival assessed per RECIST v1.1 by blinded, independent central radiologic review. Data cutoff date: Jun 13, 2018.

Response Summary, P+C vs E, Total Population

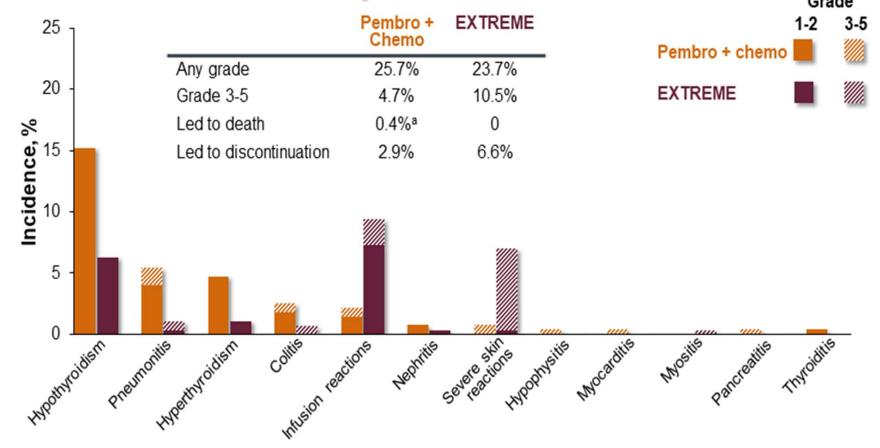
Confirmed Response, n (%)	Pembro + Chemo N = 281	EXTREME N = 278
ORR	100 (35.6)	101 (36.3)
CR	17 (6.0)	8 (2.9)
PR	83 (29.5)	93 (33.5)
SD	78 (27.8)	94 (33.8)
PD	48 (17.1)	34 (12.2)
Non-CR/non-PD ^a	13 (4.6)	9 (3.2)
Not evaluable or assessed ^b	42 (14.9)	40 (14.4)



ONCOLOGY

*Patients without measurable disease per central review at baseline who did not have CR or PD. Patients who did not have a post-baseline imaging assessment evaluable for response or who did not have post-baseline imaging. Response assessed per RECIST v1.1 by blinded, independent central radiologic review. Data cutoff date: Jun 13, 2018.

ONCOLOGY


Treatment-Related AEs With Incidence ≥15%, P+C vs E, Total Population

Median (range) treatment duration was 5.8 mo (0.1-24.2) for pembrolizumab + chemotherapy and 4.9 mo (0.03-35.3) for EXTREME. ^aSeptic shock (n=5) and cerebral ischemia, hemorrhage, interstitial lung disease, sepsis, and tumor hemorrhage (n=1 each). ^bPneumonia (n=3), sepsis (n=2), and hypoxia, osteomyelitis, and pulmonary artery thrombosis (n=1 each). Data cutoff date: Jun 13, 2018.

ONCOLOG

Immune-Mediated AEs and Infusion Reactions, P+C vs E, Total Population

Pneumonitis (n=1).
Considered regardless of attribution to treatment or immune relatedness by the investigator. Related terms included in addition to preferred terms listed. Data cutoff date: Jun 13, 2018.

Summary and Conclusions: Pembrolizumab + Chemotherapy vs EXTREME

- Pembrolizumab plus chemotherapy with a platinum and 5-FU significantly improved OS vs EXTREME in the total population (HR 0.77, P = 0.0034)
 - No PFS or ORR benefit for pembrolizumab plus chemotherapy
 - Responses to pembrolizumab plus chemotherapy were more durable
- Pembrolizumab plus chemotherapy had a comparable safety profile vs EXTREME
 - Similar incidence of any-grade, grade 3-4, and grade 5 treatment-related AEs
 - No unexpected toxicity in the pembrolizumab + chemotherapy arm
- Data support pembrolizumab plus platinum-based chemotherapy as a new first-line standard-of-care for R/M HNSCC

Overall Survival Hypotheses to be Tested at the Final Analysis

- · Superiority of pembrolizumab alone in the total population
 - At current analysis, pembrolizumab was noninferior to EXTREME in the total population (noninferiority boundary, 1.2)
- Superiority of pembrolizumab plus chemotherapy in the CPS ≥20 population
- Superiority of pembrolizumab plus chemotherapy in the CPS ≥1 population
 Only if superiority in the CPS ≥20 population demonstrated

Ongoing Phase III Studies With Immune Checkpoint On Inhibitors in First-Line R/M HNSCC vs Standard of Care

D

Trial Name (NCT #)	Immunotherapy Agent(s) in Study	Phase	Population	Treatment Arms
CheckMate 651 (NCT02741570)	Nivolumab, Ipilimumab	III	Previously untreated R/M HNSCC, ≥6 months since last dose of	Nivolumab + Ipilimumab vs EXTREME
KESTREL (NCT02551159) completed accrual	Durvalumab Tremelimumab	III	platinum	Durvalumab vs Durvalumab + tremelimumab vs EXTREME
				FLORIDA PRECISION ONCOLOGY
		C		

- Pembrolizumab +/- Chemo is the new standard first- line treatment for R/M HNSCC, recommended by international guidelines
- Nivolumab and pembrolizumab are the standard-of-care options for patients
 with R/M HNSCC after platinum-based therapy

In asymptomatic patients with no rapid progression, immune checkpoint can be continued until further radiographic assessment in 8 weeks

- PD-L1 can not be used as a biomarker in SCCHN
- PD-1/PD-L1 inhibitors are in general well tolerated, but irAEs can develop; early recognition and management are important

QUESTIONS?

