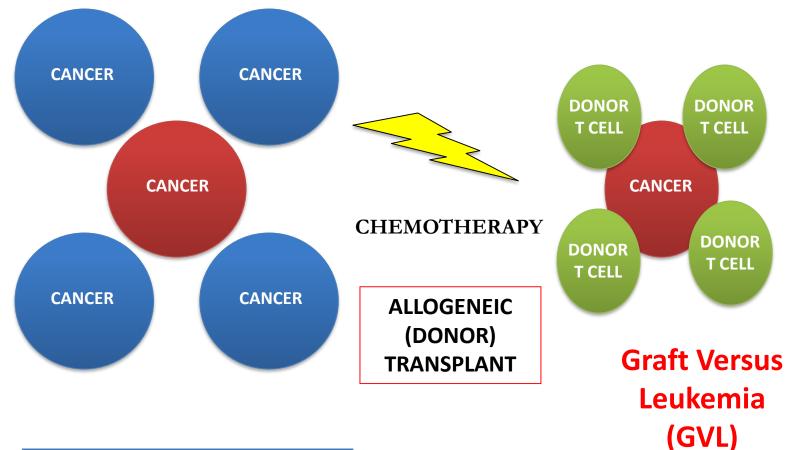

Advances in Cellular Therapy

Mehrdad Abedi MD Director, Alpha Clinic For Stem Cell Therapy Professor of Medicine UC Davis Medical Center



CHEMOTHERAPY SENSITIVE

CHEMOTHERAPY RESISTANT

Principles of Bone Marrow Transplant

CHEMOTHERAPY SENSITIVE

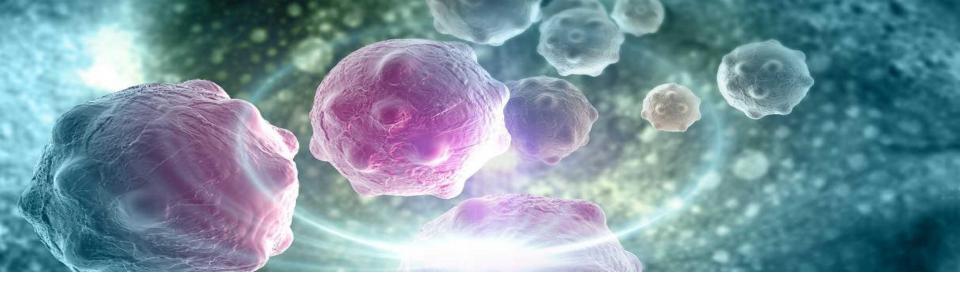
CHEMOTHERAPY RESISTANT

Donor Lymphocyte Infusion (DLI)

DLI is one of the earliest form of T cell therapy and proof of principal for GVL effect

DIAGNOSIS		INCIDENCES OF COMPLETE RESPONSES AFTER DLI		
Chronic myeloid leukaemia:	Overall Chronic phase Accelerated phase Blastic phase	60% ⁹ 76% 33% 17%		
Acute myeloid leukaemia/myelodysplastic syndrome		15-26% ^{9,18}		
Acute lymphoblastic leukaemia		3-15% ^{9,18}		
Chronic lymphocytic leukaemia		29% ⁶⁰		
Multiple myeloma		5-29% ^{18,67}		

Cellular and Gene Therapy used to be a dangerous business.



Science

Breakthrough of the Year Cancer Immunotherapy

T cells on the attack

MAAAS

The New York Times

Patient's Cells Deployed to Attack Aggressive Cancer

A Sickened Body as Cancer Weapon

Harnessing the Power of the Immune System

MEDICAL DISPATCHES | APRIL 23, 2012 ISSUE

Can the body's immune response help treat cancer?

The Washington Post

Health & Science

New therapies raise hope for a breakthrough in tackling cancer

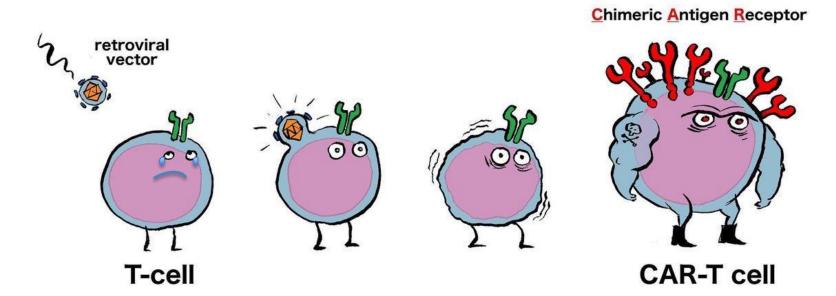
HEALTH

In Girl's Last Hope, Altered Immune Cells Beat Leukemia

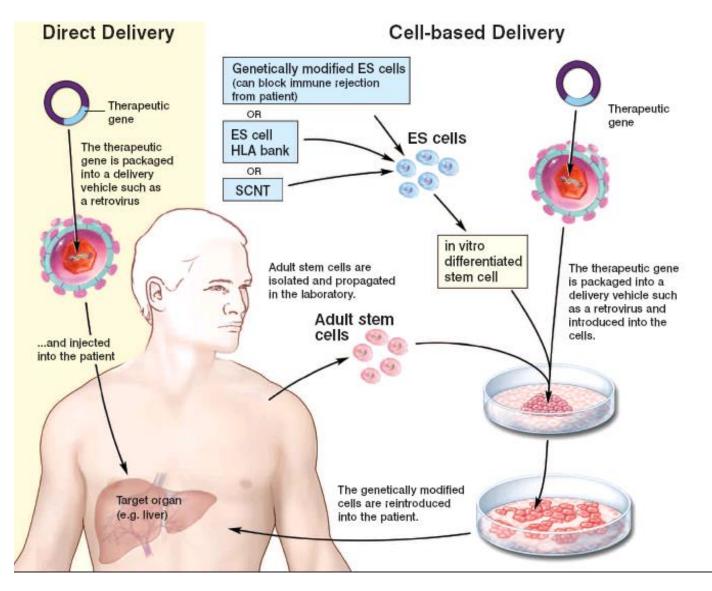
By DENISE GRADY DEC. 9, 2012

Emma Whitehead, with her mother, Kari. Last spring, Emma was near death from acute lymphoblastic leukemia but is now in remission after an experimental treatment at the Children's Hospital of Philadelphia. Jeff Swensen for The New York Times

CT Search of: cart cells - List Result X	·						
\leftarrow $ ightarrow$ C $rac{1}{2}$	(i)					🖸 🖓	
🔅 Most Visited							
					ational Library of Medicine <i>ITrials.gov</i> Find Studies	✓ About Studies ✓ Subm	nit Studies 🔻 🛛 F
			Ho	<u>me</u> > Sear	ch Results		
			М	odify Search	Start Over		
					384 Studies found fo	or: car t cells	
					Also searched for Chimeric antigen receptor, T ly	mphocyte, and Cellular. See Sear	ch Details
List By Topic On Ma	ар	Searc	h Detai	s			
+ Hide Filters							
	Sh	owing:	110 of	384 studies	10 studies per page		
Vilters				Status		Conditions	
Apply Clear	R		Saved		Study Title		
Recruitment Status		1	F	lecruiting	A Clinical Research of CAR T Cells Targeting EpCAM Positive Cancer	 Colon Cancer Esophageal Carcinoma 	 Biological: CAR-
	-					Pancreatic Cancer	
Clinical Study 🔁 :						 (and 3 more) 	
 Not yet recruiting Recruiting 		2		ompleted	CAR-T Cell Immunotherapy for GD2 Positive Glioma Patients	GD2 Positive Glioma	Biological: CAR-
Enrolling by invitation						 CAR-T Cell Immunotherapy 	
Active, not recruiting		3		ompleted	CAR-T Cell Immunotherapy for EphA2 Positive Malignant Glioma Patients	EphA2 Positive Malignant Glioma	Biological: CAR
Suspended						 CAR-T Cell Immunotherapy 	
Terminated		4	F	lecruiting	Safety and Efficacy Evaluation of 4th Generation Safety-engineered CAR T Cells	Sarcoma	Biological: Sarce
Completed					Targeting Sarcomas	Osteoid Sarcoma	
Withdrawn						Ewing Sarcoma	
Unknown status [†]		5		lot yet ecruiting	CAR-T Cell Immunotherapy for Advanced Lung Cancer	Advanced Lung Cancer	 Biological: CAR
Expanded Access 1 :	+	6		ompleted	CD19-targeting CAR T Cells for B Cell Lymphoma	 B Cell Lymphoma 	Biological: CD1
ligibility Criteria							
.ge 📵 :		7	F	lecruiting	PSCA/MUC1/PD-L1/CD80/86-CAR-T Cells Immunotherapy Against Cancers	Lung Cancer	Genetic: PSCA
years OR						• Cancer	CAR-T cells
Age Group 1:						Immunotherapy CAR-T Cell	
Child (birth–17)						- CAN-I CEI	
Adult (18–65)		8	F	ecruiting	CD19 CAR T Cells in Patients With Relapsed or Refractory CD19 Positive B-cell	Lymphomas Non-Hodgkin's	Biological: CD1
Senior (66+)					Lymphoma	B-Cell	
💁 🤶 🚞 🖸	9		All I	/lail Items - m	Re: Network mark 🦉 Untitled - Event 🍊 Total Body Irradia	Search of: car t ce UC Hem	atologic 🛛 🍋

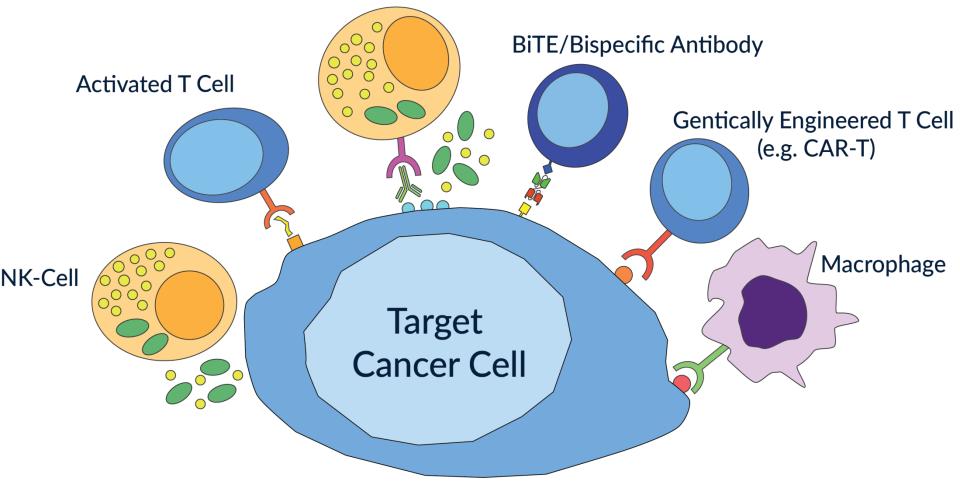

CS NOD Resources O P		
Pub Med.gov	PubMed car-t cell therapy	Search
US National Library of Medicine National Institutes of Health	Create RSS Create alert Advanced	Help
Article types Clinical Trial	Format: Summary - Sort by: Most Recent - Per page: 20 - Send to -	Filters: <u>Manage Filters</u>
Review		Sort by:
Customize	Best matches for car-t cell therapy: CAR T-cell therapy: toxicity and the relevance of preclinical models.	Best match Most recent
Text availability Abstract	Kalaitsidou M et al. Immunotherapy. (2015)	
Free full text	Challenges to chimeric antigen receptor (CAR)-T cell therapy for cancer.	Results by year
Full text	Magee MS et al. Discov Med. (2014) Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting	
Publication dates 5 years	<u>CD4-dependent tumor immunity.</u>	
10 years	Adusumilli PS et al. Sci Transl Med. (2014)	
Custom range	Switch to our new best match sort order	Download CSV
Species Humans		
Other Animals	Search results	Related searches
<u>Clear all</u>	Items: 1 to 20 of 887 <	car-t cell therapy review
Show additional filters		
	CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy.	PMC Images search for car-t cell
	 Liu X, Zhao Y. Curr Res Transl Med. 2018 Apr 21. pii: S2452-3186(18)30024-2. doi: 10.1016/j.retram.2018.04.003. [Epub ahead of 	therapy
	print] Review. PMID: 29691200	
	Similar articles	
	Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered	
	Elimanced Expression of Anti-objis chilment Antigen Receptor in piggybac manaposon-Engineered I Cells.	
	Morita D, Nishio N, Saito S, Tanaka M, Kawashima N, Okuno Y, Suzuki S, Matsuda K, Maeda Y, Wilson	
	MH, Dotti G, Rooney CM, Takahashi Y, Nakazawa Y. Mol Ther Methods Clin Dev. 2017 Dec 22;8:131-140. doi: 10.1016/j.omtm.2017.12.003. eCollection 2018 Mar 16.	
	PMID: 29687032 Similar articles	
	ommar artifico	See more (130)
	 <u>Clinical units to set up chimeric antigen receptor T-cell therapy (CAR T-cells): Based on the</u> recommendations of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy 	
	(SFGM-TC).	Titles with your search terms
	Yakoub-Agha I.	Celyad's novel CAR T-cell therapy for solid malignancies. [Curr Res Transl Med. 2018]
	Curr Res Transl Med. 2018 Apr 20. pii: S2452-3186(18)30022-9. doi: 10.1016/j.retram.2018.04.001. [Epub ahead of print]	
	PMID: 29685843 Similar articles	Insights into cytokine release syndrome and neurotoxicity after CI [Curr Res Transl Med. 2018]
		Erratum for the Research Article: "Constitutive
	 <u>Cellular therapies: Day by day, all the way.</u> Atilla E, Kilic P, Gurman G. 	and TNFα-inducible expre: [Sci Transl Med. 2018]
	Transfus Apher Sci. 2018 Apr 18. pii: S1473-0502(18)30146-0. doi: 10.1016/j.transci.2018.04.019. [Epub ahead of	See more
	print] Review. PMID: 29685392	Find related data
	Similar articles	Find related data

Type of cellular therapy

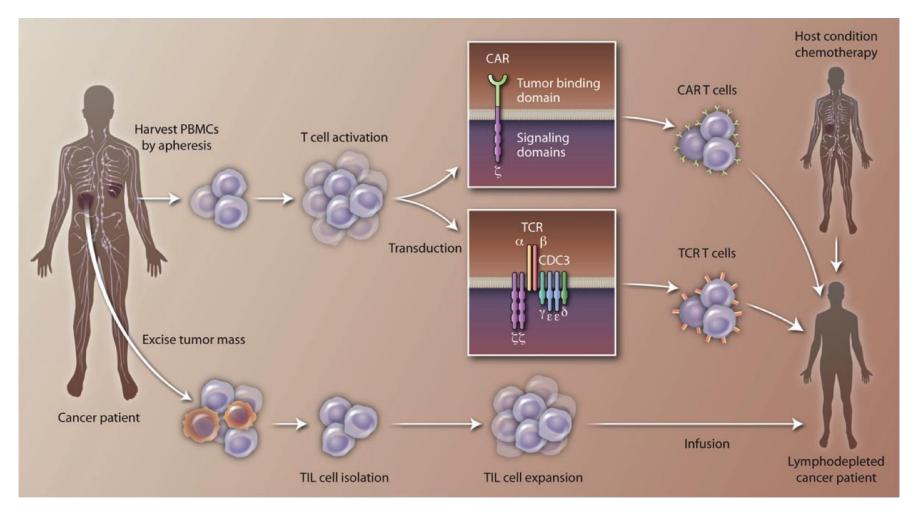

T cell therapy NK Cell therapy Stem cell therapy Dendritic cell therapy Mesenchymal Cell Therapy

Cellular Immunotherapy CAR T Cells

Generating super-soldiers the production of CAR-T cells



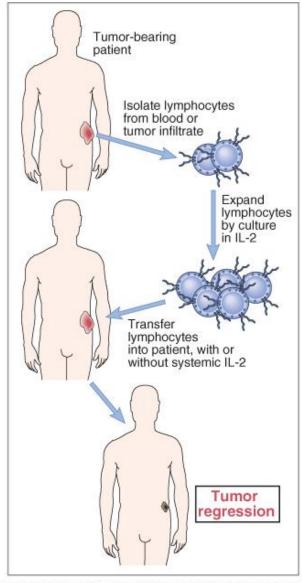
Delivering desired Genes

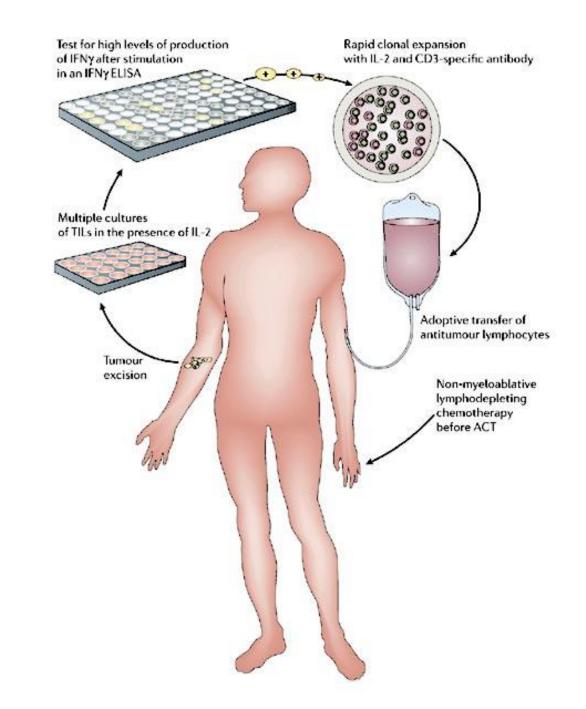


Harnessing the Immune System to Attack Tumors

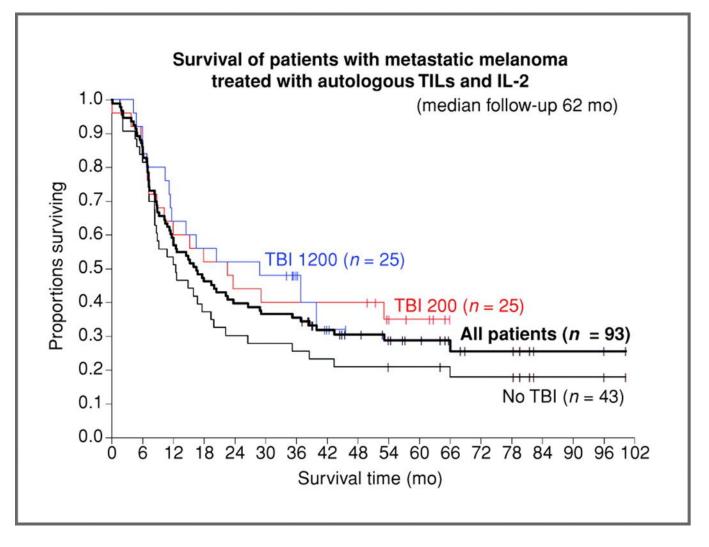
Antibody-Dependent (ADCC)

Adoptive Cell Therapy Approaches

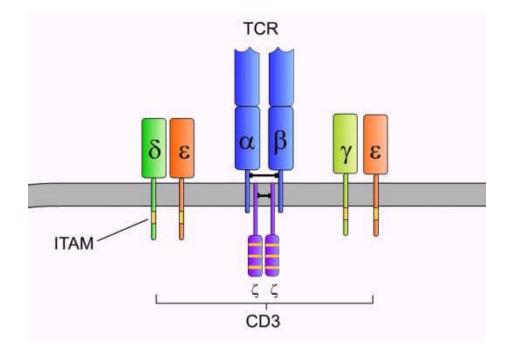


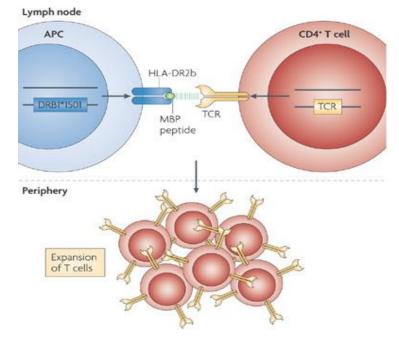

June, Riddell, and Schumacher Science Transl Med 2015

T cell therapies

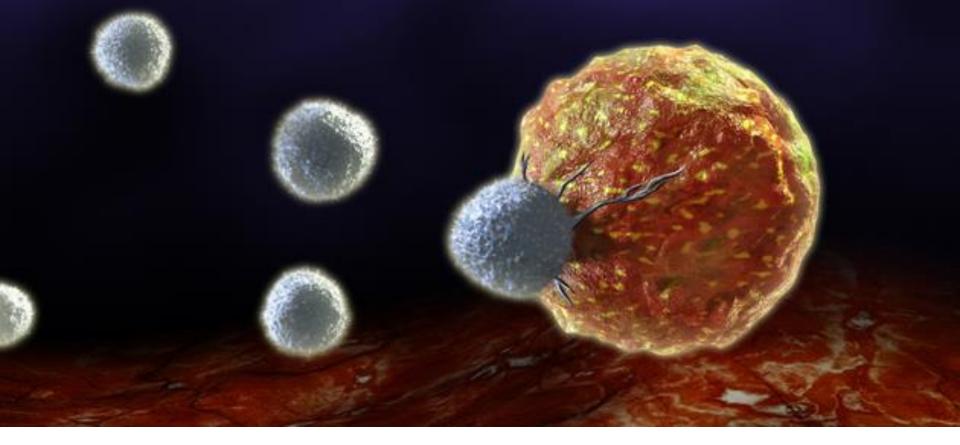

- Bispecific antibody armed T cells
- In vitro activated T cells (including dendritic pulse cells)
- **TIL**(Tumor infiltration T-lymphocytes) and **MIL** (marrow infiltrating lymphocytes) therapies
- **TCR** (T-cell receptor therapy)
- **CAR-T** (Chimeric antigen receptor T-cell therapy)

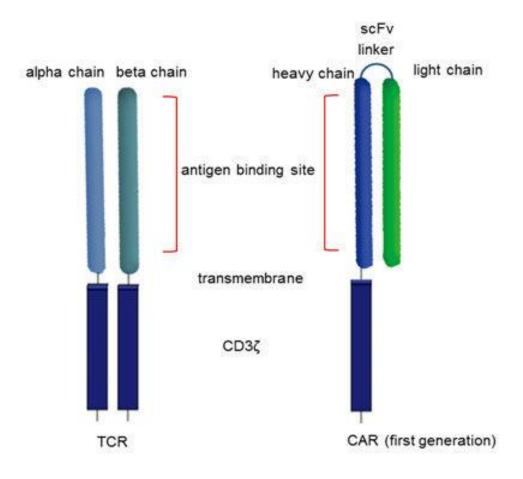
Adoptive cellular therapy





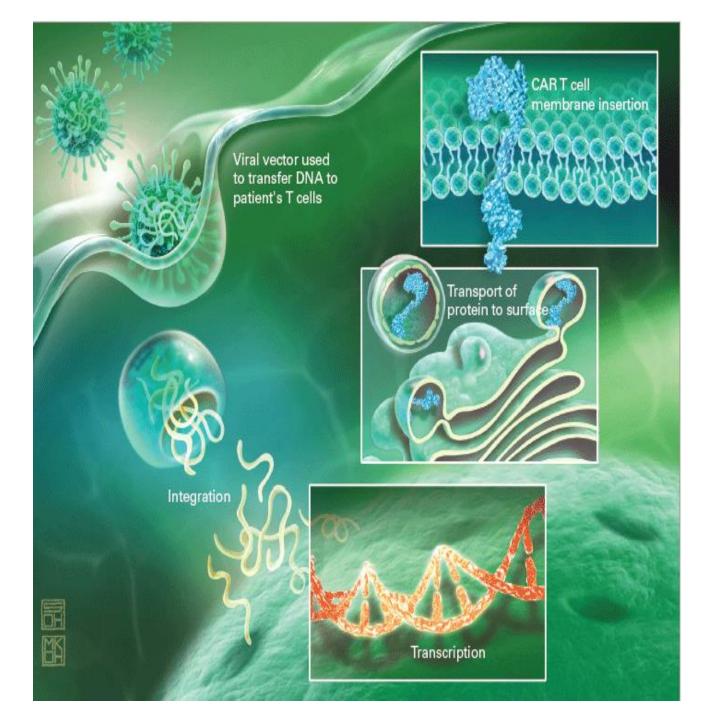
Rosenberg, S. A.et al.Use of tumor infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. Preliminary report. **N. Engl. J. Med. 319, 1676–1680 (1988).**

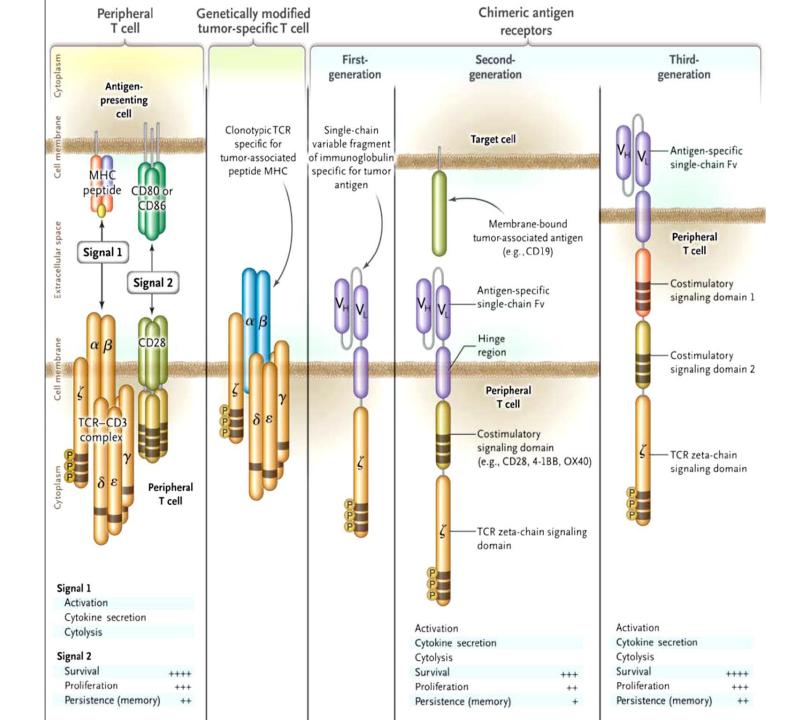

TCR

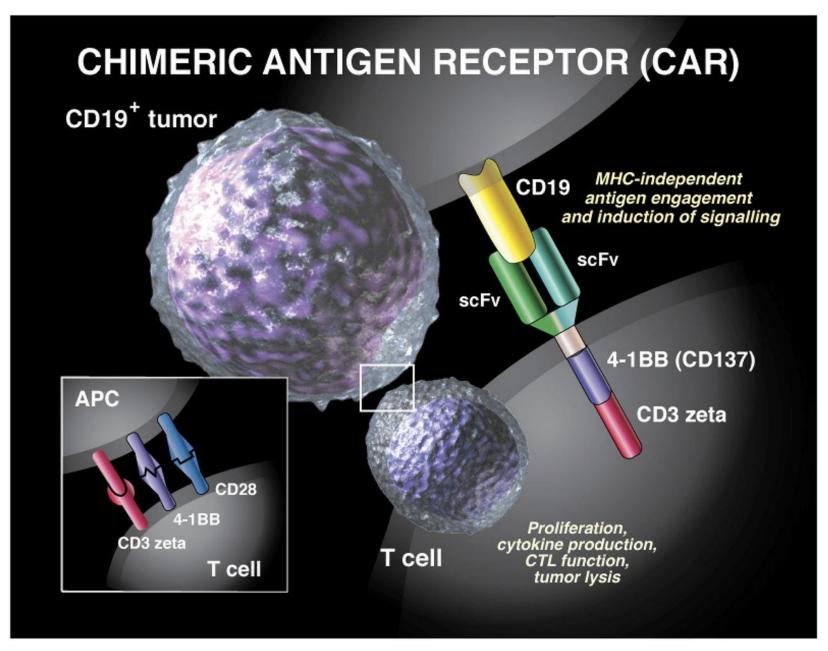


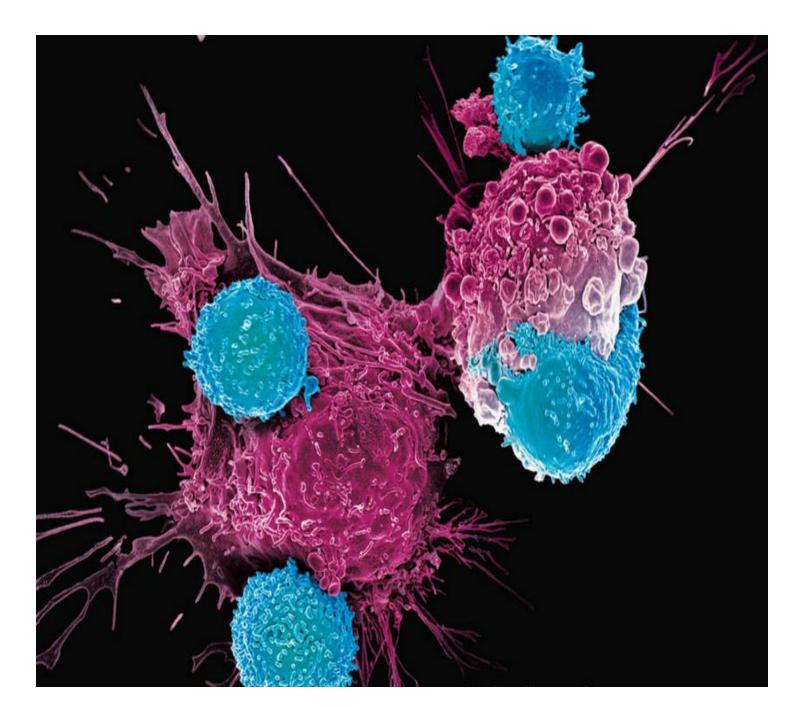
TCR based cell therapy problems:

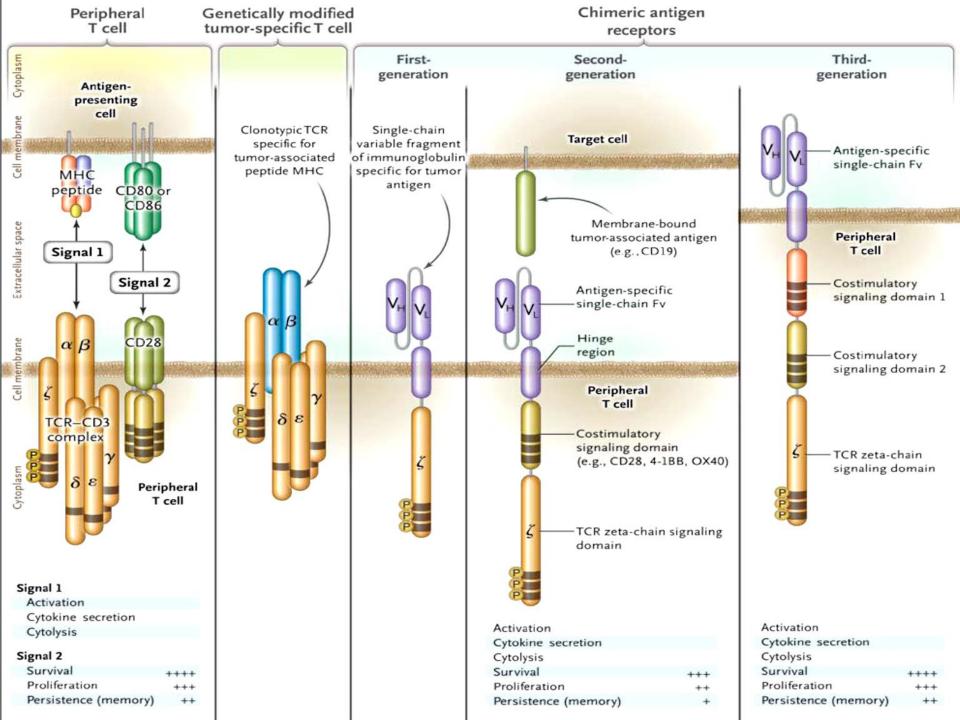
- Problems with target specificity
- Need HLA co-presentation
- Restricted to processed peptide antigens
- Most of the TCRs Requires costimulation.

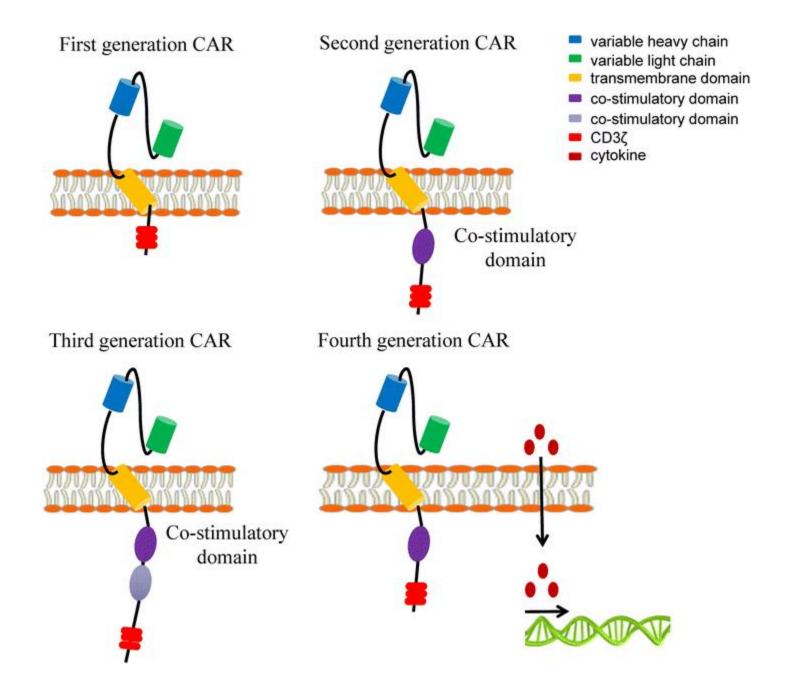


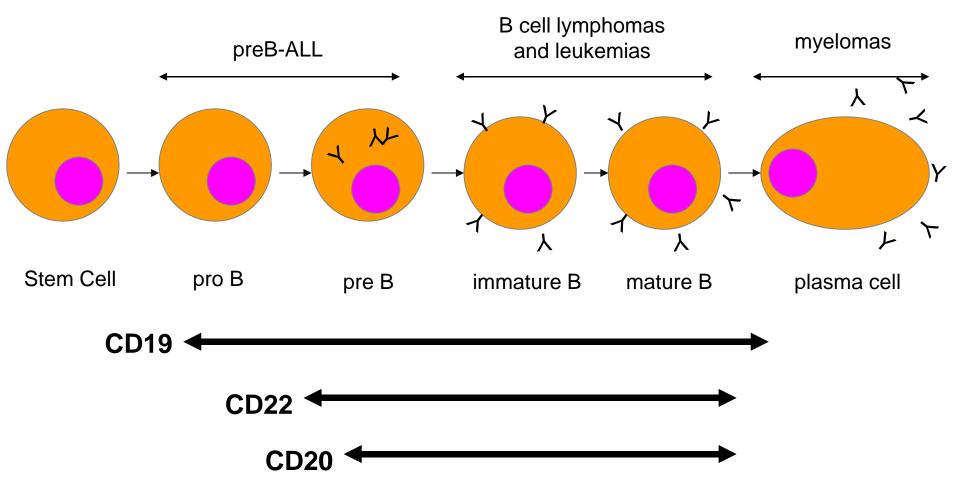

Chimeric Antigen Receptor (CAR) T Cells

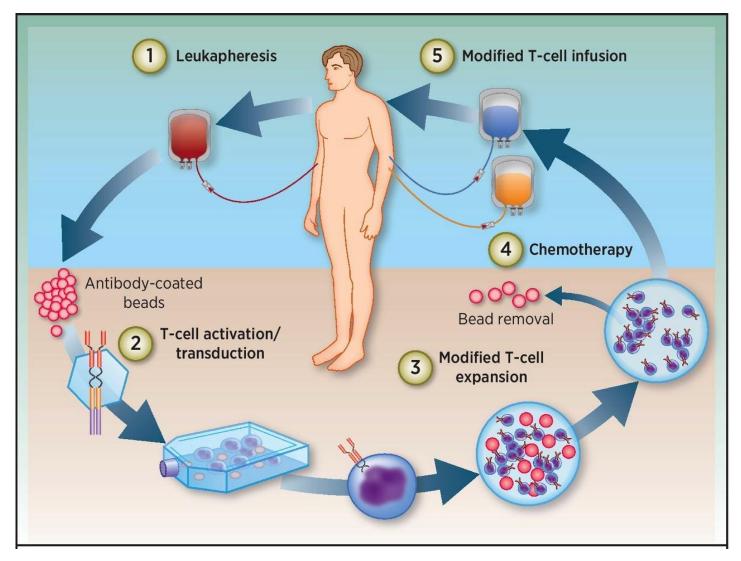



The history of CARs

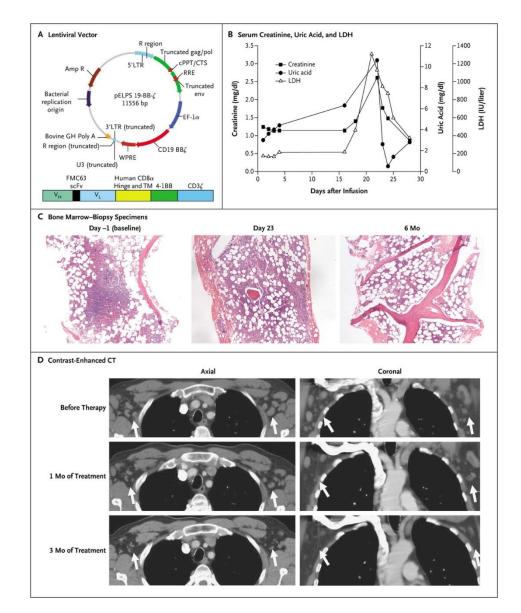

- The birth of CAR technology occurred 25 years ago when it was shown that antibody variable light (VL) or heavy (VH) gene segments can transfer specificity for native antigen.
- It was Eshhar who realized the Translational potential of such non-HLA-restricted T cell recognition.







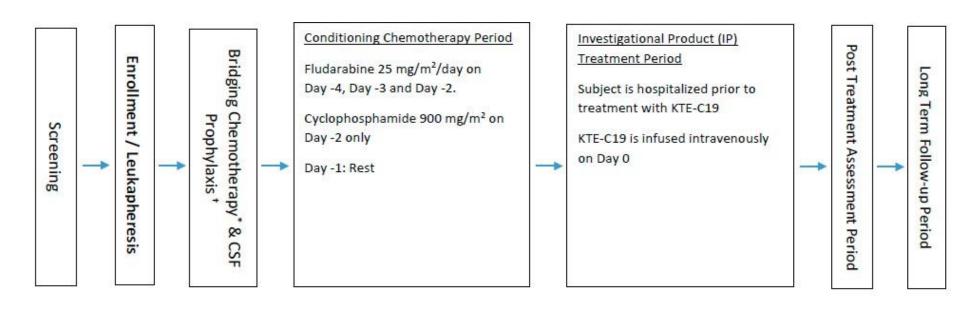
Expression of CD19 and other B cell markers on B lineage cells



Car Immunotherapy CAR T Cells

Target antigen	Disease	CAR signaling domain	ClinicalTrial.gov identifier	Clinical center
CD19	B-CLL	CD28-CD35	NCT00466531	MSKCC
CD19	B-ALL	CD28-CD3ç	NCT01044069	MSKCC
CD19	Leukemia	CD28-CD3ç	NCT01416974	MSKCC
CD19	Leukemia/lymphoma	CD28-CD3ç	NCT00924326	NCI
CD19	Leukemia/lymphoma	CD28-CD3ç	NCT01087294	NCI
CD19	Leukemia/lymphoma	CD28-CD3ζ vs. CD3ζ	NCT00586391	BCM
CD19	B-NHL/CLL	CD28-CD3ζ vs. CD3ζ	NCT00608270	BCM
CD19	Advanced B-NHL/CLL	CD28-CD3ζ vs. CD3ζ	NCT00709033	BCM
CD19	ALL post-HSCT	CD28-CD3ç	NCT00840853	BCM
CD19	Leukemia/lymphoma	CD137-CD3¢	NCT01029366	UP
CD19	B-lymphoid malignancies	CD28-CD3ç	NCT00968760	MDACC
CD19	B-lineage malignancies	CD28-CD3ç	NCT01362452	MDACC
CD20	Mantle cell lymphoma/indolent B-NHL	CD28-CD137-CD35	NCT00621452	FHCRC
PMSA	Prostate cancer	CD28-CD3ç	NCT01140373	MSKCC
CEA	Breast cancer	CD28-CD3ç	NCT00673829	RWMC
CEA	Colorectal cancer	CD28-CD3ç	NCT00673322	RWMC
Her2/neu	Lung cancer	CD28-CD3ç	NCT00889954	BCM
Her2/neu	Osteosarcoma	CD28-CD3ç	NCT00902044	BCM
Her2/neu	Glioblastoma	CD28-CD3ç	NCT01109095	BCM
Kappa light chain	B-NHL and B-CLL	CD28-CD35 vs. CD35	NCT00881920	BCM

MSKCC, Memorial Sloan-Kettering Cancer Center; NCI, National Cancer Institute; BCM, Baylor College of Medicine; RWMC, Roger Williams Medical Center; UP, University of Pennsylvania; MDACC, M.D. Anderson Cancer Center; FHCRC, Fred Hutchinson Cancer Research Center.


The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia

David L. Porter, M.D., Bruce L. Levine, Ph.D., Michael Kalos, Ph.D., Adam Bagg, M.D., and Carl H. June, M.D.

Study Schema

* Bridging Chemotherapy

Subjects with high disease burden at screening [M3 marrow (>25% leukemic blasts) or ≥ 1000 blasts/mm³ in the peripheral circulation] should receive bridging chemotherapy for high burden disease. Other subjects may receive non-high burden disease bridging chemotherapy per investigator discretion, prior to initiation of conditioning chemotherapy and KTE-C19 infusion. For a detailed list of allowed bridging chemotherapy regimens refer to Table 14 in Section 6.3.2. Chemotherapy doses are recommended and can be adjusted per local or institutional guidelines. If given, bridging chemotherapy must be administered after leukapheresis and completed at least 7 days prior to conditioning chemotherapy.

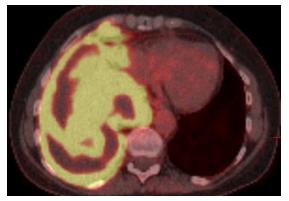
⁺ CSF Prophylaxis Prior to KTE-C19 Treatment:

Day -14 to Day -7: A mandatory CSF prophylaxis consisting of an intrathecal regimen according to institutional or national guidelines will be administered (e.g., methotrexate 12 to 15 mg, cytosine arabinoside 40 mg, or dexamethasone 4 mg or equivalent steroid dose). Additional intrathecal chemotherapy may be given per institutional guidelines if clinically indicated, but is not required and should be avoided for at least 8 weeks after KTE-C19 infusion if possible.

CD19-specific-CAR T-cell therapy outcomes in patients with B-ALL

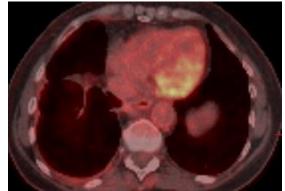
Table 1 | CD19-specific-CAR T-cell therapy outcomes in patients with B-ALL

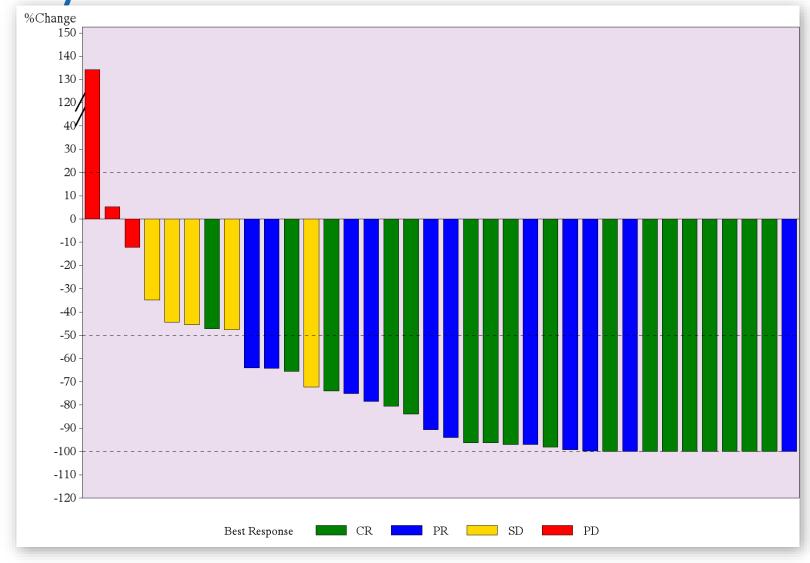
Institution	CAR design	Patient population	Outcome	Toxicities	Reference
MSKCC	CD28, CD3ζ	 n=32 adults R/R B-ALL 	91% CR	• B-cell aplasia • CRS	NCT01044069 (REF. 13)
UPenn/ CHOP	4-1BB, CD3ζ	 n=30 children and young adults B-ALL 	90% CR	• B-cell aplasia • CRS	NCT01626495 (REF. 15)
NCI	CD28, CD3ζ	 n=20 children and young adults B-ALL 	70% CR	• B-cell aplasia • CRS	NCT01593696 (REF. 17)
Fred Hutchinson	4-1BB, CD3ζ	 n=20 adults B-ALL 	83% CR	CRS	NCT01865617 (REF. 18)


CAR-T-cell targets for the treatment of haematological malignancies

Target	CAR structure	Malignancy	Institution	Reference
CD22	CD3ζ and CD28	FL, NHL, DLBCL, B-ALL	NCI	NCT02315612 (REF. 34)
CD20	CD3ζ or CD3ζ and 4-1BB	CD20-positive malignancies	PLA General Hospital	NCT01735604 (REF. 47)
ROR1	CD3ζ and 4-1BB	CLL, SLL	MD Anderson	NCT02194374 (REF. 36)
lgк	CD3ζ and CD28	CLL, low-grade B-cell malignancies	Baylor	NCT00881920 (REF. 37)
CD30	CD3ζ and CD28	HL, NHL	Baylor	NCT01316146 (REF. 56)
CD123	CD3ζ and CD28	AML	City of Hope	NCT02159495 (REF. 41)
CD33	CD3ζ and 4-1BB	AML	PLA General Hospital	NCT01864902 (REF. 40)
LeY	CD3ζ and CD28	AML	Peter Mac	NCT01716364 (REF. 42)
BCMA	CD3ζ and 4-1BB	MM	NCI	NCT02215967 (REF. 38)
CD138	CD3ζ and 4-1BB	MM	PLA General Hospital	NCT01886976 (REF. 39)

Response in Patient with Refractory DLBCL


Before treatment



6 months after treatment

Depth of Best Response in NCI B Cell Lymphoma Study

te narma

UNOVARTIS

Two projects in phase I and one in Phase II.

Autologous T-Cell.

(In the Top 3 Biggest Pharma companies worldwide) Market cap € 215Bn

One Candidate in Phase II, one in Phase I and one at a preclinical stage.

In collaboration with <u>Alpine Immune</u> <u>Science</u>, <u>Amgen</u> (at a preclinical stage).

IPO €127M - Market Cap €1.95Bn

Registration for Clinical Trial, plus several project at preclinical stage.

Collaboration with Servier & Pfizer

With Allogeneic T-Cell (UCART) .

Market cap €1.07Bn

Two candidates in Phase II, and Four in phase I stage.

Collaboration with <u>Opus Bio</u> (phase I) and Pre-clinical: <u>Editas Medicine</u>, <u>Fate Thera-</u> <u>peutics</u>, <u>MabVax Therapeutics</u>.

Signed a €950M upfront deal with Celgene, raised €535M. Market cap €4.92Bn

STARTING YOUR PATIENTS ON

KYMRIAH[™]

The **first FDA-approved CAR-T cell therapy** for the treatment of patients up to 25 years of age with B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse.

(tisagenlecleucel) ^{Suspension} for IV infusion

This guide will walk you through how to start your appropriate patients on KYMRIAH™ (tisagenlecleucel), so that you can begin coordinating care with a KYMRIAH Treatment Center.

IMPORTANT SAFETY INFORMATION

WARNING: CYTOKINE RELEASE SYNDROME AND NEUROLOGICAL TOXICITIES

- Cytokine Release Syndrome (CRS), including fatal or life-threatening reactions, occurred in patients receiving KYMRIAH. Do not administer KYMRIAH to patients with active infection or inflammatory disorders. Treat severe or life-threatening CRS with tocilizumab [see Dosage and Administration (2.2, 2.3), Warnings and Precautions (5.1)].
- Neurological toxicities, which may be severe or life-threatening, can occur following treatment with KYMRIAH, including concurrently with CRS. Monitor for neurological events after treatment with KYMRIAH. Provide supportive care as needed [see Warnings and Precautions (5.2)].
- KYMRIAH is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the KYMRIAH REMS [see Warnings and Precautions (5.3)].

Please see additional Important Safety Information throughout. Please see full <u>Prescribing Information</u> for KYMRIAH, including Boxed WARNING, and Medication Guide.

[TRIAL	AREA OF RESEARCH	PRE-IND	PHASE 1	PHASE 2/3
	axicabtagene ciloleucel	ZUMA 1	DLBCL, PMBCL & TFL	-		
Chimeric Antigen	KTE-C19 (WAVE-1)	ZUMA 2 ZUMA 3 & 4	MCL Adult & Pediatric ALL			-
	KTE-C19 (WAVE-2)	ZUMA-5 ZUMA-6 ZUMA-7 ZUMA-8	Indolent NHL DLBCL (PD-L1 mAb) DLBCL (2nd line) CLL			
Receptor	Human anti-CD19 (2 nd Gen)	NCI	Heme Malignances		_	
	Humanized anti-CD19 Control CAR (3rd Gen)		Heme Malignances	-	-	
	KITE-585 (anti-BCMA)		MM	-	-	
	KITE-796 (anti-CLL-1 Control CAR)		AML	-	-	
	MAGE A3/A6	NCI	Solid Tumor	-	_	
	KITE-718 (MAGE A3/A6)		Solid Turnor	-	_	
	MAGE A3	NCI	Solid Tumor	-	_	
T Cell	HPV-16 E6 & E7	NCI	Cervical and HNC	-		
Receptor	KITE-439 (HPV-16 E7)		Cervical and HNC	_	-	
	KRAS	NCI	Solid Tumor	-	-	
	SSX-2	NCI	Solid Tumor	-	-	
	Neoantigens	NCI	Solid Turnor		-	

Company		Jun	0	Nov	artis	Gil	ead	
Product		JCAR017		KYMRIAH Tisagenlecleucel		YESCARTA Axicabtagene ciloleucel		
	US Status	P1-	-2	BLA Filed		Approved		
	Trial	Transo	cend	Ju	Juliet		ZUMA-1	
	Follow-Up	3 Mon	6 Mon	3 Mon	6 Mon	3 Mon	6 Mon	
	Patients	N=19	N=14	N=81		N=101		
Efficacy	Objective Response Rate (ORR)	<mark>74</mark> %	50%	38%	37%	54%	41%	
	Complete Response (CR)	68%	50%	32%	30%	36%	36%	
	Patients	N=67		N=81		N=101		
Safety	Cytokine Release Syndrome (CRS)	1% Severe 40% Any		23% Severe 58% Any		13% Severe 94% Any		
	Neurotoxicity	15% Severe 21% Any		12% Severe 58% Any		31% Severe 84% Any		

Study Group/ Reference	Signaling Domains Targeted	Lymphodepleting Agent(s)	Population	Response Rate	CRS Rate	Neurologic Toxicity Rate
		Acut	e Lymphoblastic Leu	kemia (ALL)		
Penn/CHOP	CD3ζ,	Varied	N = 30	CR: 90%	Total: 100%	Total: 43%
Maude et al[4]	4-18Bª		pediatric and adult patients		27% severe	Encephalopathy, apha- sia, seizures (1 patient)
MSKCC	CD3ζ,	Cyclophosphamide	N = 16 adults	CR: 88%	43% severe	Grade 3/4: 25%
Davila et al[1]	CD28					Encephalopathy, seizures
NCI	CD3ζ,	Fludarabine/	N = 21	CR: 67% in	Total: 76%	Total: 29%
Lee et al[3]	CD28	cyclophosphamide	pediatric and adult patients	intent-to-treat population	28% severe	Hallucinations, dyspha- sia, encephalopathy
FHCRC	CD3ζ,	Cyclophosphamide and fludarabine/ cyclophosphamide	N = 29 adults	CR: 93%	Total: 83% 23% severe	Severe neurotoxicity:
Turtle et al[7]	4-1BBª					50%
		oyoophoophamao				TRM: 1 patient
	с	hronic Lymphocytic L	eukemia (CLL) and N	on-Hodgkin Lym	phoma (NHL)	
NCI	CD3ζ,		N = 15 (NHL/CLL)	CR: 53%	27% severe	Total: 40%
Kochenderfer et al[2]	CD28	cyclophosphamide		PR: 27%		Encephalopathy, apha- sia, right facial paralysis, myoclonus, ataxia
Penn	CD3ζ,	Varied	N = 14 (CLL)	CR: 29%	Total: 64%	Total: 43%
Porter et al[6]	4-1BBª			PR: 29%	36% severe	Grade 4: 1 patient
MSKCC	CD3ζ,	3 Patients:	N = 8 (CLL)	No PR/CR	Fever: 8	NR
Turtle et al[39]	CD28	CD28 no treatment 5 Patients: cyclophosphamide			patients TRM: 1 patient	
Baylor	CD3ζ,	None	N = 8 (NHL)	No PR/CR	NR	NR
Savoldo et al[11]	CD28					

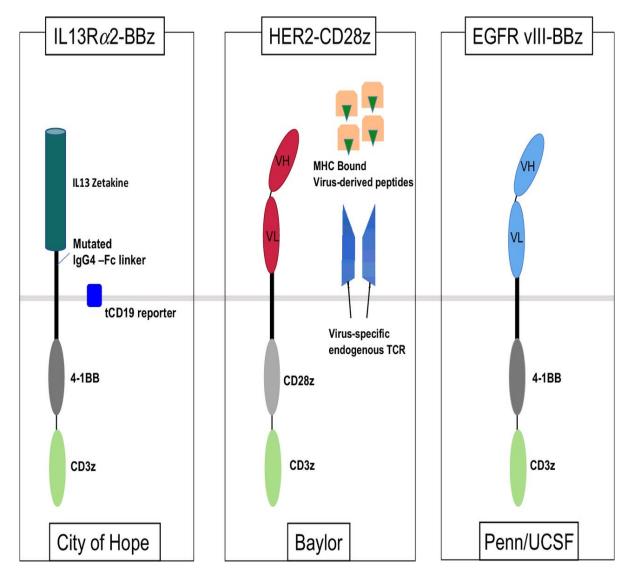
Study Title	Conditions	Sponsor/Collaborators
Study of CART-138/BCMA Therapy for R/R Multiple Myeloma	Multiple Myeloma	The First Affiliated Hospital of Soochow University
Dose Escalation Study of JNJ-64007957, a Humanized BCMA CD3 DuoBody® Antibody, in Participants With Relapsed or Refractory Multiple Myeloma	Hematological Malignancies	Janssen Research & Development, LLC
BCMA Chimeric Antigen Receptor Expressing T Cells in Multiple Myeloma	Multiple Myeloma	The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine; Xinqiao Hospital of Chongqing
LCAR-B38M-02 Cells in Treating Relapsed/Refractory (R/R) Multiple Myeloma	Refractory or Relapsed Multiple Myeloma	Nanjing Legend Biotech Co.
BCMA Targeted CAR T Cells for the Treatment of Multiple Myeloma	Multiple Myeloma	Memorial Sloan Kettering Cancer Center; Juno Therapeutics, Inc.
A Clinical Research of BCMA-Targeted CAR-T in B Cell Malignancies	Leukemia; Lymphoma; Multiple Myeloma	Southwest Hospital, China
Study of bb2121 in Multiple Myeloma	Multiple Myeloma	bluebird bio
CART-BCMA Cells for Multiple Myeloma	Multiple Myeloma	University of Pennsylvania
Study of T Cells Targeting B-Cell Maturation Antigen for Previously Treated Multiple Myeloma	Myeloma, Plasma-Cell; Myeloma- Multiple	National Cancer Institute (NCI); National Institutes of Health Clinical Center (CC)
Dose Escalation Study to Investigate the Safety, Pharmacokinetics, Pharmacodynamics, Immunogenicity and Clinical Activity of GSK2857916	Multiple Myeloma	GlaxoSmithKline

CAR T Cell Myeloma

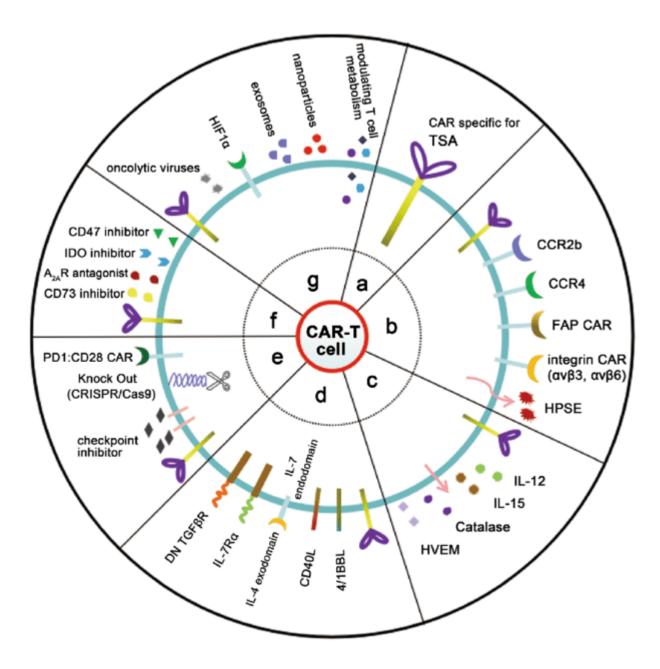
Antigen	Trial Site, Company	Accrual	Identifier/Reference	Comments
СМА	National Cancer Institute	Completed (26 patients)	NCT02215967 ^{42,43}	First-in-human, CD28 domain, Cy/Flu con- ditioning; 13 of 16 (81%) ORR at highest dose
	University of Pennsylvania, Novartis	Completed (24 patients' data reported)	NCT0254616744	4-1BB domain; 6 of 10 (60%) ORR at high dose with Cy conditioning
	Multisite phase I, Bluebird	Ongoing (21 patients' data reported)	NCT0265892945	bb2121 construct, 4-1BB domain, Cy/Flu; 17 of 18 (94%) ORR at higher doses
	Multisite phase II, Bluebird	Ongoing	NCT03361748	bb2121 registration study, 94 patients
	Multisite phase I, Bluebird	Ongoing	NCT03274219	bb21217 product (same as bb2121 but enriched for memory T cells)
	Multisite phase I/II, Nanjing Legend	Ongoing (19 patients' data reported)	NCT03090659⁴⁵	Binds two BCMA epitopes; Cy conditioning; less-treated population; 19 of 19 (100%) ORR
	Memorial Sloan Kettering/Juno	Ongoing (6 patients' data reported)	NCT0307032747	2 of 2 responded at higher dose with Cy/Flu; includes cohort with lenalidomide
	Fred Hutchinson, Juno	Ongoing	NCT03338972	Defined CD4/CD8 ratio in final CAR T product
	Multisite phase I/II, Juno	Ongoing	NCT03430011	JCARH125 construct, Flu/Cy
	Multisite phase I, Poseida	Ongoing	NCT03288493	Transposon-based construct ⁴⁸
	Multisite phase I, Kite	Ongoing	NCT03318861	KITE-585 construct, Flu/Cy
	Multiple hospital sites in China	Ongoing	NCT03322735 NCT03093168 NCT03380039 NCT02954445 NCT03302403	Small phase I/pilot studies
	Multisite phase I/II, Autolus Limited	Ongoing	NCT03287804	Novel CAR expressing APRIL to target BCMA and TACI
~	Virginia Cancer Specialists, Cartesian Therapeutics	Ongoing	NCT03448978	Product contains CD8 ⁺ cells only
D19	University of Pennsylvania, Novartis	Completed (10 patients)	NCT02135406 ^{49,50}	CD19 CAR T + salvage autoSCT. Targeting CD19+ myeloma precursor cells.
	Soochow University, China	Ongoing (10 patients	NCT03196414 ⁵¹	CD19 CAR T + BCMA CAR T
		reported)	NCT03455972	Includes pilot of upfront CAR T cells + auto- SCT for high-risk MM
	General Hospital of PLA, China	Completed (5 patients)	NCT01886976	4 of 5 with stable disease for 3–7 months; no reported GI toxicity
\frown	Soochow University, China	Ongoing	NCT03196414	Combination of CD138 CAR T + BCMA CAR T cells
Kappa LC	Baylor University	Completed (7 patients with MM)	NCT0088192052	No objective responses
CD38	Multisite phase I, Sorrento Therapeutics	Ongoing	NCT03464916	To open in 2018
	Shenzhen Geno-Immune Medi- cal Institute, China	Ongoing	NCT03271632	Pilot study testing CAR T cells against multi- ple antigens
	NA	Preclinical	NA ^{53,54}	Affinity optimization to limit binding of CAR to CD38 on nonplasma cells
SLAMF7 CS1	NA	Preclinical	NA ⁵⁵⁻⁵⁷	Concern for fratricide; can overcome with gene editing to knock out SLAMF7 in CAR T cells

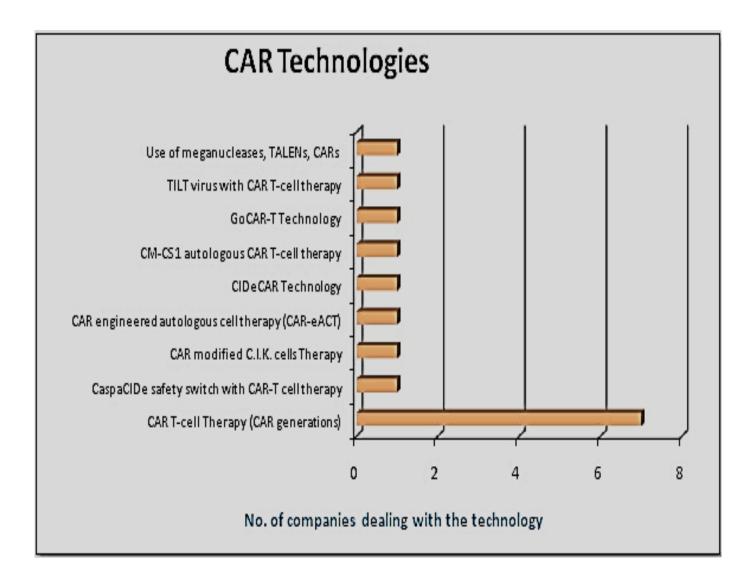
*Current as of March 2018.

Abbreviations: AutoSCT, autologous stem cell transplantation; BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; Cy, cyclophosphamide; Flu, fludarabine; GI, gastrointestinal; LC, light chain; MM. multiple mveloma: NA. not available: ORR. overall response rate.

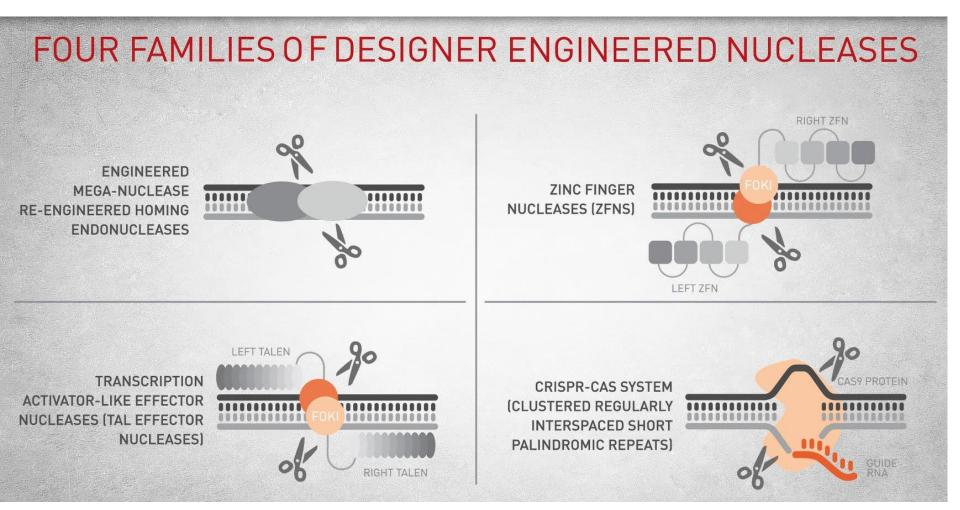

Preclinical CAR T cells work in AML

Author	Antigen Target	Construct	In vitro effects	In vivo effects
Kenderian et al ^s	CD33	Humanized scFv of my96 with either IgG4 or CD8 hinge	Robust cytotoxicity against cell lines and primary AML samples along with extensive degranulation and cytokine production	Decreases disease burden and prolongs survival in xenografts with MOLM 14 and primary CD33+AML patient samples
Rafiq et al ^s	CD33	Variable light and heavy chains of humanized M-195 antibody, CD28 and zeta signaling domain with the IL-12 gene	Significant production of IFN-y, IL-2 and IL-12, as well as significant cytotoxicity	Reduction in systemic disease burden and improved OS in MOLM13 and patient derived xenografts
O'Hear et al?	CD33	CD8 leader sequence with anti-CD33 single chain variable fragment ^e and 4-1BB along with CD3ζ	Cytoxicity against AML cell lines as well as primary patient samples	Dramatic decrease in disease burden and extended median survival in a MOLM13 murine model
Gill et al⁰	CD123	Cloned mouse antihuman CD123 scFv (clone 32716 or clone 26292) along with 4-18B and CD35	Cytotoxicty against MOLM14 and primary patient samples with high IFN-Y, MIP10, MIP18, IL2, GSCF	Long-term survival with decreased disease burden in MOLM14 and primary patient xenografts. Establishment of memory CART123 when rechallenged
Mardios et al ^{to}	CD123	Clone 327 16 or clone 26292 of CD 123 scFv with human IgG4, CD28, CD32	Cytotoxicity against LCL, KG-1a and primary patient samples with high levels of TNF-q and IFN-q	Improved survival with decreased disease burden in KG-1a xenografts
Tettamani et al'', Pizzitola et al' ¹²	CD123	Anti-CD123 CIK CART with scFv CD123 from mAb7G3 CD280X40ζ°	Cell kill against THP-1 and primary AML blasts ¹⁶	Decreases ability to engraft cells and decreased disease burden in primary patient xenografts ^o
Magnani et al ¹³	CD123	Anti-CD123 CIK CART with CD28/ OX40/TCRz	Specific killing, TNF-a and IFN-y, proliferation on co-culture with THP-1 and primary patient samples	Decreased disease burden and improved OS in KG-1 NSG mice
Cartellieri et al ^{ar}	CD123 and CD33	Universal CAR (UniCAR), not available	Cytotoxicity against cell lines and patient samples with production of IFN+y, G-CSF, IL3	Inhibit tumor engraftment in vivo, maintain cytotoxic potential long term
Zhou et al ³⁴	CD123 and EBV	Not available	Cytolysis of MOLM13 and THP-1 cell lines	Not available
Lynn et al**	FRβ	m909 scFv, remainder of construct not available	Cytolytic activity against THP1 with significant IFN-y release	Improvement in disease burden with subcutaneous and IV inoculation of THP-1 in NOD mice
Kenderian et al ¹⁴	CLL 1/ CLEC 12A	CLEC 12A, 4-18B, CD35	Modest efficacy against cell lines and patient samples. Significant cytotoxicty in cells engineered to overexpress CLEC12A	Increase in survival of patient derived xenograftstreated with cytarabine and CLEC 12A-CART
Chien et al ¹⁷	FLT3	scFv from well characterized anti-human FLT3 antibody with 4-1BB and CD3ζ	Proliferate in presence of MOLM13 and MOLM14	Inhibit leukemia progression in MOLM13 or MOLM14 engrafted NSG mice
Ploch et al 18	B7H6	CART expressing NKp30, remainder of construct not available	B7H6-dependent, potent cytolytic activity and IFN-y release when co-cultured with leukemia cell lines and primary patient samples	Reduction in tumor burden in animals engrafted with K562

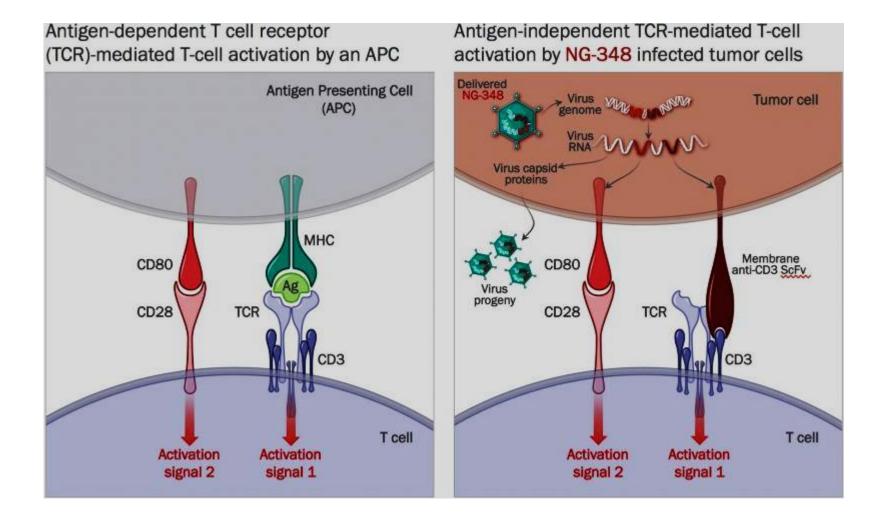

CAR T Cell AML

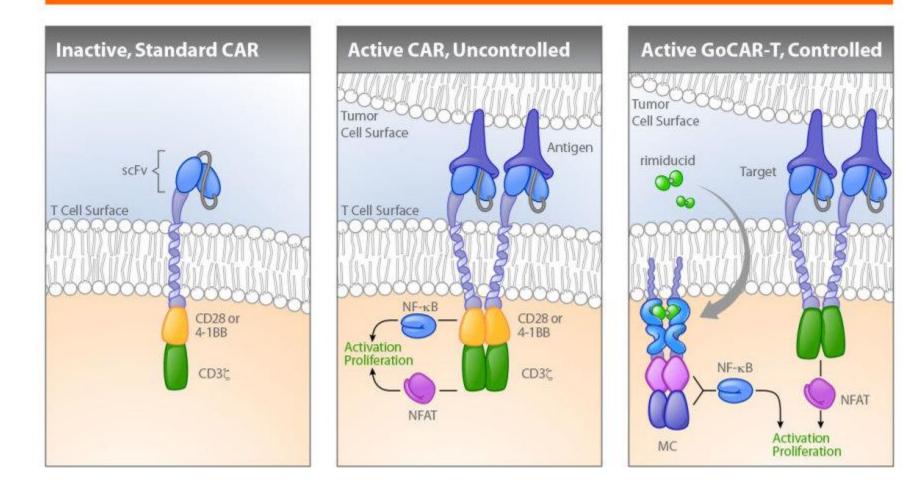

Author	Antigen Target	Construct	In vitro effects	In vivo effects	Stage of Development
Wang et al ^{20,21}	CD33	Autologous, unavailable	Cytotoxicity against K562, cytolytic against HL60 and primary patient samples	Unavailable	Case report, phase I, II
Guzman et al ³³	CD123	UCAR123, not available	Effective elimination of AML cell lines	Complete eradication of disease in patient-derived xenografts	Phase I
Nikiforow et al ²²	NKG2D	Not available	Not available	Not available	Phase I
Peinert et al ¹⁹	LeY	Not available	Cytolytic activity and IFN-gamma production when co-cultured with AML cell lines and primary patient samples	Not available	Phase I

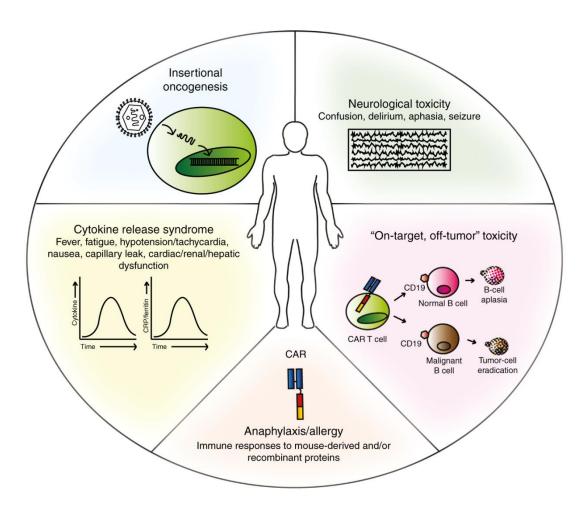
CAR T cells in glioblastoma



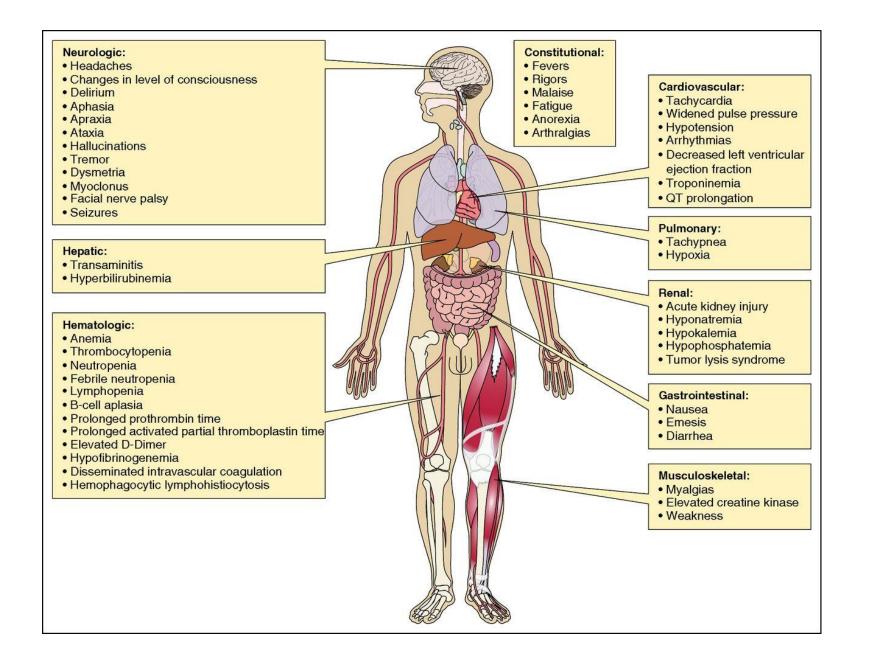
Approaches to improve CAR T Cell outome




Gene editing for CAR T cells


TILT oncolytic virus technology

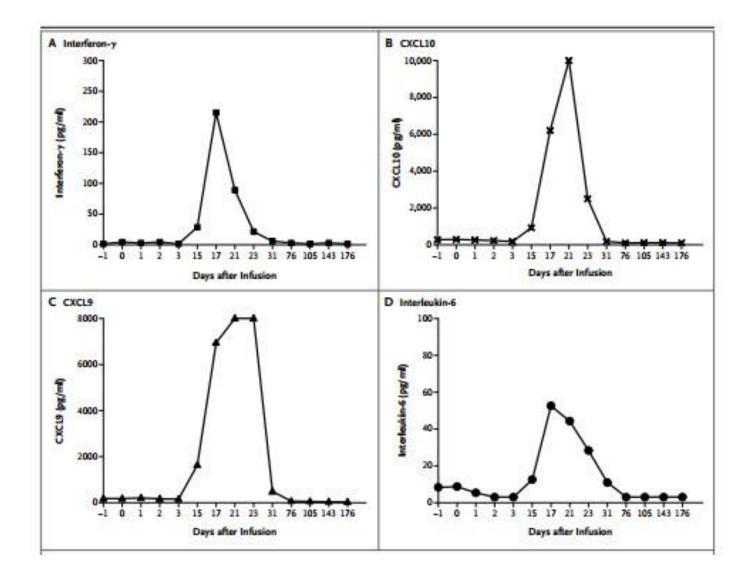
Conventional CAR-T Technology vs. GoCAR-T



Toxicities

Tumor lysis syndrome

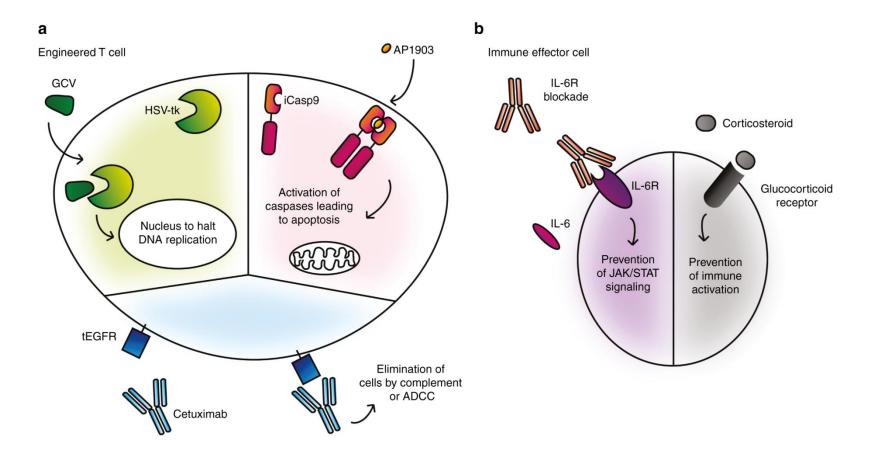
Macrophage activating syndrome



Symptoms of CRS

 condition resulting from the release of cytokines from cells targeted by antibodies, immune effector cells recruited to the tumor area, and subject's immune cells activated.

Organ system	Symptoms
Constitutional	Fever \pm rigors, malaise, fatigue, anorexia, myalgias, arthalgias,
	nausea, vomiting, headache
Skin	Rash
Gastrointestinal	Nausea, vomiting, diarrhea
Respiratory	Tachypnea, hypoxemia
Cardiovascular	Tachycardia, widened pulse pressure, hypotension, increased
	cardiac output (early), potentially diminished cardiac output
	(late)
Coagulation	Elevated D-dimer, hypofibrinogenemia \pm bleeding
Renal	Azotemia
Hepatic	Transaminitis, hyperbilirubinemia
Neurologic	Headache, mental status changes, confusion, delirium, word
	finding difficulty or frank aphasia, hallucinations, tremor,
	dymetria, altered gait, seizures


Serum and Bone Marrow Cytokines before and after Chimeric Antigen Receptor T-Cell Infusion.

Neurotoxicity Pathophysiology

- Exact etiology remains unclear
- No clear evidence of expression of CD19 in CNS
 - CD19 expression in archival tissue from non-lymphoma patients, in multiple brain regions by qPCR and immunohistochemistry and found no CD19 expression as a potential cause of neurotoxicity (Kochenderfer 2014)
- Possibility of CNS occult disease in a subset of DLBCL patients with tumor disseminated beyond the lymph nodes and spleen (Wilson 2005)
 - None of the patients in this study had a history of or evidence of CNS disease. Pre-treatment of steroids still results in neurotoxicity
- MRI-no findings, CSF-CAR T, EEG-non focal
- Observed in other CD19 targeted T cell therapy such as blinatumomab

Decreasing the toxicity in CAR modified T cell cancer therapy

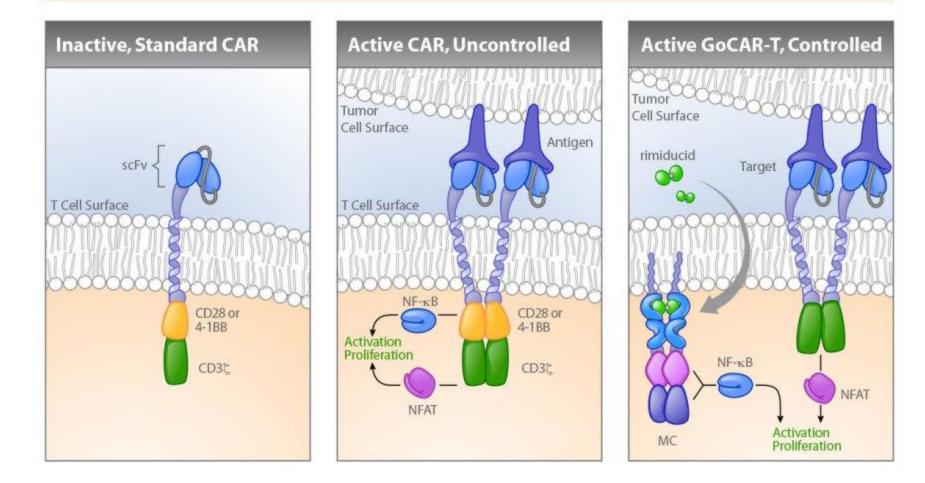
Moving Forward with CAR-T Cells

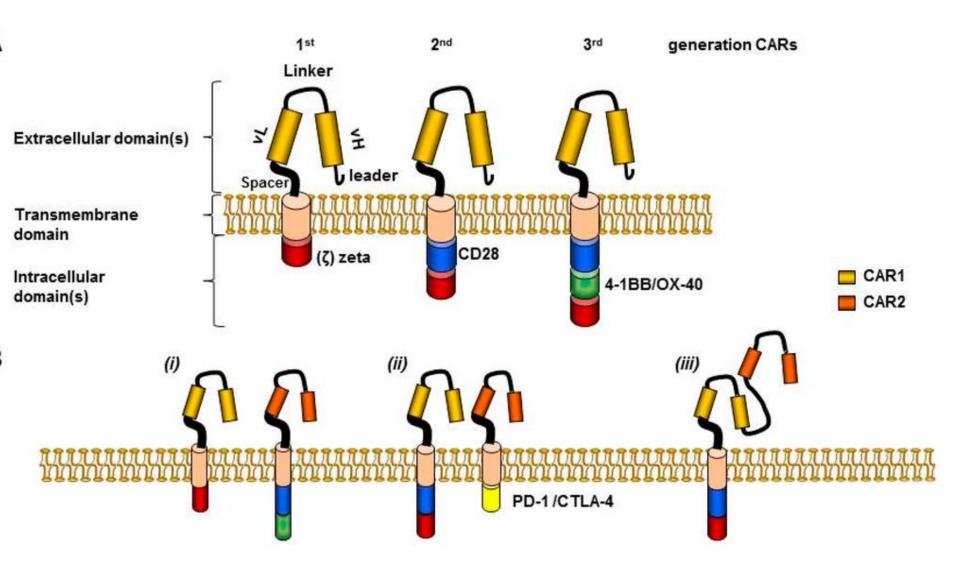
Determinants of successful ACT: CAR-T cells

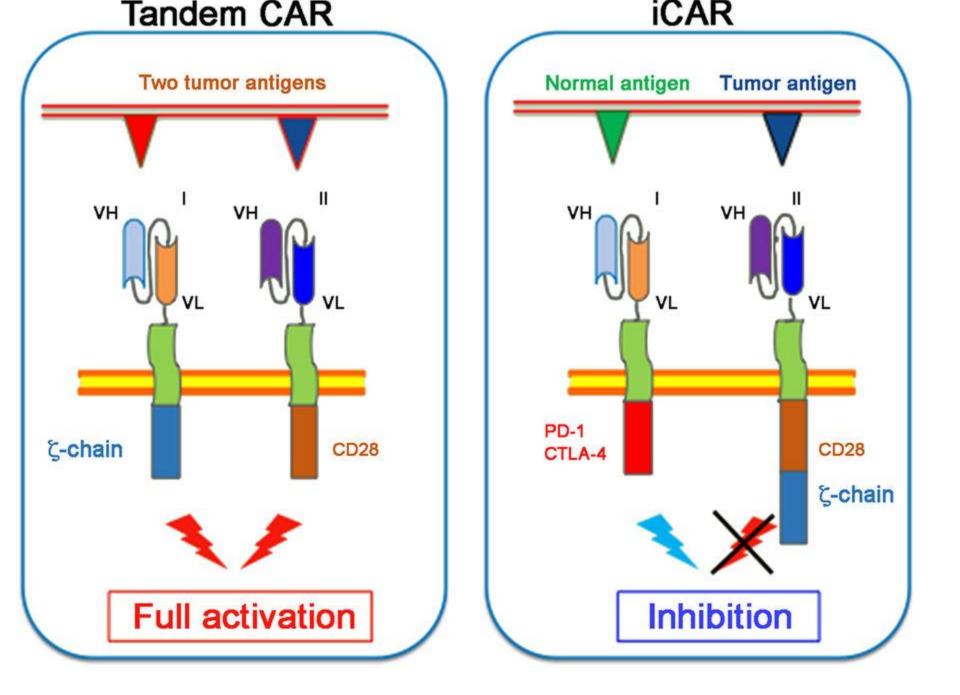
Tumor target

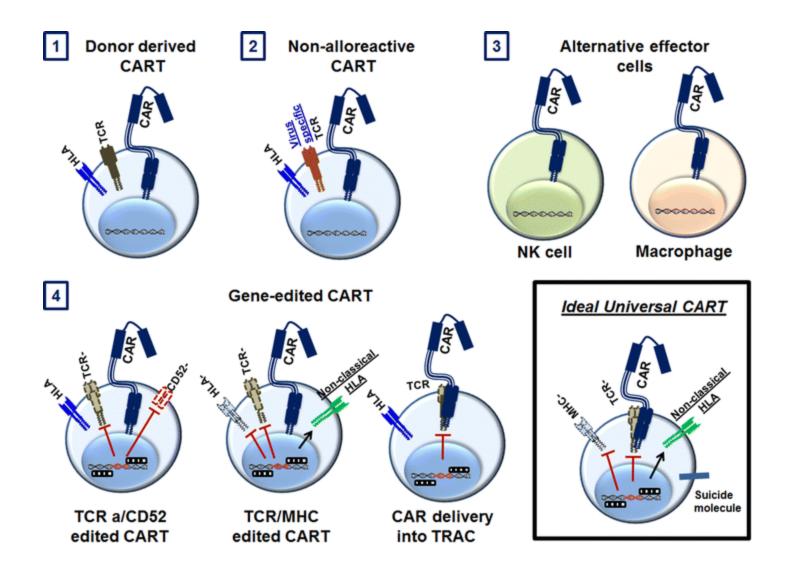
- Target antigen is critical determinant for efficacy & safety
- Ideal target uniquely express on tumor cells or on cells which are not essential for survival

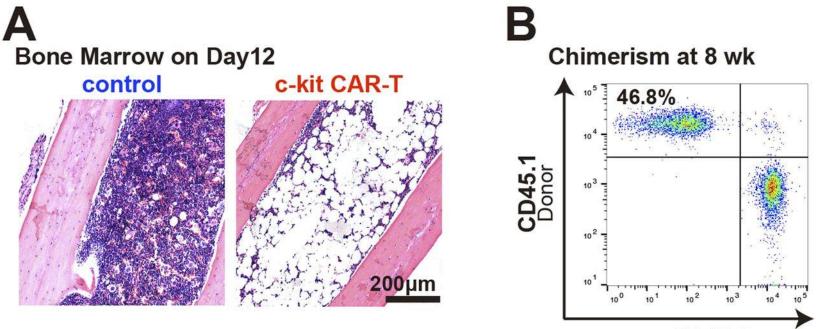
Efficacy & Long-term persistence


- Subtypes of CD4+T cells (Th1, Th2, Th17, Th9 cells),
- CD8+T cells
 - naïve, central memory; long-term
 - effector; active but short lived


Trafficking of CAR T cells to tumor


- Expression of addressins
- Route of CAR-T cell infusion
 - Intra-tumoral/intravenous
- Optimal co-stimulation of T cells


- Patient conditioning before ACT
 - Reduced-intensity or nonmyeloablative
 - Increased intensity myelo ablative


Conventional CAR-T Technology vs. GoCAR-T

CD45.2 Recipient

Yasuyuki Arai et al. Blood 2017;130:4446

Determinants of successful ACT: CAR-T cells

Tumor target

- Target antigen is critical determinant for efficacy & safety
- Ideal target uniquely express on tumor cells or on cells which are not essential for survival

Efficacy & Long-term persistence

- Subtypes of CD4+T cells (Th1, Th2, Th17, Th9 cells),
- CD8+T cells
 - naïve, central memory; long-term
 - effector; active but short lived

Trafficking of CAR T cells to tumor

- Expression of addressins
- Route of CAR-T cell infusion
 - Intra-tumoral/intravenous
- Optimal co-stimulation of T cells

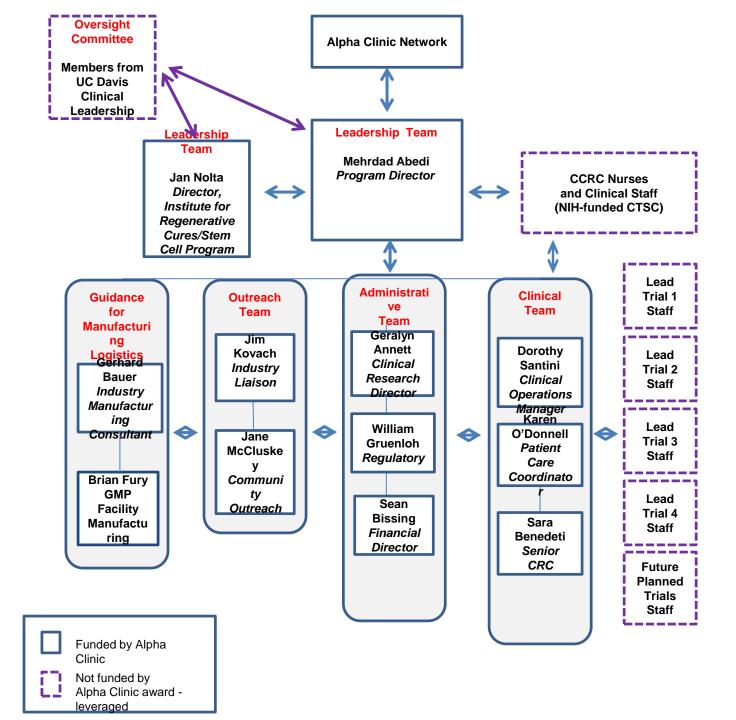
Patient conditioning before ACT

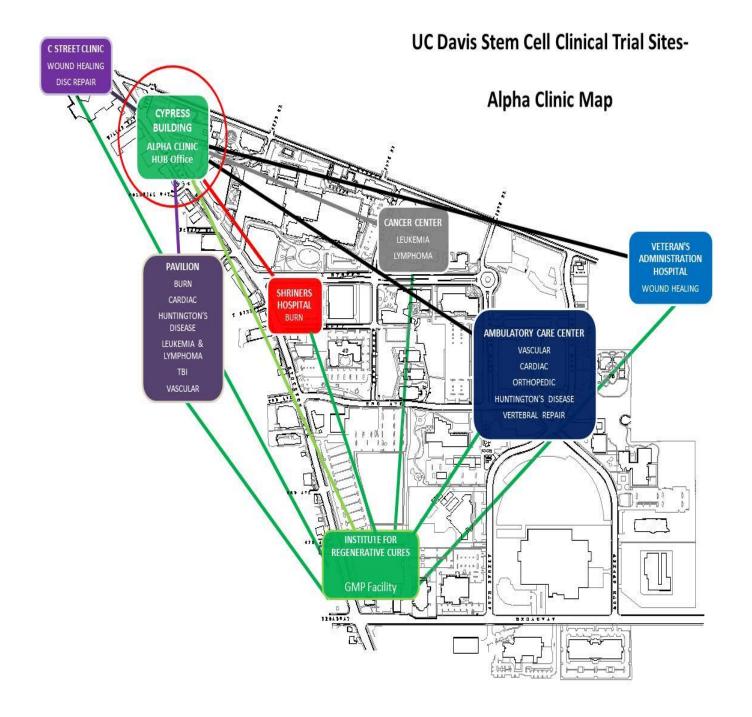
- Reduced-intensity or nonmyeloablative
- Increased intensity myelo ablative

University of California Davis Health, Sacramento, CA

Alpha Stem Cell Clinic

Mehrdad Abedi, MD


Professor of Medicine, Bone Marrow Transplantation Unit ASCC Program Director

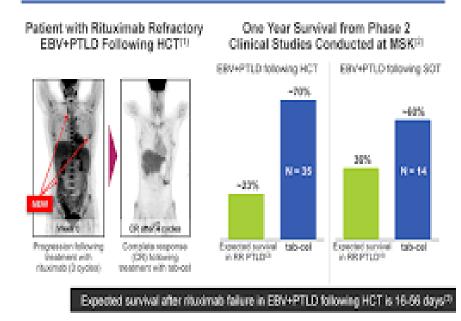


*UC Davis and UC San Francisco Alpha Clinic websites coming soon.

UC Davis Pipeline Clinical Trials

ClinicalTrials.g	Protocol Title	Disease	Sponsor	PI	Status
ov					
NCT02838316	Autologous Muscle Derived Cells for	Tongue	UCD	Peter	9
	Gastro-Intestinal Repair (AMDC-GIR) for	Dysphagia	Cook	Belafsky,	enrolled
	Tongue Dysphagia		Myosite	MD,	11
					screened
NCT01736059	Clinical Trial of Autologous Intravitreal	Retinopath	UCD	Susanna	9 enrolled
	Bone-marrow CD34+ Stem Cells for	У		Park, MD,	13
	Retinopathy				screened
NCT03406780	A Phase 2, Randomized, Double-Blind,	DMD	Capricor	Craig	6 enrolled
	Placebo-Controlled Trial Evaluating the			McDonald,	8
	Safety and Efficacy of Intravenous Delivery			MD	screened
	of Allogeneic Cardiosphere-Delivered Cells				
	in Subjects with Duchenne Muscular				
	Dystrophy (HOPE-2)				
NCT02578641	A Phase III Trial Evaluating Chemotherapy	Nasophary	TESSA	Mehrdad	1 enrolled
	and Immunotherapy for Advanced	ngeal		Abedi, MD	2
	Nasopharyngeal Carcinoma (NPC) Patients	Carcinoma			screened
					2
NCT03301597	Phase 2 open-label, multi-center,	Neutropeni	CIRM	Mehrdad	3 enrolled
	randomized, controlled, dose-finding	а	Nohla	Abedi, MD	6
	study of safety and efficacy of NLA101 to				screened
	reduce the rate of infections associated				
	with CIN in adult subjects with AML		CIDNA	Mobrdod	2 oprollod
NCT02797470	Gene Therapy in Treating Patients	HIV-NHL	CIRM	Mehrdad	3 enrolled
	with Human Immunodeficiency Virus-			Abedi, MD	12
	Related Lymphoma Receiving Stem Cell				screened
	Transplant	Ki alia av i	Mader	luna i ala tara	Oners for
NCT03363945	Cellular Immunotherapy in Recipients of	Kidney	Medeor	Junichiro	Open for

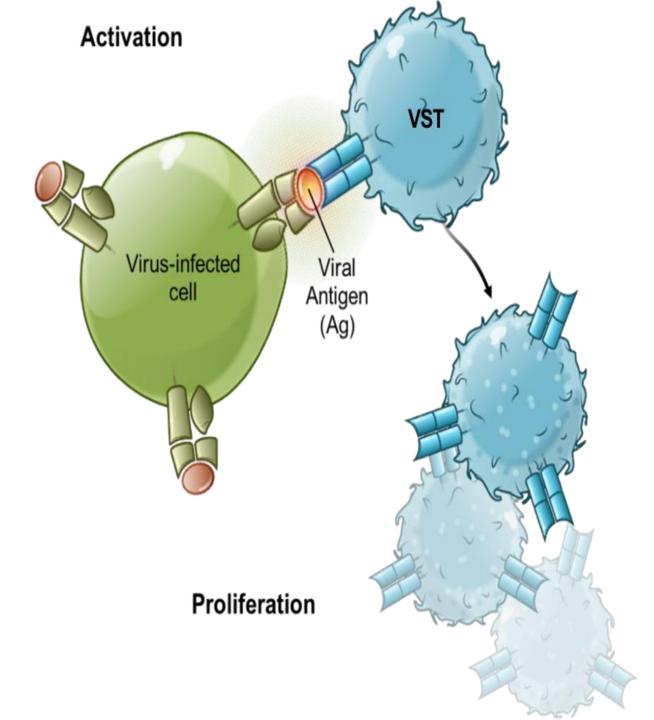
Process:

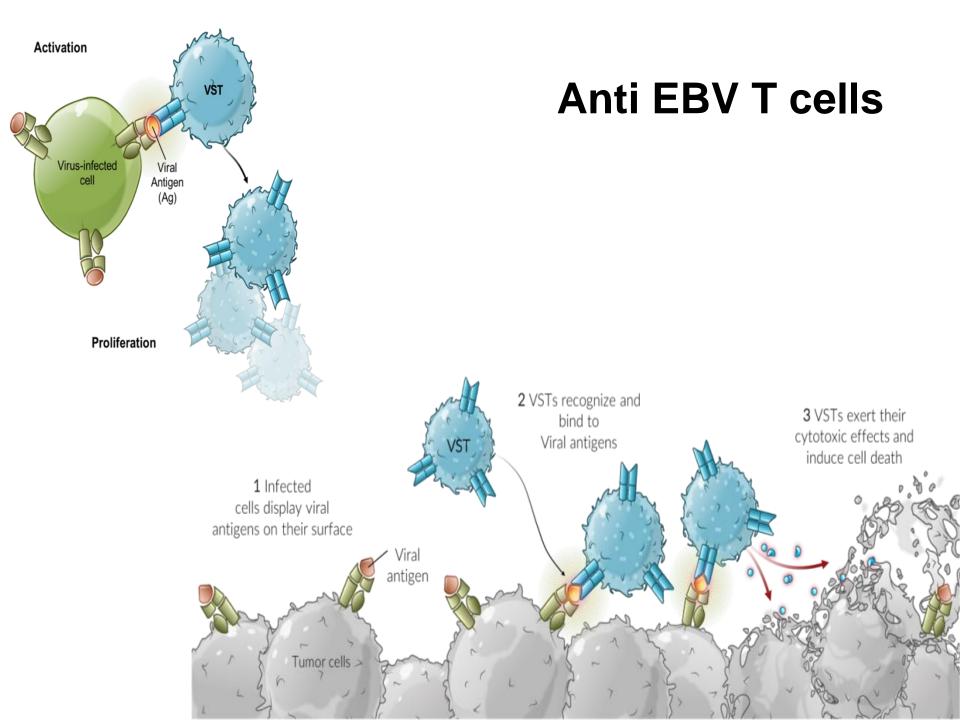


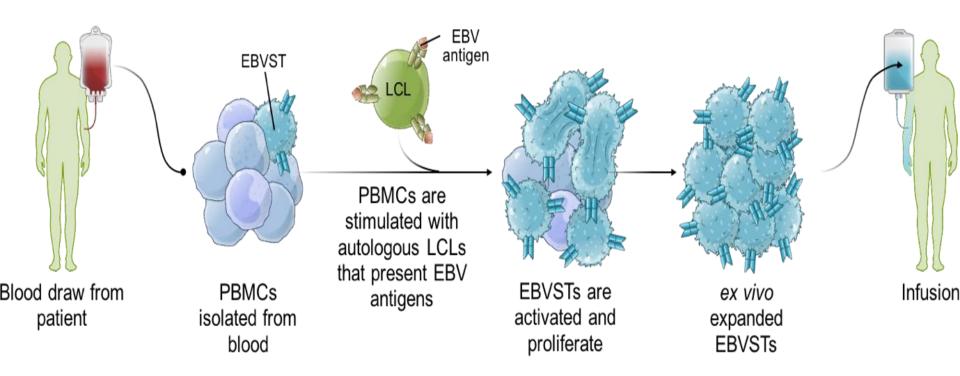
ClinicalTrials.gov	Protocol Title	Disease	Sponsor	PI	Status	
NCT03379493	Study of ET190L1-ARTEMIS™ T Cells in Relapsed and Refractory CD19+ Non- Hodgkin's Lymphoma	NHL	Eureka	Mehrdad Abedi, MD	Budget and IRB In Review	
NCT03394365	ATA129 for Solid Organ Transplant Subjects With EBV-PTLD After Failure of Rituximab or Rituximab and Chemotherapy (ALLELE) ATA129-EBV-302	EBV-PTLD	Atara Bio.	Mehrdad Abedi, MD	SRC approved	
NCT03451916	Phase III, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study, Designed to Determine the Efficacy, Safety, and Tolerability of Intramuscular Administration of Allogeneic PLX-PAD Cells for the Treatment of Muscle Injury Following Arthroplasty for Hip Fracture	Muscle Injury/Hip Fracture	Pluristem	Mark Lee, MD	Budget and IRB In Review	
NCT03420183	A Phase 1b-2 Study of the ROR1-Targeting Monoclonal Antibody, Cirmtuzumab, and the Bruton Tyrosine Kinase Inhibitor, Ibrutinib, in Patients with B-Cell Lymphoid Malignancies	B-Cell Leukemia	CIRM UCSD	Joe Tuscano, MD	SRC Review 6/7/18	
NCT03139370	A Study Evaluating the Safety and Efficacy of MAGE-A3/A6 T Cell Receptor Engineered T Cells (KITE-718) in HLA-DPB1*04:01 Positive Subjects with Advanced Cancers	Advanced Cancer	Kite	Mehrdad Abedi, MD	Budget and IRB In Process	
NCT03400917	Phase II Trial of Autologous Dendritic Cells Loaded with Autologous Tumor Associated Antigens (AV-GBM-1) as an Adjunctive Therapy Following Primary Surgery Plus Concurrent Chemoradiation in Patients With Newly Diagnosed Glioblastoma	GBM	AIVITA Biomedical	Robert O'Donnell, MD, PhD	SRC Pending	
NCT03005106	A Phase III Open-label, Controlled, Randomized, Multicenter Study Evaluating the Efficacy and Safety of StrataGraft Skin Tissue in Promoting Autologous Skin Tissue Regeneration of Complex Skin Defects Due to Thermal Burns That Contain Intact Dermal Elements and for Which Excision and Autografts Are Clinically Indicated	Burns	Mallinckrodt Pharma.	Tina Palmieri, MD	CDA In Process	

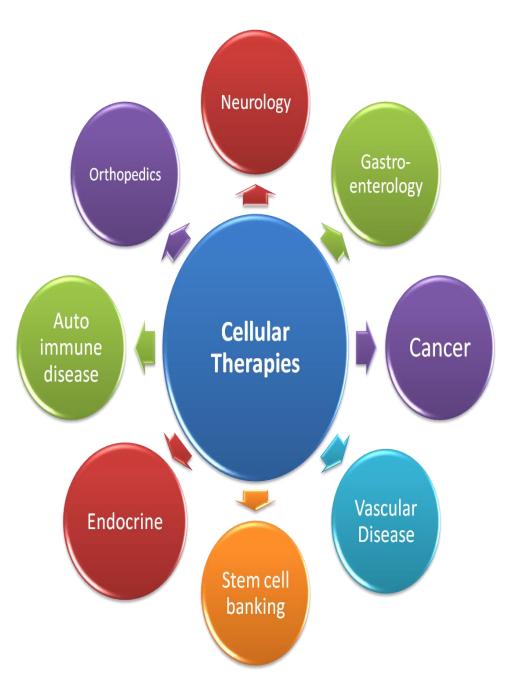
A Multicentre, Randomized, Open-Label, Phase III Clinical Trial Of Gemcitabine And Carboplatin Followed By Epstein-Barr Virus-Specific Autologous Cytotoxic T Lymphocytes Versus Gemcitabine And Carboplatin As First Line Treatment For Advanced Nasopharyngeal Carcinoma(NPC) Patients

	Intervention/treatment ()
Experimental: Arm A 4 cycles of combination IV Gemcitabine (1000 mg/m2) and IV carboplatin (AUC2) on Days 1, 8, 15 every 28 days, followed sequentially by T-cell immunotherapy (2 cycles) of autologous EBV specific Cytotoxic T Lymphocytes every 2 weeks, followed by EBV-specific CTL immunotherapy (4 cycles) every 8 weeks after 6 weeks from the second cycle.	 Biological: autologous EBV specific Cytotoxic T Lymphocytes The CTL line will be prepared by co-cultivation of the irradiated EBV-LCL with patient PBMC. A proportion of peripheral blood will be used to generate EBV specific CTLs. Drug: combination IV gemcitabine and IV carboplatin (AUC2) 4 cycles for Arm A and 6 cycles for Arm B
Active Comparator: Arm B 6 cycles of combination IV gemcitabine (1000 mg/m2) and IV carboplatin (AUC2) on Days 1, 8, 15 every 28 days.	Drug: combination IV gemcitabine and IV carboplatin (AUC2) 4 cycles for Arm A and 6 cycles for Arm B


Potential to Transform Treatment of RR EBV+PTLD




MIX Menolal Issue Katurey Garoar Contar-


(2) States and except with Execute senseting. Reducing the results from Parties (contract exploration) provided for Execute processing to show the distance

21 and and other set of the set of the

AGGRESSIVE DEVELOPMENT How Aggie Square stands to boost the local economy